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Abstract— Expressing various facial emotions is an important
social ability for efficient communication between humans. A
key challenge in human-robot interaction research is providing
androids with the ability to make various human-like facial
expressions for efficient communication with humans. The
android Nikola, we have developed, is equipped with many
actuators for facial muscle control. While this enables Nikola
to simulate various human expressions, it also complicates
identification of the optimal parameters for producing desired
expressions. Here, we propose a novel method that automati-
cally optimizes the facial expressions of our android. We use
a machine vision algorithm to evaluate the magnitudes of
seven basic emotions, and employ the Bayesian Optimization
algorithm to identify the parameters that produce the most
convincing facial expressions. Evaluations by naı̈ve human
participants demonstrate that our method improves the rated
strength of the android’s facial expressions of anger, disgust,
sadness, and surprise compared with the previous method that
relied on Ekman’s theory and parameter adjustments by a
human expert.

I. INTRODUCTION

Robot facial expressions (RFEs) have attracted attention in
the field of human-robot interactions because facial expres-
sions are essential for human emotional communication in
everyday life. Leite et al. [1] suggested that robot expressions
can substantially influence human-robot interactions because
they attract attention from humans and generate long-term
memories.

Giving many action parameters comparable to human
facial movements is a reasonable hardware strategy for
enabling androids to express rich human-like emotions. A
significant number of androids have been developed to re-
produce human-like facial expressions (see [2]–[6] and Table
I). The android Nikola (Fig. 1), we have developed, is one of
the world’s leading androids in this respect. Through a series
of human experiments, Sato et al. [7] verified that Nikola can
produce several basic human-like RFEs.

Nikola is an android with the face of a human child; it was
designed for use in studies of interactions between humans
and robots, with a focus on emotional communications. Soft
and deformable silicone skin is attached to the front of
Nikola’s skull. Beneath the skin, there are 35 pneumatic
actuators with pressure control valves: 29 for facial muscle
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Fig. 1. Nikola, an android developed by RIKEN.

movement control, 3 for head movement control (roll, pitch,
and yaw rotation), and 3 for eyeball control (i.e., panning of
the individual eyeballs and tilting of both eyeballs) [7].

However, when an android has many controllable parame-
ters, it becomes difficult to identify the optimal parameter set
for a particular goal. Recent studies have enabled robots to
generate facial expressions, either through knowledge-based
human coding or in an automated manner [8]. Sato et al.
[7] used the knowledge-based human coding approach. They
identified basic axes for each emotion based on Ekman’s
theory [9], and then asked a human expert to adjust the
parameters of each axis. This approach generated convincing
positive expressions but did not yield robust negative expres-
sions.

Here, we attempted to improve expressions (i.e., generate
emotional expressions that are more convincing to human
observers) by controlling more parameters; however, this
approach is both challenging and time-consuming for hu-
man operators. Therefore, instead of using a human coding
approach, we used an automated approach.

Automatic RFE optimization is challenging in two re-
spects. First, RFE performance must be evaluated both
reliably and automatically. Because Nikola’s face is rea-
sonably human-like, we used Py-Feat [17], an open-source
human emotion recognition model, for automatic evaluation
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TABLE I
COMPARISON OF NIKOLA WITH OTHER FACIALLY EXPRESSIVE HUMANOID ROBOTS.

Android* Head DOF** Head Size Emotional expression capability Validation

Nikola (this study) 35 Child 7 emotions Emotion recognition
Face robot [2] 24 Adult 6 basic emotions Emotion recognition (no statistical test)
ROMAN [3] 21 Adult 6 basic emotions Emotion recognition

Saya [4] 24 Adult 6 basic emotions Emotion recognition (no statistical test)
Albert HUBO [5] 31 Adult Full range (not specified) -

Face Robot [6] 39 Adult 6 basic emotions -
Geminoid F [10] 12 Adult 5 basic emotions Emotion recognition

FACE [11] 32 Adult 6 basic emotions Emotion recognition (no statistical test)
Face robot [12] 7 Child 6 basic emotions Emotion recognition (no statistical test)

EveR [13] 16 Adult 6 basic emotions -
XIN-REN [14] 7 Adult - -

EVA [15] 25 Adult 6 basic emotions -
EVA 2.0 [16] 25 Adult - -

* List only includes androids with human-like appearance
** DOF = degrees of freedom

of RFEs. Second, the complexity of parameter optimization
increases exponentially with increasing degrees of freedom
(DOF). Nikola has 35 actuators on its face. Thus, Nikola has
a greater number of DOF that require optimization than most
other androids (Table I).

In a related study concerning the automatic generation
of RFEs, Park [18] proposed using a dynamic emotion
model (based on the linear affect-expression space model)
to generate RFEs. However, because this method does not
consider the nonlinear feature of most physical robots, it
is difficult to use them. WE-4R [19] used emotion vectors
for facial expression generation. Ren et al. [14] proposed
a kinematics-based learning method for robot XIN-REN to
imitate expression of a human subject. Hyung et al. [13] used
a genetic algorithm to identify optimal facial expressions in
the search space. Similarly, Habib [20] proposed a learning-
based method with a genetic algorithm capable of inverse
nonlinear mapping from human faces to robot actuators.
However, a recent study suggested that the increasing com-
plexity of robots (i.e., increased number of DOF) is leading
to difficulty in the application of genetic algorithm methods
[16]. Rawal [21] proposed a deep generative method for
generating emotions, in which grid search and gradient de-
scent are combined to automatically identify the parameters
of desired RFEs. Importantly, this learning-based method is
potentially data-intensive.

We consider this problem to be equivalent to an expensive
black-box optimization issue [22] for an entire system.
Therefore, we propose the use of Bayesian Optimization [23]
to identify a set of optimal parameters that enable Nikola
to generate higher-quality facial expressions. We call this
method Bayesian optimization-based robot facial expression
optimization (BORFEO). In summary, our contributions are
threefold:

1) We develop a method, BORFEO, which automatically
identifies a set of optimal facial parameters that al-
low Nikola to generate prototypical facial expressions
without initialization.

2) BORFEO converges within a relatively small number

of trials, which suggests that BORFEO is an efficient
RFE optimization procedure.

3) BORFEO can generate RFEs that receive higher hu-
man ratings for most basic emotions compared with
previous work involving the same robot [7]; this find-
ing indicates that BORFEO is a high-performance
method.

The remainder of this paper is structured as follows.
Section II describes the preliminary setup. Section III de-
scribes the BORFEO methodology. Section IV describes the
experiments conducted to generate Nikola’s RFEs and eval-
uate their performance. Section V presents the experimental
results and discussion. Section VI presents the conclusions
and offers suggestions for future work.

II. PRELIMINARY SETUP

A. Prototypical RFEs in Nikola

Nikola’s actuator arrangement design is based on the facial
action coding system (FACS) proposed by Ekman [9]. A
certified FACS coder conducted the action unit mapping
from actuators to action units, as defined by Ekman [9];
this mapping is also the basis of human-coded prototypical
RFEs. The detailed correspondence of FACS coding is shown
in Table II. Further details regarding the differences between
Nikola and other androids are described in our previous work
[7].

B. Emotion recognition

Py-Feat [17] is a Python-based open-source facial expres-
sion analysis toolbox developed by Cheong and colleagues
at Dartmouth College; it includes state-of-the-art facial ex-
pression models. Py-Feat can be used for tasks such as face
detection, facial landmark detection and alignment, face or
head pose estimation, action unit detection, and emotion
detection.

For emotion detection, Py-Feat provides four models: a
random forest model trained on the histogram of oriented
gradients extracted from ExpW, CK+, and JAFFE datasets;
a support vector machine model trained on the histogram of



oriented gradients extracted from the same dataset; a deep
convolution network; and ResMaskNet (a residual masking
network for recognition of facial expressions) [24]. We chose
the ResMaskNet model because its performance was superior
to the other three models in the emotion recognition task
using the FER2013 dataset.

C. Experimental setup

Figure 2 shows the experimental setup used for data
collection and assessment of our proposed algorithms. We
used a Logicool C922 Pro stream web camera (HD1080P)
to capture RGB images. For robot control and camera ma-
nipulation, we employed a notebook computer (Intel Core i7-
10870H CPU, 2.20 GHz, NVIDIA GeForce RTX 3060 laptop
GPU, GDDR6 6GB) running the Ubuntu 20.04 system.
Nikola uses ROS (Robot Operating System) Noetic Ninjemys
as its base system; this software was released on May 23,
2020 and is compatible with Ubuntu 20.04. We connected a
web camera to the laptop through a USB cable and connected
Nikola to the laptop via Wi-Fi. The position of the web
camera was fixed throughout the experiment.

Fig. 2. Video recording setup.

Fig. 3. Actuator arrangement in Nikola.

III. METHODOLOGY

Nikola’s action unit is controlled by a pneumatic actuator
with control inputs that range from 0 to 255 (Fig. 3). To
optimize Nikola’s facial expressions, we transformed the task
into a black-box function optimization problem and pro-
posed the BORFEO method. Because Py-Feat can evaluate

TABLE II
ACTUATOR DETAILS.

Actuator Description Side

1 Upper lid raiser L
2 Upper lid raiser R
6 Cheek raiser/Lid tightener L
7 Cheek raiser/Lid tightener R
8 Outer brow raiser L
9 Cheek raiser L
10 Inner brow raiser L
11 Brow lowerer L
12 Outer brow raiser R
13 Cheek raiser R
14 Inner brow raiser R
15 Brow lowerer R
16 Cheek puller L
17 Cheek puller R
18 Lip corner puller L
19 Lip corner depressor L
20 Lip stretcher L
22 Lip corner puller R
23 Lip corner depressor R
24 Lip stretcher R
28 Lip funneler T
29 Lip funneler B
30 Nose wrinkler -
32 Jaw dropper -
* L denotes left side, R denotes right side, T

denotes top, B denotes bottom, and - denotes
not applicable.

a robot’s facial expression and generate probability scores
for seven basic emotions (anger, disgust, fear, happiness,
sadness, surprise, and neutral), we regarded the parameters
of the control axes as the input of the black-box function;
the Py-Feat probability scores were the black-box output.
We sought to identify a set of values for the control axes
parameters allowing Nikola’s facial expressions to achieve
high confidence scores on Py-Feat.

There are various methods to address the black-box op-
timization problem. Grid search and random sampling are
used for small-scale systems but are not appropriate for this
task because of the very large parameter space. Compared
with other algorithmic-based methods such as the genetic al-
gorithm, Bayesian Optimization achieves rapid convergence,
and its performance has proven superior to other methods
for tasks such as the 2020 Black-Box Optimization Chal-
lenge [25], hyperparameter optimization [26], and nutrition
problems [27]. Thus, we use Bayesian Optimization to solve
the black-box function optimization problem.

In this section, we introduce the task formulation and then
describe the use of Bayesian optimization to identify facial
expressions.

A. Task formulation

Formally, given n = 35 parameters of control axes of the
robot x = (a0, ..., an), which satisfies 0 ≤ ai ≤ 255, ai ∈ Z,
we define the parameter space as X . Each set of parameters
x can generate a corresponding facial expression, which is
assigned a score y by Py-Feat. We define the process of
obtaining the Py-Feat score y from a set of control axes



parameters x as y = f(x). The goal is to identify an optimal
set of x that satisfies the following condition:

x∗ = argmaxx∈Xf(x) (1)

f(x) is an expensive black-box function, for which no an-
alytical description or gradient information exists concerning
the objective function.

B. Bayesian Optimization

The main objective of the algorithm is to update a
Bayesian statistical model of the black-box function and use
an acquisition function to determine the next search point.
We first generate an initial set of candidate solutions and
then find the next possible optimal data point based on these
solutions points, add that point to the candidate solutions set,
and repeat this step until the end of the iteration. Finally, the
optimal data point in the set of candidate solutions is taken
as the solution to the problem.

However, f(x) is a black-box function, thus the key issue
here is how to determine the next search point based on
the already searched points. As we show in Algorithm 1, the
Bayesian optimization algorithm uses Gaussian Process (GP)
M to model the black-box function. For each x ∈ X we can
obtain the mean µx and variance δx. Given (µ, δ) pairs, we
can evaluate each point with the Acquisition Function S to
obtain the next search point.

Algorithm 1: Bayesian Optimization.
Input: f,X,M,S
Output: x∗

1 initialize (f,X) 7→ D;
2 for D 7→ i to T do
3 FITMODEL(M,D) 7→ p(y|x,D);
4 argmaxx∈XS(x,p(y|x,D));
5 f(xi) 7→ yi;
6 D ∪ (xi, yi) 7→ D;
7 end

Where D is defined as a dataset that consists of several
pairs of data, each represented as (xi, yi); xi is a set of
hyperparameters, and yi represents the result corresponding
to the set of hyperparameters.

1) Gaussian Process: Consider a sequence of continu-
ous random variables {xi}, if the vector formed by any
subsequence [xt0 , ..., xtk ]

ᵀ obeys a multidimensional normal
distribution, this sequence of random variables is defined as
a GP.

Notably, our variables x are discrete, while GP requires
continuous random variables. We ignore this discontinuity
here because the parameters ai of x are continuous integers
that can be regarded as approximately continuous.

Specifically, consider k random variables x1, ..., xk that
follow a k-dimensional Gaussian distribution:

N(µk,Σk)

where the mean vector satisfies µk ∈ Rk and the covari-
ance matrix satisfies Σk ∈ Rk×k.

Because the integral of the normal distribution yields an
analytic solution, the marginal and conditional probabilities
can easily be obtained. Thus, given a set of control axis
parameter values xi, i = 1, ..., l and the corresponding set of
scores y, we can model the black-box function y = f(x)
from these samples. Given an input x, we can use the
function to predict the label value y and posterior probability
p(y|x). This process is referred to as Gaussian Process
Regression (GPR).

GPR can use a set of sampled solution values to fit a
Bayesian model and produce the probability distribution of
the solution values. Given the black-box function f(x) that
satisfies the following mapping:

Rn → R

GPR will update the model based on xi, i = 1, ..., t and the
corresponding solution f(xi) to fit the black-box function.
Indeed, the model describes the probability distribution of
f(x).

2) Acquisition Function: The acquisition function is an
inexpensive function that can be evaluated at a given point
that guides how the parameter space should be explored
for the optimization problem. The acquisition function can
then be optimized to select the data points for the next
observation. This approach replaces the original optimization
problem with another function a(x), which can be optimized
more easily.

In our study, we use the Upper Confidence Bound (UCB)
acquisition function, which is defined as:

aUCB(x;β) = µ(x)− βδ(x) (2)

The terms µ(x) and δ(x) can be interpreted as explicitly
encoding a trade-off between exploitation (evaluating at
points with low mean) and exploration (evaluating at points
with high uncertainty). β > 0 is a trade-off hyperparameter.

IV. EXPERIMENT

A. Actuator Selection

With some prior knowledge, we restricted the movements
of actuators in optimization.

1) Safety. Because of Nikola’s mechanical limitations,
several pairs of fragile points required careful adjust-
ment to random values. For example, actuators s18 and
s19 constitute a pair of fragile points because they will
pull the same part in opposite directions.

2) Psychological knowledge. Although some psycho-
logical evidence suggests that gaze/head direction is
involved in emotional expression [28], the gaze/head
variant is not implemented in most prototypical facial
expression databases or Py-Feat. Therefore, we dis-
carded this factor.

3) Symmetric. Nikola’s actuator arrangement is sym-
metrical on the left and right. Considering that the
seven basic facial expressions are symmetrical [29], we



Fig. 4. Illustrations of prototypical and BORFEO-generated RFEs produced by the android Nikola.

simplify the problem and assign the same value to all
symmetrical pairs of actuators. ai = aj , which satisfies
0 ≤ i, j ≤ 35, where i and j are center-symmetrical
actuators.

Considering these points, we selected 24 actuators with a
total dimension equal to 14, as shown in Table II.

B. RFE generation

The BORFEO system was written in Python 3.7.8. We
used FFmpeg to control the web camera and Bayesian
Optimization library [30] for implementing BORFEO. ROS
serves as the bridge system to send instructions to Nikola
[31]. To evaluate our method, we conducted a 100-round
BORFEO and generated 100 RFEs for each of the seven
basic emotions. The number of rounds was determined by
the preliminary experiment. Since we didn’t optimize the
processing time, each round of BORFEO took about 20
seconds including 10 seconds for image capturing by a
webcam and 5 seconds for Py-Feat processing. Since we
carried out experiments online, each session took about
35 minutes. 4 shows the top-scoring BORFEO-generated
expressions, together with the human-coded (mouth closed)
prototypical expressions [7].

Figure 5 shows the machine rating results. Clear im-
provement in the Py-Feat rating was observed for all basic
emotions (except neutral), which implies that BORFEO can
identify a set of RFEs that receive higher Py-Feat ratings
compared with prototypical RFEs.

C. Human evaluation

To evaluate differences in human observers’ ratings be-
tween human-coded prototype RFEs and optimized RFEs,
we recruited 40 naı̈ve Japanese participants (20 men, 20
women; mean ± standard deviation age = 33.7 ± 5.1 years)
in an online survey experiment.

To facilitate correspondence with Py-Feat ratings, we
designed a more comprehensive survey compared with

Fig. 5. Py-Feat rating results.

most previous studies (see [2]–[4], [10]–[12]). Participants
were given stimulus photos of prototypical and BORFEO-
generated expressions for seven basic emotions; they were
asked to rate the extent to which each photo depicted one
of the seven basic emotions using a 7-point scale ranging
from 1 (does not depict that emotion) to 7 (strongly depicts
that emotion). The prototypical expressions were generated
using the method described in [7], based on Ekman’s theory
and parameter adjustments by a human expert. To increase
stimulus variability, we added mouth-open conditions to the
original mouth-closed conditions. We selected the five best
(but dissimilar) BORFEO-generated expressions for each
emotion. The orders of stimulus photos and rated emotions
were randomized. The human evaluation experiments were
conducted via Qualtrics (an online questionnaire system)
using a procedure approved by the ethical committee of
RIKEN.

V. RESULTS AND DISCUSSION

A. Target emotion recognition

Figure 6 shows the mean target emotion ratings with 95%
confidence intervals for the seven basic emotions and two



TABLE III
RESULT OF TWO-WAY REPEATED MEASURES ANALYSIS OF VARIANCE.

Sourcea SSb NDFc DDFd Mean squares F-value p-unce η2p
f

RFE 0.763050 1 39 0.763 12.52 <0.0001 0.2430
Emotion 40.695060 6 234 6.78 41.35 <0.0001 0.5146

RFE * Emotion 3.147407 6 234 0.524 8.18 <0.0001 0.1734
a “Source” column shows groups of RFEs (3 RFEs per group).
b SS = sums of squares
c NDF = degrees of freedom (numerator)
d DDF = degrees of freedom (denominator)
e p-unc: uncorrected p-value
f η2p: partial eta-square effect size

Fig. 6. Main results of the human evaluation experiment.

types of RFEs. The target emotion ratings were analyzed
using two-way repeated measures analysis of variance with
RFE (prototypical and BORFEO) and emotion (anger, dis-
gust, fear, happiness, sadness, surprise, and neutral) as inde-
pendent variables (Table III). The results showed significant
main effects of RFE and emotion, as well as a significant
interaction between these factors.

Follow-up analyses for the simple main effects of
RFE revealed that, compared with prototypical expressions,
BORFEO-generated expressions had significantly higher tar-
get emotion recognition scores for angry, disgusted, sad, and
surprised expressions (p < 0.001). In contrast, prototypical
happy expressions had significantly higher target emotion
ratings than BORFEO-generated happy expressions (p <
0.001).

The results in Figure 6 do not exclude the possibility that
the BORFEO method increases human ratings for both target
(e.g., anger) and non-target expressions (e.g., disgust). If
such an effect is present, we may be unable to determine
whether the BORFEO method produces a more convincing
target expression. To address this concern, we also analyzed
the normalized target emotion rating, i.e., the target emotion
rating divided by the sum of all emotion ratings for the same
face image (Fig. 7). We found that the effects of BORFEO
were very similar when the analysis focused on raw (Fig. 6)
and normalized ratings (Fig. 7), thus eliminating the above
concern.

Our results indicate that, compared with prototypical
RFEs, the BORFEO method improved emotion rating for the

RFEs of anger, disgust, sadness, and surprise. No significant
effect of BORFEO was observed for fearful and neutral
expressions. Regarding happiness, emotion rating was higher
for prototypical than BORFEO-generated expressions.

Fig. 7. Normalized ratings in the human evaluation experiment.

B. Correlation between Py-Feat ratings and human ratings

Fig. 8. Scatter plots and regression lines for different types of stimuli.

Figure 8 shows the relationships (i.e., scatterplots and
regression lines) between Py-Feat and human ratings for the
stimulus photos of each target emotion. The human ratings
indicated that Py-Feat successfully predicts human ratings for
angry, sad, disgusted, and surprised expressions. However,
Py-Feat did not successfully predict fearful, happy, or neutral



expressions. Visual inspection of Figure 8 suggests a possible
reason for the problems with these three expressions: pos-
itive correlations between Py-Feat and human ratings were
observed for angry, disgusted, sad, and surprised expressions,
while negative correlations were observed for fearful, happy,
and neutral expressions.

Based on these results, we speculate that the poor per-
formance of BORFEO concerning fearful, happy, and neu-
tral expressions is related to disagreement between Py-Feat
and human recognition of Nikola’s expressions. Py-Feat
(ResMaskNet) is a machine learning algorithm trained on
human ratings of human, rather than android, expressions.
In addition, the results may have been influenced by cul-
tural differences in emotion recognition [10] between the
original raters and our participants. Prediction of how our
participants would recognize Nikola’s facial emotions is an
out-of-domain task for Py-Feat. We may be able to improve
BORFEO performance by adjusting Py-Feat via domain
adaptation [32] or other transfer learning strategies.

Humans often exhibit asymmetrical facial expressions
[33]. Although Nikola can produce asymmetrical expres-
sions, we only considered symmetrical RFEs to simplify our
analysis. Nikola may be able to produce more convincing
expressions for human observers if we expand the parameter
search range to include complex asymmetrical expressions.

VI. CONCLUSION

In this work, we proposed and implemented the BOR-
FEO method for an automatic RFE optimization task. The
BORFEO method can be easily applied to any facial robot
because it only requires a web camera, laptop, and means
of transmitting robot control commands from the laptop; it
does not require human experts with appropriate knowledge
of facial expressions. We obtained a set of optimal control
parameters for Nikola’s RFEs. The results of our human
evaluation experiment showed that the BORFEO method
improves Nikola’s RFEs for anger, disgust, sadness, and
surprise compared with the RFEs generated by our previous
method based on human coding [7]. We also explored why
the BORFEO method could not improve some expressions
and offered suggestions to overcome this problem in future
work.
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