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Abstract—Irregular workloads are typically bottlenecked by
the memory system. These workloads often use sparse data
representations, e.g., compressed sparse row/column (CSR/CSC),
to conserve space at the cost of complicated, irregular traversals.
Such traversals access large volumes of data and offer little
locality for caches and conventional prefetchers to exploit.

This paper presents Prodigy, a low-cost hardware-software co-
design solution for intelligent prefetching to improve the memory
latency of several important irregular workloads. Prodigy targets
irregular workloads including graph analytics, sparse linear al-
gebra, and fluid mechanics that exhibit two specific types of data-
dependent memory access patterns. Prodigy adopts a “best of
both worlds” approach by using static program information from
software, and dynamic run-time information from hardware. The
core of the system is the Data Indirection Graph (DIG)—a pro-
posed compact representation used to express program semantics
such as the layout and memory access patterns of key data
structures. The DIG representation is agnostic to a particular
data structure format and is demonstrated to work with several
sparse formats including CSR and CSC. Program semantics
are automatically captured with a compiler pass, encoded as
a DIG, and inserted into the application binary. The DIG is then
used to program a low-cost hardware prefetcher to fetch data
according to an irregular algorithm’s data structure traversal
pattern. We equip the prefetcher with a flexible prefetching
algorithm that maintains timeliness by dynamically adapting its
prefetch distance to an application’s execution pace.

We evaluate the performance, energy consumption, and tran-
sistor cost of Prodigy using a variety of algorithms from the GAP,
HPCG, and NAS benchmark suites. We compare the performance
of Prodigy against a non-prefetching baseline as well as state-
of-the-art prefetchers. We show that by using just 0.8KB of
storage, Prodigy outperforms a non-prefetching baseline by 2.6×
and saves energy by 1.6×, on average. Prodigy also outperforms
modern data prefetchers by 1.5–2.3×.

Index Terms—DRAM stalls, irregular workloads, graph pro-
cessing, hardware-software co-design, programming model, pro-
grammer annotations, compiler, and hardware prefetching.

I. INTRODUCTION

Sparse irregular algorithms are widely deployed in several
application domains including social networks [65], [76],
online navigation systems [39], machine learning [42], and
genomics [9], [34]. Despite their prevalence, current hardware-
software implementations on the CPUs offer sub-optimal perfor-
mance that can be further improved. This is due to the irregular
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Figure 1. Overview of our design and contributions. Prodigy software
efficiently communicates key data structures and algorithmic traversal patterns,
encoded in the proposed compact representation called the Data Indirection
Graph (DIG), to the hardware for informed prefetching.

nature of their memory access patterns over large data sets,
which are too big to fit in the on-chip caches, leading to several
costly DRAM accesses. Therefore, traditional techniques to
improve memory latency—out-of-order processing, on-chip
caching, and spatial/address-correlating data prefetching [13],
[49], [52], [66], [95], are inadequate.

There is a class of prefetchers [11], [23], [26], [31], [43],
[50], [79], [98] which focuses on linked data structure traver-
sals using pointers. In graph algorithms, for example, these
prefetchers fall short for two reasons. First, graph algorithms
often use compressed data structures with indices instead of
pointers. Second, graph traversals access a series of elements
in a data structure within a range determined by another data
structure. These prefetchers are not designed to accommodate
such complex indirection patterns.

Recently, several prefetching solutions have been proposed
targeting irregular workloads. Hardware prefetchers rely on
capturing memory access patterns using explicit programmer
support [5], [6], learning techniques [77], and intelligent
hardware structures [99]. Limitations of these approaches
include their limited applicability to a subset of data structures
and indirect memory access patterns [6], [15], [99] or high
complexity and hardware cost to support generalization [5],
[77]. While software prefetching [7] can exploit static semantic
view of algorithms, it lacks dynamic run-time information and
struggles to maintain prefetch timeliness.

mailto:talatin@umich.edu


In this paper, we propose a hardware-software co-design
for improving the memory latency of several important irregular
workloads exhibiting arbitrary combinations of two specific
memory access patterns. The goals of this design are threefold:
(a) automatically prefetch all the key data structures expressing
irregular memory accesses, (b) exploit dynamic run-time
information for prefetch timeliness, and (c) realize a low-cost
hardware prefetching mechanism. To this end, we propose a
compact representation called the Data Indirection Graph
(DIG) to communicate workload attributes from software to
the hardware. The DIG representation efficiently encodes the
program semantics, i.e., the layout and access patterns of key
data structures, in a weighted directed graph structure. Fig. 1
presents the overview of our proposal. The relevant program
semantics are extracted through a compile-time analysis,
and this information is then encoded in terms of the DIG
representation and inserted in the application binary. During
run-time, the DIG is used to program the hardware prefetcher
making it cognizant of the indirect memory access patterns of
the workload so it can cater its prefetches accordingly.

Prodigy is a pattern-specific solution that targets two types of
data-dependent indirect memory accesses, which we call single-
valued indirection and ranged indirection. Single-valued
indirection uses data from one data structure to index into
another data structure; it is commonly used to find vertex
properties in graph algorithms. Ranged indirection uses two
values from one data structure as base and bounds to index into
a series of elements in another data structure; this technique
is commonly used to find neighbors of a vertex in graph
algorithms. Based on this observation, we propose a compact
DIG representation that abstracts this information in terms
of a weighted directed graph (unrelated to the input graph
data set). The nodes of the DIG represent the memory layout
information of the data structures, i.e., address bounds and
data sizes of arrays. Weighted edges represent the type of
indirection between data structures. We present a compiler pass
to automatically extract this information and instrument the
binary with API calls to generate the DIG at a negligible cost.
Our results show that the DIG is agnostic to any particular data
representation; it works well for various sparse data formats
including compressed sparse row/column (CSR/CSC).

We design a low-cost hardware prefetcher that can be
programmed using the DIG representation communicated from
software. We store the DIG in prefetcher-local memory to make
informed prefetching choices. The prefetcher reacts to demand
accesses and prefetch fills1 to the L1D cache and issues non-
binding prefetches (i.e., prefetched data placed in the L1D
cache) based on an irregular algorithm’s memory traversal
pattern. To track the progress of the prefetch sequences and
enable non-blocking prefetching, we introduce the PreFetch
status Handling Register (PFHR) file. Additionally, we present
an adaptive prefetching algorithm that selectively drops prefetch
sequences when the core catches up to the prefetcher. We name

1We define a prefetch fill as the cache line brought into the cache as a
response to a prefetch request.
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Figure 2. Reduction in ((a)) memory stalls and ((b)) speedup of different
approaches normalized to a non-prefetching baseline for the PageRank
algorithm on the livejournal data set.

our system ProDIGy as it uses software analysis coupled with
hardware prefetcher using the program’s DIG representation.

We evaluate the benefits of Prodigy in terms of performance,
energy consumption, and hardware overhead. For evaluation,
we use five graph algorithms from the GAP benchmark
suite [16] with five real-world large-scale data sets from [27],
[59], two sparse linear algebra algorithms from the HPCG
benchmark suite [29], and two computational fluid dynamics
algorithms from the NAS parallel benchmark suite [12]. We
compare our design with a non-prefetching baseline, GHB-
based global/delta correlation (G/DC) data prefetcher, and state-
of-the-art prefetchers, i.e., IMP [99], Ainsworth and Jones’ [5],
[6], DROPLET [15], and software prefetching [8].

Fig. 2 presents a highlight of performance benefits of Prodigy
on the PageRank algorithm running on the livejournal
data set [59]. Compared to a non-prefetching baseline, Prodigy
reduces the DRAM stalls by 8.2× resulting in a significant end-
to-end speedup of 2.9× compared to the marginal speedups
observed using a traditional G/DC prefetcher that cannot predict
irregular memory access patterns and DROPLET [15] which
only prefetches a subset of data structures. Section VI presents
further comparisons with [5]–[7], [99]. Across a complete set of
29 workloads, we show a significant average speedup of 2.6×
and energy savings of 1.6× compared to a non-prefetching
baseline. Using our evaluation framework, we further show
that Prodigy outperforms IMP [99], Ainsworth and Jones’
prefetcher [6], and DROPLET [15] by 2.3×, 1.5×, and 1.6×,
respectively. The compact DIG representation allows Prodigy
to achieve high speedups at a mere 0.8KB of hardware storage
overhead. In comparison, by simply scaling the non-prefetching
baseline to use more cores to maximize the memory bandwidth
and achieve similar throughout would require 5× more cores.

Prodigy is a specialized approach for critical memory
latency-bound applications. When a processor is not running
these applications, Prodigy will be turned off. In the age of
dark silicon [35], state-of-the-art hardware frequently employs
specialized accelerators for key applications. With Prodigy’s
low-cost design (0.8KB storage requirement), it is a modest
price to pay for the efficiency it provides.

In summary, we make the following contributions:
• A compact representation of data traversal patterns, called

a DIG (Data Indirection Graph), for irregular workloads
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(b) Data structures and algorithmic traversal 
pattern for a toy graph example

workQueue.enqueue(source)
while workQueue not empty:
  #pragma omp parallel
  for all u : workQueue()
    for w : offsetList(u) to offsetList(u+1)  
      for all v : edgeList(w)
        if !v.visited()
          compare_and_swap
               (v.visited(), 0, 1)
          workQueue.enqueue(v)
        endif
      endfor
    endfor
  endfor
endwhile 

(a) Parallel implementation of 
BFS algorithm

workQueue.enqueue(source)
while workQueue not empty:
  #pragma omp parallel
  for all u : workQueue()
    for w : offsetList(u) to offsetList(u+1)  
      for all v : edgeList(w)
        if !v.visited()
          compare_and_swap
               (v.visited(), 0, 1)
          workQueue.enqueue(v)
        endif
      endfor
    endfor
  endfor
endwhile 

(a) Parallel implementation of 
BFS algorithm

Figure 3. BFS algorithm: (a) pseudo-code for a parallel implementation of
BFS, and (b) a toy example of BFS traversal on a graph stored in a compressed
sparse row (CSR) format.

with any combination of two specific data-dependent
memory access patterns.

• A novel programming model and associated compiler pass
that analyzes the program, extracts key data structures and
algorithmic traversal patterns, and generates instrumented
code to create the DIG representation.

• A low-cost hardware prefetching design that uses this
representation to prefetch data based on an irregular
algorithm’s memory traversal pattern in a timely manner.

• A resulting hardware-software co-designed system with an
average speedup of 1.7× compared to the state-of-the-art
prefetchers; average speedup and energy savings of 2.6×
and 1.6× compared to a non-prefetching baseline at a
negligible storage requirement of 0.8KB.

II. BACKGROUND AND MOTIVATION

In this section, we use breadth-first search (BFS) graph
algorithm as a representative irregular algorithm and discuss
its data structures and algorithmic traversal pattern that leads
to sub-optimal performance on CPUs.

Compressed sparse row (CSR) is a space-efficient technique
for representing a sparse matrix, and it is commonly used to
represent in-memory graph data sets. It uses two arrays to store
a graph: an edge list that stores the non-zero elements of the
graph’s adjacency matrix in a one-dimensional array, and an
offset list that contains the base index/pointer of the edge list
elements for each vertex. For example, consider a graph and
its CSR structure as shown in Fig. 3(b).

Typically, BFS graph traversal uses CSR format to conserve
space by storing non-zero values. BFS traverses all vertices at
the current depth (i.e., distance from the source vertex) before
moving onto the next depth. BFS is a fundamental algorithm,
and is the basis of other graph algorithms (e.g., BC and SSSP).
In addition to the offset and edge lists, BFS also uses two
software arrays called the work queue and the visited list. The
work queue2 stores a set of vertices to be processed in the
future. The visited list keeps track of already processed vertices
to avoid processing them again.

2An alternate implementation of work queue uses dual buffering with two
frontier data structures (current and next); this paper focuses on a sliding
queue based work queue structure that is conceptually same as frontiers.
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Figure 4. Normalized execution time of irregular workloads, without
prefetching, broken down into: no-stall, and stalls due to DRAM, cache,
branch mispredictions, data dependencies, and others. The goal of this work
is to reduce the DRAM stalls (dark blue portion of the bar).

Fig. 3(a) describes the traversal pattern of the BFS algorithm.
We assume that offset list and edge list data structures are
populated in memory. In addition, memory is allocated for
work queue and visited list. As a first step, the source vertex
(source) is pushed onto the work queue. Then, the algorithm
chooses a vertex from the work queue and scans its neighbors
(by indexing into offset list and edge list). If any of the scanned
neighbors has not already been visited, then it is marked visited
and is added to the work queue. A graphical representation of
this traversal is shown in Fig. 3(b).

We observe two major bottlenecks in this algorithm: (a)
data-dependent loads to the offset, edge, and visited lists and
(b) a load-dependent branch instruction. Data-dependent reads
for large-scale graphs are costly latency-wise because of their
massive data footprint and random memory access patterns. Due
to lack of locality, data for most of these loads are not found in
caches. Moreover, control-flow instructions incur high penalty
for two reasons. First, their data-dependent nature makes it
challenging for branch predictors to predict the correct branch
outcomes. Second, as reported by Srinivasan and Lebeck [89],
in the case of an incorrectly predicted branch, much unnecessary
work is performed while waiting for the load operation to
return its data and correct the mispredicted branch. To better
understand this bottleneck, Fig. 4 shows the breakdown of
execution times for various irregular workloads running on an
eight-core machine with three levels of cache hierarchy using
the methodology shown in Section V. The figure clearly shows
that these applications are stalled on DRAM for more than
50% of the time and have non-negligible branch misprediction
stalls.

III. PROPOSED PROGRAMMING MODEL

Prodigy’s novel programming model captures an algorithm’s
semantic behavior, including its data structure layout and
memory access patterns, in a compact graph representation
which is communicated to the hardware. We present two
techniques to construct this representation within the program—
(a) manual code insertion by the programmer, and (b) automatic
code generation using compiler analysis.
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Figure 5. Proposed Data Indirection Graph (DIG) representation—(a) example representation for BFS, (b) data structure memory layout and algorithmic
traversal information captured by a DIG node and a weighted DIG edge respectively; two unique data-dependent indirection patterns supported by Prodigy—(c)
single-valued indirection, and (d) ranged indirection.

A. Data Indirection Graph (DIG): Compact Representation of
Program Semantics

We make the key observation that two specific data-dependent
indirect memory access patterns are used in a wide range
of irregular workloads. Taking this as a foundation, we can
construct combinations of these patterns that span sets of
irregular memory accesses for different algorithms.

With this insight, we propose a graph representation, which
we call a Data Indirection Graph (DIG), to capture the
relationship between data structures for irregular algorithms. In
a DIG, each node represents a data structure (e.g., the visited
list in BFS), and each directed weighted edge represents a data-
dependent access. Fig. 5 shows an example DIG representation
for the BFS algorithm. Nodes of the DIG, which store data
structure information, have the following fields: node_id—
a unique identifier to reference the data structure, and an
address identifier—a method for identifying which part of
the address space belongs to the data structure represented
by the node. For example, the address identifier for an array
are: base_addr—base address of the array, capacity—
number of data elements in the array, and data_size—data
size of each element of the array in bytes.

Edges of the DIG, which store the algorithmic traversal
pattern between data structures have the following fields:
src_base_addr—base address of the source data structure
from which data are read to index into the destination data
structure, dest_base_addr—base address of the data struc-
ture that is indexed into, and edge_type—data-dependent
indirect access pattern from source node to destination node.
As stated before, Prodigy supports two types of indirection
patterns that are abstracted using edge weights of w0 and w1.
Fig. 5(c,d) show these two types of data-dependent indirection
functions supported by our representation, i.e., single-valued
indirection (e.g., indirection between edge list and visited list
for BFS) and ranged indirection (e.g., indirection between offset
list and edge list in BFS). Additionally, we define a special
edge called a trigger edge (w2 in Fig. 5(a)), which is a self-
edge to the data structure triggering prefetches. Trigger edge
contains node_base_addr—data structure base address, and
edge_type—details of prefetch sequence initialization (more
details in Section IV). A trigger edge represents the control
flow specifying the prefetch sequence to initialize.

int BFS(FILE* inputGraph, vtxID source)
{
  Graph g = readGraph(inputGraph);
  queue<vtxID> workQueue(g.numNodes()); 
  vtxID** offsetList = (vtxID**) malloc(g.numNodes()+1);
  vtxID*  edgeList   = (vtxID*)  malloc(g.numEdges());
  vtxID*  visited    = (vtxID*)  malloc(g.numNodes());
  populateDataStructures(g, offsetList, edgeList, visited);
  registerNode(&workQueue,  g.numNodes(),   4,  0);
  registerNode(offsetList,  g.numNodes()+1, 4,  1);
  registerNode(edgeList,    g.numEdges(),   4,  2);
  registerNode(visited,     g.numNodes(),   4,  3);
  registerTravEdge(&workQueue, offsetList,  w0);
  registerTravEdge(offsetList, edgeList,    w1);
  registerTravEdge(edgeList,   visited,     w0);
  registerTrigEdge(&workQueue, w2);
  workQueue.enqueue(source);
  […]

1:
2:
3:
4: 
5:
6:
7:
8: 
9: 
10: 
11:
12:
13:
14: 
15:
16:
17:
18:

Figure 6. Annotated BFS source code to construct the DIG.

B. Construction and Communication of the DIG

This section discusses how to generate the DIG represen-
tation from software and communicate it to hardware. We
first describe how a programmer can achieve this by manually
inserting simple annotations to the application source code
using our API calls. To reduce the burden on the programmer,
we further propose a compiler analysis and code generation
technique to automatically analyze the application source code,
construct the DIG representation, and instrument the application
binary using the proposed API calls.

1) Using Programmer Annotations: Assuming that the
programmer is cognizant of the key data structures and traversal
algorithms used in the application, they can add simple API
calls in the application source code to construct the DIG
representation. Fig. 6 presents these modifications for BFS,
where three unique API calls are used to annotate the DIG.
registerNode()—register a node of the DIG. This call
writes a node’s information into the prefetcher memory; the
arguments to this call are the base address of this data structure,
total number of elements, size of data elements, and the node
ID. registerTravEdge()—register an edge of the DIG.
This call writes edge information into the prefetcher memory;
the arguments to this call are the addresses of the source and
destination nodes, and the type of indirection (i.e., w0/w1 as
shown in Fig. 5). registerTrigEdge()—register a trigger
edge of the DIG. This call writes the base address of the trigger
data structure into the prefetcher registers. The second argument
(w2) holds information about the type of prefetch to be initiated
(more details in Section IV-C).
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define void @kernel(i64* %0, i64* %1, i64* %2) {
  %10 = call i32 @registerTrigEdge(i64* %0, i32 5)
  %11 = call i32 @registerTravEdge(i64* %0, i64* %1, i32 1)
  [...]
  ; loop
  %16 = getelementptr inbounds i64, i64* %0, i64 %.01
  %17 = load i64, i64* %16, align 4
  %19 = getelementptr inbounds i64, i64* %1, i64 %17
  %20 = load i64, i64* %19, align 4
  [...]
}

define void @main() {
  %3 = call i8* @malloc(i64 4000)
  %4 = call i32 @registerNode(i64* %3, i32 1000, i32 4, i32 0)
  %7 = call i8* @malloc(i64 4000)
  %8 = call i32 @registerNode(i64* %7, i32 1000, i32 4, i32 1)
  [...]
  call void @kernel(i64* %3, i64* %7, i64* %10)
}

1:
2:
3:
4: 
5:
6:
7:
8: 
9: 

10: 
11:
12:
13:
14: 
15:
16:
17:
18:
19:
20:

define void @kernel(i64* %0, i64* %1, i64* %2) {
  %10 = call i32 @registerTrigEdge(i64* %0, i32 5)
  %11 = call i32 @registerTravEdge(i64* %0, i64* %1, i32 1)
  [...]
  ; loop
  %16 = getelementptr inbounds i64, i64* %0, i64 %.01
  %17 = load i64, i64* %16, align 4
  %19 = getelementptr inbounds i64, i64* %1, i64 %17
  %20 = load i64, i64* %19, align 4
  [...]
}

define void @main() {
  %3 = call i8* @malloc(i64 4000)
  %4 = call i32 @registerNode(i64* %3, i32 1000, i32 4, i32 0)
  %7 = call i8* @malloc(i64 4000)
  %8 = call i32 @registerNode(i64* %7, i32 1000, i32 4, i32 1)
  [...]
  call void @kernel(i64* %3, i64* %7, i64* %10)
}

1:
2:
3:
4: 
5:
6:
7:
8: 
9: 

10: 
11:
12:
13:
14: 
15:
16:
17:
18:
19:
20:

void main()
{
  int * a = malloc(size);
  int * b = malloc(size);
  [...]  
  kernel(a, b, dst);
}

1:
2:
3:
4: 
5:
6:
7:

void main()
{
  int * a = malloc(size);
  int * b = malloc(size);
  [...]  
  kernel(a, b, dst);
}

1:
2:
3:
4: 
5:
6:
7:

void kernel(int* a, 
int* b, int* dst)

{
  for(int i = 0; i < size; ++i)
    *(dst+i) = b[a[i]];
}

1:

2:
3:
4: 
5:

void kernel(int* a, 
int* b, int* dst)

{
  for(int i = 0; i < size; ++i)
    *(dst+i) = b[a[i]];
}

1:

2:
3:
4: 
5:

(b)(a)

(c)

Figure 7. An example C program (a) and (b), translated into LLVM IR (c)
and instrumented with our API calls to register DIG nodes and edges.

2) Using Compiler Analysis: Identifying indirections in
non-trivial programs (e.g., [16]) can be complicated for the
programmer, often requiring in-depth application knowledge.
Our compiler alleviates this manual work by automatically
identifying these indirections and transforms the program
by annotating it with prefetcher API calls. Our compiler
analyzes the application source code once for annotation
with a negligible cost compared to the graph reordering
approaches [14], [92] that incur significant cost of profiling and
re-organizing the input data set. Node and edge identification
avoids complex interprocedural analysis by performing the
resolution of their relationships during execution. Prefetching
is only triggered for indirections whose edges consist of these
resolved and registered nodes, as seen in Fig. 8(d). This section
describes the operation of our LLVM-based compiler analyses
and transformations.

First, our compiler analysis extracts information required for
node registration from allocations. Apart from conventional
defaults (i.e., malloc), the user can specify custom allocators.
The pseudocode for this procedure is presented in Fig. 8(a).
Fig. 7(c) shows two node registrations, each using information
from the immediately preceding malloc calls. Next, by
tracking the use of these nodes, it extracts edge information and
detects their associated indirection patterns. Fig. 7(b) contains
a single-valued indirection in the form of a load to b[a[i]]
(line 4), which corresponds to the LLVM IR in lines 6-9 of
Fig. 7(c). As the base addresses of these two arrays form
the edge between the nodes, our pass extracts them and uses
them in the registerEdge() function along with the final
argument that specifies the type of edge being registered—in
this case, a single-valued indirection. Our code generation pass
places the edge registration calls as soon as all the required
arguments have been defined. In Fig. 7, the pointers to the
arrays are passed into the kernel as arguments, allowing edges
to be registered at the start of the function (lines 2-3). Ranged

1 for func in module:
2 for inst in funct:
3 if isInstanceOf(inst, AllocCall):
4 alloc = AllocCall(inst)
5 alloc_info = {alloc.total_size, alloc.num_elems,

alloc.base_ptr}↪→
6 emit(<registerNode(alloc_info)>)

(a)
1 # identify address calculations
2 for func in module:
3 for inst in func:
4 if isInstanceOf(inst, AddrCalc):
5 source_addresses.append(inst.addr)
6

7 # find edge
8 for source_addr in source_addresses:
9 loads = getLoadsUsing(source_addr)

10 for ld in loads:
11 dependent_addr_instr = getAddrCalcsUsing(ld)
12 for target_inst in dependent_addr_instr:
13 if isUsedInLoad(target_inst.addr):
14 emit(<registerTravEdge(source_addr,

target_inst.addr)>)↪→

(b)
1 # identify address calculations
2 # same as in single-valued indirection above
3

4 # find edge
5 for source_addr in source_addresses:
6 addr_calc2 = findAddrCalcWithSameBasePtr(source_addr)
7 if areUsedInBoundsCheck(source_addr,addr_calc2.addr):
8 target_inst = findLoadUsingAddr(source_addr)
9 emit(<registerTravEdge(source_addr,

target_inst.addr)>)↪→

(c)
1 def registerNode(base_ptr, num_elems, elem_size, node_id):
2 # note: the node_table is depicted in Figure 9a
3 node_table.insert({base_ptr, base_ptr + num_elems *

elem_size, node_id})↪→
4

5 def registerTravEdge(src_addr, target_addr, edge_type):
6 # note: The edge_table is depicted in Figure 9c
7 src_base_addr = scan_node_table(src_addr)
8 target_base_addr = scan_node_table(target_addr)
9 if src_base_addr and target_base_addr:

10 edgeTable.insert({src_base_addr, target_base_addr,
edge_type})↪→

11

12 def registerTrigEdge(addr, edge_type):
13 node_base_addr = scan_node_table(addr)
14 if node_base_addr:
15 edge_table.insert({node_base_addr, node_base_addr,

edge_type})↪→

(d)

Figure 8. Pseudocode of Prodigy’s compiler analyses for (a) node identification,
(b) single-valued indirection, (c) ranged indirection, and (d) runtime.

indirection can be identified similarly. For a ranged indirection
from array a to b as shown in Fig. 5(d), we detect the array
accesses (i.e., a[i] and a[i+1]) that control loop bounds for
accessing/indexing into another array b. The pseudocode for
identifying single-valued and ranged indirections is presented
in Fig. 8(b) and 8(c), respectively.

At the final stage, our analysis picks trigger edges using the
set of traversal edges identified previously. If a node from that
set does not have an incoming edge, then it has a trigger edge
(i.e., a self-edge to the trigger node). For example, the address
calculations in lines 6 and 8 in Fig. 7(c) form a traversal edge.
However, because the node with address generation in line 6
does not have any incoming edges, it is designated as a trigger
edge, with its registration inserted in line 2.

The code generated by our compiler pass and the programmer
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0x001A0
0x00334

Src Node Addr
0x001A0
0x00334
0x00B04

Dest Node Addr
0
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Edge Type(b)
0
1
2
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Node ID Base Address Data Size Trigger
0 0x00010 4 true
1 0x001A0 4 false
2 0x00334 4 false
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Figure 9. Memory structures used in Prodigy—(a) node table, (b) edge index
table, and (c) edge table for storing the DIG representation, (d) prefetch status
handling register (PFHR) file tracking progress for live prefetch sequences
and issuing non-blocking prefetches.

annotations use the same API, presented in Fig. 8(d), and can
complement each other, thus improving the overall accuracy
of our compiler. For example, the programmer can choose to
manually annotate the relevant nodes, and rely on the compiler
to identify edges.

3) Application Hardware Interface: A small SRAM-based
memory unit is used on the hardware prefetcher that is memory
mapped to hold the DIG. Once software generates the DIG
using API calls presented above, these calls are translated into
a set of store operations by a run-time library.

IV. PROPOSED HARDWARE DESIGN

A. Memory Requirements for a DIG

Fig. 9(a-c) show three prefetcher-local memory structures
to store a DIG representation. As described in Section III,
the node table and the edge table store properties of DIG
nodes and edges, respectively. The base address, number of
elements, and data size of each node specified by software
are converted into base and bound addresses by the runtime
library, and then stored into the node table. Because the DIG
captures program semantics from the source code, these tables
store virtual addresses. Additionally, we use an edge index
table to find outgoing edges from a DIG node, which mimics
the software offset list in hardware. To perform prefetching,
Prodigy state machine uses these structures to extract program’s
data structures and traversal information.

B. The Prefetch Status Handling Registers

A typical prefetch sequence for graph workloads can span
four or more data structures. While the prefetcher is waiting
to receive multiple outstanding data requests, it is important
to track which responses belong to which issued requests. In
addition, prefetch opportunities may be lost if the prefetcher
is blocking, i.e., waiting for a whole prefetch sequence to
complete before accepting a new one. To address these
challenges, we introduce a hardware structure called PreFetch
status Handling Register (PFHR) file for Prodigy, which
addresses both of these issues at once. While PFHRs are
analogous to the Miss Status Handling Registers (MSHRs) in

Node0 Node1 Node(N-1)

Node0
D
[i]

Node0
P
[i+j]

Node0
P
[i+k]

Prefetch bounds
[j,k]

Prefetch depth (N)

Indirection type

Figure 10. Prefetching algorithm initiates prefetch sequences between prefetch
bounds j and k and advances a prefetch sequence using software-defined
indirection types. The superscripts denote a demand (D) or a prefetch (P)
access.

non-blocking caches, PFHRs have a unique design because
they also have to track the status of long prefetch sequences in
addition to making their host hardware structure non-blocking.

Fig. 9(d) shows the hardware structure for PFHR file, where
each row has the following entries. Free indicates if a PFHR
is free or occupied. Node ID denotes the DIG node ID
of an outstanding prefetch request. Prefetch trigger
address stores the virtual address from which the prefetch
sequence is initiated. This is used to drop the prefetch sequence
if the demand sequence advances close to the prefetch sequence.
Outstanding prefetch addresses stores the cache
line-aligned physical addresses of outstanding prefetch requests.
Upon a prefetch fill, Prodigy performs a CAM look-up in this
column to find the PFHR that is keeping track of that request.
Offset bitmap stores a bitmap of outstanding prefetch
byte-addresses in a cache line whose address is indicated in
the previous entry.

C. Prefetching Algorithm

The prefetching algorithm has two phases: (a) prefetch
sequence initialization and (b) prefetch sequence advance.

1) Prefetch Sequence Initialization Algorithm: This algo-
rithm dictates actions to perform upon a prefetch trigger event.
A prefetch trigger event occurs when Prodigy observes a
demand load request to a data structure with a trigger edge.
To dynamically adapt to changing machine states (e.g., cache
contents), Prodigy initializes multiple prefetch sequences at
once and selectively drops some prefetch sequences.

The role of a trigger edge is to indicate the parameters
to initialize prefetch sequence(s), which include the prefetch
bounds and prefetch direction as shown in Fig. 10. The prefetch
bounds represent a look-ahead distance for prefetching (i.e.,
j) and the number of prefetch sequences to initialize (i.e.,
k − j + 1). Additionally, the data structure traversal direction
can also be defined, i.e., ascending or descending order of
their memory addresses. Intuitively, when the prefetch depth,
i.e., number of nodes on the DIG’s critical path, is high, the
time to traverse an entire path is long. Hence, a small look-
ahead distance is effective to balance data processing and data
fetch times. Similarly, for a short critical path, a large look-
ahead distance is effective. This simple intuition is incorporated
in a heuristic to determine the prefetch look-ahead distance,
where the distance decreases with an increase in the prefetch



depth of up to three. For algorithms traversing through four or
more data structures, a look-ahead distance of one is used. In
practice, we found there was little performance variation when
the look-ahead distance is up to 4× smaller/greater than the
ideal value.

Moreover, to adapt to dynamic data processing speed of the
core, Prodigy uses a feedback from load requests to selectively
drop prefetch sequences. As shown in Fig. 9(d), we store
a trigger address in each PFHR entry to record the starting
address of the prefetch sequence. When the core demands
the trigger address of a live prefetch sequence, we drop the
sequence because the prefetcher can only partially hide the
memory latency. Instead, we choose to hide the full latency of
future load operations by prefetching ahead. This way, dropping
of prefetch sequence(s) helps Prodigy to always run ahead of
the core, and multiple prefetch sequence initialization ensures
the liveliness of some prefetch sequence(s) even if few others
are terminated.

2) Prefetch Sequence Advance Algorithm: Upon servicing
a prefetch, Prodigy reads its data to issue further prefetch
requests using two types of indirection functions, i.e., single-
valued indirection and ranged indirection (see Section III-A).

Single-valued indirection is an indirection type that con-
nects two arrays, where the source array stores indices/pointers
to index into the destination array as shown in Fig. 5(c). This
traversal function is common in irregular algorithms (e.g., graph
algorithms use vertex identifier to index into data storage (e.g.,
visited list for BFS and vertex scores for PageRank)). Notably,
pointers are a special class of this indirection type, where the
address of the destination can be found by using the pointer
itself. With node information stored in the DIG, the prefetcher
can interpret the address as an index (or a pointer) and indexes
into the next array as done in software using the base address
and data size of the next DIG node.

Ranged indirection is an indirection type in which an array
stores pairs of base and bound indices (or pointers) pointing to
a section of another array which is accessed together as shown
in Fig. 5(d). Fundamentally, this access pattern summarizes a
streaming access through a portion of memory specified by
this pair. For example, in CSR/CSC representations, ranged
indirection is used in graph algorithms to find neighbors of a
vertex using offset list and edge list.

D. Hardware Flow of Prodigy

Fig. 11 shows the operation of Prodigy and its interaction
with the rest of the system. The figure shows that the graph
data structures are populated in memory for the BFS algorithm
on an example graph same as Fig. 3. For simplicity, we assume
that a cache line size is a single data block and caches are not
yet populated. Once the prefetcher is programmed, it snoops
on load requests from the core to the L1D and waits for a
demand request within the address ranges of the data structure
with the trigger edge. Similar to the prefetching algorithm,
Prodigy state machine has two phases for issuing prefetches:
prefetch sequence initialization and advance.
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Figure 11. Prodigy operation: (a) prefetch sequence initialization, and (b)
prefetch sequence advance.

Fig. 11(a) shows Prodigy’s operation in the first phase.
Upon observing a load request 1 that falls in the trigger data
structure (i.e., workQueue), a prefetch sequence is initialized.
Based on the prefetch-lookahead distance of (let us assume) 2
communicated via a trigger edge as described in Section IV-C,
Prodigy computes memory address 0x108 (i.e., 0x100+2×4)
to prefetch. Lastly, this address is translated to a physical
address using the TLB and issued for prefetching 2 . A new
PFHR is allocated for tracking this prefetch request.

Fig. 11(b) shows the second prefetching phase, where
demand and prefetch requests are serviced with their data
resident in the cache. Upon receiving the demand request, the
core traverses through other data structures 3 ld 0x124
(0x11c+2×4; using index of 2 and data size of 4). Note that
further load requests do not trigger prefetch sequences until
another access to workQueue. Upon prefetch fills, Prodigy finds
the PFHR entry keeping track of this request using a CAM
look-up. Once identified, a source DIG node corresponding to
this prefetch fill, its outgoing edges, and data indirection type
are found by indexing into the edge and edge index tables.
Using the single-valued indirection w0 and prefetched data,
next prefetch address of 0x12C is computed. Lastly, a prefetch
request is sent 4 by translating its address using the TLB
and a new PFHR is allocated; this process repeats until a leaf
DIG node is encountered. A new PFHR is only allocated for
prefetch addresses belonging to non-leaf DIG nodes.

E. Prodigy in a Parallel Execution Setting

In a multi-core execution, a private instance of Prodigy is
present on each core. Prodigy snoops on the L1D cache to trig-
ger prefetch sequences. Prodigy supports trigger data structures
that are contiguously partitioned across multiple threads in the
virtual address space. Thus, Prodigy supports both statically-
scheduled (OpenMP-static) and dynamically-scheduled or work
stealing-based compilers (OpenMP-dynamic, CILK [36]). With
this contiguous partitioning, Prodigy mostly prefetches the



TABLE I
BASELINE SYSTEM CONFIGURATION.

Component Modeled Parameters
Core 8-OoO cores, 4-wide issue, 128-entry ROB, load/store queue

size = 48/32 entries, 2.66GHz frequency
Cache Hierarchy Three-level inclusive hierarchy, write-back caches, MESI

coherence protocol, 64B cache line, LRU replacement
L1 I/D Cache 32KB/core private, 4-way set-associative, data/tag access

latency = 2/1 cycles
L2 Cache 256KB/core private, 8-way set-associative, data/tag access

latency = 4/1 cycles
L3 Cache 2MB/core slice shared, 16-way set-associative, data/tag access

latency = 27/8 cycles
Main Memory DDR3 DRAM, access latency = 120 cycles, memory

controller queuing latency modeled

correct data for each core; this prevents any significant increase
in NoC/coherence traffic. The only exception is present at the
data structure boundaries, which are rarely accessed. Timeliness
in presence of synchronization is maintained by selectively
dropping prefetch sequences based on each core’s execution
pace.

F. OS Integration

Prodigy works best when the number of user threads does
not exceed the core count. This allows the use of thread affinity
to ensure only one user context is needed in the prefetcher. In
the event that a thread which uses Prodigy is preempted by the
kernel, the prefetching is paused upon thread descheduling. The
data in Prodigy’s prefetcher-local memory structures remains
untouched. This cached data can be used to resume prefetching
when the thread is rescheduled. In the rare event that another
user thread is scheduled that requires the prefetcher, the context
needs to be saved/restored from the prefetcher data structures.

G. Prefetch Throttling Mechanism

While Prodigy focuses on designing a novel prefetching
mechanism, we do not implement a prefetch throttling mecha-
nism because it is out of the scope of this paper. We envision
Prodigy to be used alongside a prefetch throttling mechanism
similar to [88] that can identify and prevent prefetch-induced
cache pollution to further improve performance. We leave
studying the best throttling techniques as future work.

V. METHODOLOGY

This section describes the simulation infrastructure, algo-
rithms and data sets, and state-of-the-art prefetching systems.

A. Simulation Infrastructure

We use Sniper [20]—a Pin [62] based x86 multi-core
simulator with an interval core simulation model. Sniper has
been validated against several Intel micro-architectures [10],
[20], [21]. We use CACTI [70] to obtain cache access times
for different cache capacities. We use the McPAT [60] model
built into Sniper to model energy consumption. We implement
our compiler analysis techniques using LLVM passes [57]. We
evaluate our approach by modeling a parallel shared memory
system with 8 cores as described in Table I. We run our
workloads end-to-end and report the performance numbers by

TABLE II
REAL-WORLD GRAPH DATA SETS USED FOR EVALUATION.

Graph Number of Number of Size × LLC
vertices edges (in MB) capacity

pokec (po) 1.6M 30.6M 132.0 16.5
livejournal (lj) 4.8M 69.0M 300.0 37.5

orkut (or) 3.1M 117.2M 485.2 60.6
sk-2005 (sk) 50.6M 1930.3M 7749.6 968.7

webbase-2001 (wb) 118.1M 1019.9M 4791.6 598.9

ignoring initialization cost, i.e., reading a graph from a file
and populating data structures. We use the region-of-interest
(ROI) utility from Sniper to only profile the core algorithm.

B. Irregular Workloads

We use unmodified versions of the following workloads and
run through our compiler pass for analysis.

Algorithms. We use five graph algorithms from the GAP
benchmark suite (GAPBS) [16] for evaluation—Betweenness
Centrality (bc), Breadth-First Search (bfs)3, Connected Com-
ponents (cc), PageRank (pr), and Single-Source Shortest
Path (sssp). We also use Sparse Matrix-Vector multiplication
(spmv) and Symmetric Gauss-Seidel smoother (symgs) from
the HPCG benchmark suite [29] as representative sparse
linear algebra applications. Additionally, we use Conjugate
Gradient (cg) and Integer Sort (is) from the NAS parallel
benchmark suite [12] as representative computational fluid
dynamics applications. We choose these algorithms as they
exhibit single-valued and/or ranged indirections.

Data sets. As inputs to the graph algorithms, we use real-
world graph data sets from SNAP [59] and UF’s sparse matrix
collection [27] as shown in Table II. We selected these data sets
as they represent real-world graph data and offer diversity in
total size as well as number of vertices and edges. The primary
reasons for avoiding the use of the graph generators kron
and urand from GAPBS are (a) they are synthetic data sets,
and (b) they are severely bound by synchronization overheads
when evaluated on our simulation infrastructure. Unless shown
individually, results for each graph algorithm is averaged over
all data sets. For non-graph algorithms, we use input generators
from benchmark suites; data set sizes for the linear algebra
and fluid dynamics kernels are 2M×2M, and 33M (for is)
and 75k (for cg), respectively.

VI. RESULTS

A. Design Space Exploration

We perform design space exploration on Prodigy to un-
derstand the trade-off between performance and hardware
complexity. Fig. 12 shows the effect of PFHR file size on
the overall performance normalized to a baseline of 4 registers.
The figure illustrates two key findings. First, there is up to
30% performance difference between the performance-optimal
configuration and the baseline PFHR file size. The performance

3For a fair comparison with prior work, we only use a top-down implemen-
tation of the bfs algorithm.Prodigy can also adapt to direction-optimizing
BFS by re-configuring the DIG during run-time.
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Figure 12. Design space exploration on the PFHR file size. Performance of
each configuration is normalized to 4 entries.
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Figure 13. Classification of LLC miss addresses into potentially prefetchable
and non-prefetchable addresses.

difference is attributed to structural hazards in the PFHR file—
while issuing a prefetch, if the entire PFHR file is busy, the
prefetch is dropped. We choose the size of PFHR file to be 16
for our design since it offers a reasonable trade-off between
performance and storage area requirement. Second, increasing
the number of PFHRs beyond 8 for cc hurts its performance
since the benefits of timely prefetches are overshadowed by
untimely prefetches that pollute the cache system. Dynamically
adapting prefetch aggressiveness according to the usefulness
of prefetched cache lines might help improve the performance
of such workloads.

B. Prefetching Potential

To estimate the potential prefetch coverage of Prodigy,
Fig. 13 evaluates the fraction of LLC misses, for a non-
prefetching baseline, that Prodigy can prefetch. We evaluate
this using DIG-annotated application binaries, disabling the
prefetcher, and classifying LLC miss addresses based on
whether they are within or outside the data structure address
bounds annotated by the DIG. The figure shows that, on average,
96.4% of LLC misses can be prefetched. In other words, ideal
prefetching and caching resources would convert an average
of 96.4% of DRAM accesses into cache hits, which sets the
upper bound for our evaluation.

C. Effect on Performance

Prodigy vs. no-prefetching: Fig. 14 shows the CPI stacks
and speedups of Prodigy across all the workloads normalized
to a non-prefetching baseline. For each workload, the first and
second bars correspond to the CPIs of baseline and Prodigy,
respectively. The figure shows the breakdown of execution time
in terms of no-stalls and stalls because of DRAM and cache
accesses, branch mispredictions, dependent instructions, and
others. Prodigy achieves a significant average speedup of 2.6×
compared to a non-prefetching baseline.

We see that Prodigy gains most of its performance by
decreasing the DRAM stalls by an average of 80.3%. Notably,
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Figure 14. CPI stack comparison and speedup achieved by Prodigy against
a non-prefetching baseline. Left bar: CPI stack of baseline; right bar: CPI
stack of Prodigy normalized to baseline. Lower is better for CPI, higher for
speedup.

bc bfs cc pr sssp spmv symgs cg is avg
Workload

0
20
40
60
80

100

P
re

fe
tc

h
U

s
e
fu

ln
e
s
s
 (

%
)

L1 prefetch hit

L2 prefetch hit

L3 prefetch hit

Prefetch eviction before demanded

Figure 15. Location of prefetched data in the cache hierarchy when it is
demanded. Blue is better.

the DRAM stall portion of the baseline non-graph workloads
is 88.4% of the overall CPI, leading to substantial savings and
speedups. Assuming that software communicates the correct
workload semantics to the prefetcher, it mostly fetches useful
data. The primary inefficiency stems from issuing untimely
prefetches. We address this challenge by prefetching for the
next few work queue items and dropping prefetch sequences
after detecting that the core has caught up. This heuristic
allows us to avoid cache pollution by modulating the number
of requested cache blocks while also freeing PFHRs for more
useful work if their prefetch sequences would only partially
hide the memory latency. Note that the pr implementation
uses both CSC and CSR graph data structures that achieves a
similar speedup as other algorithms that only use CSR format.
Furthermore, as a result of reduction in DRAM stalls, Prodigy
slightly increases the cache stall portion of the CPI stack.
This is due to converting DRAM accesses into cache hits that
increases the aggregate time spent on cache accesses.

Additionally, mostly for graph workloads, Prodigy reduces
the branch segment of the CPI stack by 65.3% on average
as a side effect of reducing DRAM stalls. This is especially
evident in bfs, pr, and sssp due to the prevalence of load
data dependent branches. For example, in bfs, a vertex is only
added onto the work queue after loading its visited list entry
and verifying that it has not been traversed yet. This finding
is consistent with prior work [89].

Prefetch Usefulness: Fig. 15 classifies the usefulness of
prefetched data into four categories—demanded and resident
in the L1/L2/L3 cache and evicted from the cache hierarchy
without being demanded. The figure shows that data brought
in by 32.9–85.8% of prefetch requests is demanded before
it is evicted, which shows the accuracy of our prefetcher.
On average, our prefetcher achieves an accuracy of 62.7%.
Furthermore, most of these cache hits are found in the L1D
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and Jones’ prefetcher [6], DROPLET [15], IMP [99], and Prodigy (this
work). Higher is better. Ainsworth & Jones and DROPLET are graph-specific
approaches, and hence are omitted from non-graph workloads.

cache, which incurs the lowest latency of the load operations.
Note that since Prodigy benefits from static analysis information
provided by software, the fraction of evicted data can further
be reduced by using an intelligent caching policy (e.g., stream
buffers or scratchpads [1]) since eviction is a consequence
of imperfect timeliness. Fig. 16 shows the percentage of
prefetchable LLC misses (blue portion of the bar in Fig. 13)
that Prodigy converts into cache hits. On average, Prodigy
converts 85.1% of prefetchable LLC misses to cache hits.

Significance of ranged indirection: For graph algorithms,
ranged indirection is responsible for prefetching 35.4–75.9%
(55.3% on average) of all data (not shown because of space
limitation). The fraction of data prefetched using ranged
indirection depends both on the position of indirection types in
a prefetch sequence and the amount of data available to prefetch.
For example, a major source of single-valued indirection in bfs
is at a prefetch depth of four. At this depth, secondary effects,
like squashing of prefetch sequences and PFHR unavailability,
limit prefetching opportunities. Prior work [26], [79], [99]
only prefetch single-valued indirection and fail to capture a
significant prefetching opportunity.

Prodigy vs. hardware prefetchers: Next we compare the
performance of Prodigy with the state-of-the-art hardware
prefetchers including GHB-based G/DC data prefetcher [72],
Ainsworth and Jones’ prefetcher [6], DROPLET [15], and
IMP [99]. Notably, the benefits of different prefetching solu-
tions are highly sensitive to architectural parameters, graph
traversal algorithm and design of their data structures, and input
data sets. Hence, we present a comparison using the parameters
from our simulation framework as well as a comparison with
the best reported results on commonly evaluated algorithms
from each prior work.

Prodigy outperforms the baseline and a GHB-based G/DC
data prefetcher [72] (not shown because of space limitations)
by 2.6× on average. GHB-based G/DC is known to predict
inaccurate prefetch addresses for irregular memory accesses
due to the lack of spatial locality, polluting the cache. There-
fore, when Prodigy is enabled by software, other traditional
prefetchers (e.g., GHB, stride, stream) are disabled.

Fig. 17 shows the performance comparison of various
prefetchers using our simulation framework. Prodigy outper-
forms Ainsworth and Jones’ prefetcher4 [5], [6] by 1.5×. We
have verified with the authors [4] that our implementation
and results are correct. The difference compared to [6] can
be attributed to inaccurate prefetch timeliness. On average,
62.7% of Prodigy’s prefetches are demanded by the core
versus only 44.6% for [6]. Also, unlike Prodigy, initiating
one prefetch sequence in [6] sometimes only partially hides
the memory latency if the core catches up with the prefetcher.
Furthermore, Prodigy is more flexible in that it can adapt
with different combinations of data structures and indirection
patterns, whereas Ainsworth and Jones’ graph prefetcher aims
to prefetch for BFS-like access patterns. While an extension
of [6] is presented in [5], it incurs significant area overhead of
32KB of storage vs. 0.8KB for Prodigy.

Compared to DROPLET [15], Prodigy achieves a 1.6×
speedup on average for two reasons. First, DROPLET only
prefetches a subset of data structures, i.e., edge list and visited
list-like arrays exhibiting single-valued indirection, compared
to Prodigy, which prefetches other graph data structures as
well. Second, we notice that DROPLET MPP misses several
prefetching opportunities because it can only trigger further
prefetches from prefetch requests serviced from DRAM, while
much of the prefetched data are present in the cache hierarchy.

Prodigy achieves an average speedup of 2.3× compared to
IMP5 [99], because IMP can only detect streaming accesses
to data structures that perform A[B[i]] type prefetching and
it only supports up to two levels of indirection. Extending
both DROPLET and IMP to prefetch additional data structures
would require significant effort because they do not support
ranged indirection and DROPLET design is specific to a subset
of graph data structures.

While Prodigy shows a significant speedup over prior work
on our simulation environment, we could not reproduce similar
results reported in the prior publications despite obtaining
evaluation artifacts from the authors. We believe that this
discrepancy is attributed to the difference in simulation environ-
ment, architecture parameters, and benchmark implementations.
To offer better justice to prior work, we also compare Prodigy
with the best reported speedups of hardware prefetchers from
their original publications. Table III shows a comparison of best
reported speedups over a non-prefetching baseline for optimal
algorithm-data set combination for both Prodigy and prior
work. The comparison shows that even compared to the best-

4We used open-sourced artifacts of for the evaluation of [6], and verified
the presented results with the authors [4].

5We used the artifacts provided by the authors for evaluating IMP.



TABLE III
AVERAGE SPEEDUP COMPARISON OVER NO PREFETCHING.∗

Common algorithms Prior work Prodigy
bc,bfs,bc,pr Ainsworth & Jones [6] 2.4× 2.8×

bc,bfs,bc,pr,sssp DROPLET [15] 1.9× 2.9×
bfs,pr,spmv,symgs IMP [99] 1.8× 4.6×
*Best-performing input data sets used as reported in prior work.
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Figure 18. Speedup of Prodigy compared to a non-prefetching baseline on
reordered graph data sets using HubSort [14].

reported speedups, Prodigy still outperforms the state-of-the-art
hardware prefetchers.

Prodigy vs. software prefetching: We compare the perfor-
mance of Prodigy with a software prefetching technique [8] for
indirect memory accesses. To make our evaluation consistent
with [8], we evaluated the performance of software prefetching
on an Intel Broadwell microarchitecture and validated our
results with authors of [3]. Our findings show that for pr,
performing a pure software-based prefetching [8] achieves an
average speedup of 7.6% compared to an average speedup
of 2× for our approach (not shown due to space limitation).
This is because Prodigy benefits from both static analysis
information from software and dynamic run-time information
from hardware to perform efficient prefetching. We do not
report the results on other graph algorithms since we noticed
that the compiler pass of [8] is not able to detect dynamically
allocated array sizes, and conservatively avoids placing prefetch
instructions to prevent faults [3].

Graph reordering: We also evaluate the performance
benefits of Prodigy on reordered graphs using HubSort [14].
Fig. 18 presents the speedup of Prodigy compared to a non-
prefetching baseline (both using graph reordering) for graph
algorithms. The figure shows even after benefiting from added
locality because of graph reordering, irregular memory accesses
can still limit the performance, and Prodigy can further improve
this performance by 2.3× on average.

D. Effect on Energy

Fig. 19 shows the breakdown of energy consumption for
Prodigy normalized to the baseline. Prodigy reduces energy
consumption across all categories with an average reduction
of 1.6×. We primarily attribute the energy reduction to the
static energy savings of the core, cache, and DRAM due to the
reduced workload execution time. Accelerating long-latency
memory operations also saves energy by reducing the number
of instructions executed and memory accesses performed before
recovering from mispredicted branches [89].

E. Overhead Analysis

Prodigy’s hardware consists of a finite-state machine, whose
area is dominated by the storage structures discussed in
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Figure 19. Normalized energy comparison of a non-prefetching baseline (first
bar) and Prodigy (second bar). Lower is better.

Section IV-A. These structures include DIG tables (i.e., node
table, edge table, and edge index table) and PFHRs. Although
Prodigy reads data values for prefetching, this is done by
snooping on the data response buses, rather than adding
or sharing ports on the cache. This limits the performance
impact and area overhead. Prodigy might increase the D-TLB
contention, however, this is a known issue for prefetchers
operating in the virtual address space.

We estimate the area overhead in terms of storage area
requirements assuming 48-bit physical and 64-bit virtual
address spaces. We calculate that the largest DIG used by our
workloads has 11 nodes and 11 edges for bc. For a plausible
extension to store larger DIGs, we conservatively assume 16-
entry DIG tables. Moreover, based on Fig. 12, we use 16
PFHRs for our design. Using these parameters, we estimate the
storage requirements of DIG tables and PFHRs to be 0.53KB
and 0.26KB, respectively, totaling to just 0.8KB. Assuming
this storage area to be dominant, we project our prefetcher to
have a negligible area overhead of 0.004% compared to an
entire CPU chip. Compared to Prodigy, other work has area
overheads of 1.4× [99], 2× [6], 9.7× [15], and 40× [5].

In terms of the software overhead, adding one-time prefetch
API calls slightly increases the size of program binaries.
Because these calls are executed only once, they translate
into a negligible dynamic instruction count increase. To add
these API calls, our compiler analysis performs a linear scan
of a program’s static instructions. The average compilation
time added to our benchmarks is less than one second.

F. Discussion on Scalability

Because of the irregular memory access patterns of evaluated
workloads, cores are mostly stalled to receive responses from
the memory system. Based on the baseline memory bandwidth
utilization results and a bandwidth limit of 100GB/s, increasing
the number of cores to around 40 will fully saturate the memory
bandwidth, at which point, the benefits from prefetching will
be limited. Our evaluation shows a more cost-effective design
point where an 8-core system used with Prodigy can saturate
the memory bandwidth while consuming 5× less transistor area
and less static energy compared to a 40-core system without
prefetching.



G. Limitations of Prodigy

A subset of irregular algorithms exhibiting single-
valued/ranged indirection patterns also incorporate additional
run-time information to issue load operations. For example,
triangle counting algorithm in GAPBS [16] intelligently avoids
redundant computation by examining only neighbors with
higher vertex IDs than the source vertex (i.e., branch-dependent
loads). While Prodigy supports prefetching for indirect memory
accesses, it does not account for this additional control-flow
information for prefetching. Similar trends might be observed
for ordered graph algorithms [28], [103] because node priority
is not accounted for prefetching. In such cases, Prodigy
might prefetch inaccurate vertices, and we envision using a
mechanism that disables the prefetcher when it detects cache
thrashing [88]. Additionally, the storage cost of hardware
structures (i.e., DIG tables and PFHR file) was chosen to
fit the needs of the workloads evaluated in this paper. It is
possible that other workloads with more DIG nodes/edges
would require greater storage and PFHR resources. We leave
the study of incorporating additional prefetching information
and larger workload analysis for future work.

VII. RELATED WORK

There is a rich body of work alleviating the memory access
bottleneck for various workloads, especially through prefetch-
ing. This work employs a unique synergy of both hardware and
software optimizations through the novel DIG representation.
We divide the related work in different categories and discuss
how our work is different.

Decouple access execute (DAE) architectures [18], [40],
[48], [63], [84], [85], [90] use decoupled memory access and
execute streams to reduce memory latency and communicate
between them using architectural queues. While we use a
separate prefetching unit for accelerating memory accesses, we
still use a single thread with coupled access and execute streams
with no additional requirement of queues for communication.

Helper threads [22], [24], [25], [47], [102] propose using a
separate thread to speculatively prefetch data to reduce memory
latency of the main thread. Run-ahead execution [30], [71]
and some other architectures [38], [104] utilize additional or
unused hardware resources to prefetch useful data for the main
thread. Helper threads dedicate extra physical cores to perform
prefetching that reduces compute throughput. Unlike Prodigy,
runahead execution has to re-execute instructions after long-
latency load-instructions.

More recently, several graph algorithm-based hardware
prefetchers [5], [6], [15] have been proposed that assume graph
data structure knowledge at hardware and prefetch for accesses
falling in these data structures. Accelerating irregular workloads
using hardware prefetchers [37], [54]–[56], [73], [77], [95], [99]
has been long studied that cover other types of data structures
and memory access patterns containing linked lists, binary
trees, hash joins in application domains such as geometric
and scientific computations, high-performance computing, and
databases. Furthermore, several temporal prefetchers [46],
[93], [95], [96] and non-temporal prefetchers [13], [17],

[52], [53], [64], [82], [86] are also investigated for these
workloads. These approaches however, when applied in the
graph processing context, can either prefetch for a subset of
data structures or incur high complexity and cost for generality.
Given our compact DIG representation, our approach benefits
covering all the data structures having data-dependent indirect
accesses at a negligible hardware cost.

A class of prefetchers [11], [23], [26], [31], [43], [50], [79],
[98] focuses on linked data structure traversals using pointers.
They have limited applicability for graph algorithms, mainly
because of the prevalence of ranged indirection as shown in
the Section VI-C. Prodigy on the other hand, can cover all
types of indirection present in graph algorithms.

Software prefetching [8], [19], [51], [61], [66], [91] is
another technique to reduce the memory latency of both regular
and irregular workloads where data structures are known at
compile-time. However, software prefetching could significantly
increase the size of the application binary and workloads with
dynamically initialized and sized data structures are difficult
to prefetch purely in software. Additionally, direct memory
access (DMA) engines are used to move data around without
explicit CPU instructions. Prodigy that reacts to hardware
events is orthogonal to a DMA engine, which is primarily
software controlled and used for peripheral devices.

Several domain-specific architectures [1], [2], [41], [67]–
[69], [75], [83], [87], [97], [100], [101] have been proposed for
accelerating graph processing applications. These architectures
are orthogonal to our software-aided hardware prefetching
work for CPUs; they either work as stand-alone accelerators, as
near/in-memory processing engines, or as scheduling/intelligent
caching aid to the processor core. Many of these architectures
use some form of hardware prefetching support, and our low-
cost prefetcher can be integrated within these architectures to
further enhance their performance.

Prefetch throttling mechanisms [32], [33], [44], [45],
[53], [58], [74], [78], [80], [81], [88], [94] use dynamic
information such as prefetch coverage/accuracy, cache pollution,
and/or bandwidth utilization to monitor the aggressiveness of
prefetches. These mechanisms can be applied to our approach
to reduce prefetch-induced cache pollution.

VIII. CONCLUSION

This paper presented Prodigy, a hardware-software co-design
approach to improve the memory latency of data-indirect irreg-
ular workloads. We proposed a compact representation, called
the Data Indirection Graph (DIG), that efficiently abstracts
an irregular algorithm’s data structure layout and traversal
patterns. This representation is constructed using static compiler
analysis and code generation techniques, and communicated
to the hardware. A programmable hardware prefetcher uses
this information to cater its prefetches to irregular algorithms’
memory access patterns. This approach benefits from (a) static
program analysis from software to capture the irregular nature
of memory accesses, and (b) dynamic run-time information
from hardware to make adaptive prefetching decisions. We
showed that our system is versatile and works for different



sparse data representations. We evaluated the benefits of our
system using a variety of irregular algorithms on real-world
large-scale data sets and showed a 2.6× average performance
improvement, 1.6× energy savings, and a negligible storage
cost of 0.8KB.
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