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ABSTRACT

Exercise-induced fatigue resulting from physical activity can
be an early indicator of overtraining, illness, or other health
issues. In this article, we present an automated method for
estimating exercise-induced fatigue levels through the use of
thermal imaging and facial analysis techniques utilizing deep
learning models. Leveraging a novel dataset comprising over
400,000 thermal facial images of rested and fatigued users,
our results suggest that exercise-induced fatigue levels could
be predicted with only one static thermal frame with an aver-
age error smaller than 15%. The results emphasize the viabil-
ity of using thermal imaging in conjunction with deep learn-
ing for reliable exercise-induced fatigue estimation.

Index Terms— Fatigue detection, deep learning, thermal
imaging

1. INTRODUCTION

Exercise-induced fatigue refers to a strong sensation of ex-
haustion that occurs due to physical exertion. When engag-
ing in physical activity, the human body raises thermal ra-
diation, which is closely tied to the experienced fatigue. In
this context, thermal cameras, designed to measure emitted
heat, demonstrate remarkable effectiveness in capturing fluc-
tuations in skin temperature associated with fatigue. This dis-
tinctive capability makes thermal cameras particularly valu-
able for detecting exercise-induced fatigue without the need
for physical contact or causing disruptions to the environ-
ment.

In this work, we propose the estimation of the level of
exercise-induced fatigue using thermal images obtained from
healthy individuals using facial analysis and deep learning.
Our contributions can be summarized as follows:

• We introduce for the first time the use of thermal facial
images to estimate the intensity of exercise-induced fa-
tigue in healthy people.

• We leverage a novel dataset of 418,813 thermal images
from 80 subjects that we annotate with fatigue levels
ranging from 0 (resting) to 100 (heavily fatigued).

• We show that a regression of the level of fatigue can be
performed from individual facial images. Employing
residual deep convolutional neural networks (ResNet),

we obtain an average error of 13.66% for the best case
with a standard deviation among users of 14.43%.

• Additionally, we examine the results stratified by gen-
der and facial accessory (glasses) and address the limi-
tations of our labelling annotation system.

1.1. Related work

Exercise-induced fatigue assessment has traditionally en-
countered issues related to invasiveness, inaccuracy, and
practical limitations. For instance, the Rating of Perceived
Exertion (RPE), a subjective measure of exercise intensity,
employs the Borg RPE scale, where individuals self-assess
their exertion on a scale of 0-10 or 6-20 [1]. However, this
method is susceptible to biases from mood, motivation, and
expectations, hindering result comparability and longitudinal
tracking, as underscored by Lamb et al. [2].

The rise of computer vision has introduced non-intrusive
and non-wearable fatigue detection methods, addressing these
limitations. For example, in [3], the authors propose a fa-
tigue detection technique leveraging alterations in the eye and
mouth regions based on facial landmark points. This involves
computing a central point from 68 detected landmark coordi-
nates and measuring distances between eye and lip corners,
along with eye width. These metrics serve as features input to
a Support Vector Machine (SVM) classifier, discerning signs
of fatigue. Another illustration comes from [4], where the
Facial Action Coding System (FACS), utilized by psycholo-
gists to identify emotional facial expression patterns, is com-
bined with facial muscle activation (sEMG) during exercise
at varying intensities. This aims to uncover connections be-
tween facial expression shifts, exercise intensity, and fatigue
levels, thereby exploring potential correlations. In a simi-
lar vein, Haque et al. [5] exemplify the utilization of com-
puter vision techniques. By extracting trajectories from facial
points through the Good Features to Track (GFT) approach,
these trajectories are further tracked using a supervised de-
scent method to estimate physical fatigue.

Computer vision techniques based on RGB cameras cir-
cumvent the limitations of conventional fatigue assessment
approaches, enabling the exploration of relationships between
facial expressions, and fatigue levels during exercise. Ther-
mal imaging provides a potentially interesting alternative that
could also measure muscle activity and heat exchange pat-
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terns, but has been infrequently employed in facial analysis
[6], especially when related to affective computing and fa-
tigue. Among the limited studies, to the best of our knowl-
edge only the work by [7] specifically addressed the detec-
tion of exercise-induced fatigue, treating it as a binary clas-
sification problem, using a modest dataset. We extend this
research, aiming to determine instead the specific levels of
fatigue in individuals with a larger dataset.

2. METHODOLOGY

2.1. Benchmark data

In a similar fashion as previous work [7], we collect a dataset
consisting of 160 different videos using a thermal camera to
calculate the fatigue level based on two different conditions:
fatigued and rested individuals. The data was obtained from
80 participants (51 male, 29 female) between 18 and 68 years
old. Each participant recorded two video sessions, shooting
for about five minutes. In the first session, participants were
recorded in resting condition, meaning that their heart and res-
piratory rates were below 80 bpm and 12 rpm, respectively.
For the second session, fatigue was induced by intense ex-
ercise, starting the recording only if the heart rate was above
120 bpm and the respiratory rate above 15 rpm. Physical exer-
tion ensured a heart rate between 60% and 80% of maximum
heart rate (HRM) calculated with the common HRM = 220-
age formula [8]. During the second session, subjects slowly
recovered from the fatigue, which we ensured by checking
that the video ended with participants in previously described
resting condition.

Resting videos were assigned a fatigue level of 0, while
those recorded post-exercise were assigned decreasing fatigue
levels that diminished from 100 to 0 as the video progressed.
Although relatively arbitrary, this recovery pattern coincides
with the almost linear recuperation of phosphocreatine, a
molecule related with muscle fatigue [9], during the first
five minutes of rest after physical exercise [10], providing
a fine-grained measure of the fatigue experienced by the
individuals.

Thermal cameras detect emitted infrared radiation, but
glasses, often made from transparent materials, can absorb
thermal radiation rendering glass opaque to thermal cameras,
causing partial occlusion of faces. To address this issue, we
ensured the proper stratification of the dataset, maintaining an
equal distribution of gender and occlusion across the different
folds using in cross-validation.

The facial videos were acquired utilizing the Therm-App
camera installed on a tripod as shown in Figure 1 B). The
thermal camera features Very Long-Wave Infrared (VLWIR)
17 µm thermal detector, and is equipped with a 19mm lens
with manual focus providing a resolution of 288 by 384 pix-
els at 8.7Hz. The thermal data range was compressed to 256
levels, represented in grayscale. Additionally, the temperature

Fig. 1. A: Therm-App mobile thermal camera. B: Therm-
App camera mounted in an android phone. C: Example of a
frame captured with Therm-App thermal.

dynamic range was clipped, such that the mean temperature
of the image corresponds to level 128, while levels 0 and 255
correspond to 90% and 10% of the maximum. The facial im-
ages were captured at a distance of approximately one meter
from the subject, which maximizes the resolution of the face
for the chosen lens.

2.2. Preprocesssing

Our initial experiments revealed that face detection algo-
rithms, such as Multi-task Cascade Convolutional Network
(MTCNN) [11], exhibited suboptimal performance when
applied to thermal images, a largely known problem [12].
Since our dataset was collected under consistent conditions,
with subjects positioned at a fixed distance from the cam-
era, a minimum interpupillary distance of 100 pixels [7] was
preserved. Hence, our preprocessing consists in cropping a
central region of the image. Since the subjects were asked
not to move during the recording and the camera was set to
have the face approximately in the center of the image, their
positions tend to be consistent across all frames, significantly
reducing the need for additional alignment. We resize the
images to match the input of the neural networks, and added
data augmentation by using random 50% horizontal flip.

2.3. Deep Learning Models

The experiments in this study involved the use of various
combinations of ResNet architectures [13] as the backbone,
as they have been proven useful to other similar tasks such as
driving fatigue detection [14]. To regress the level of fatigue,
two fully connected (FC) layers were added to the original
ResNet, as depicted in Figure 2. The first added layer varies
in size depending of the original ResNet structure whereas
the second layer is a regression layer with fixed size of 128.
To take advantage of pre-learnt features and transfer learn-
ing, different pre-trained weights were utilized, such as IM-
AGENET 1K V2 based on Imagenet [15] tested on several
ResNet architectures, as well as weights based on the Insight-
Face (InsightResNet) framework [16]. All layers of the mod-
els were left unfrozen at a small learning rate to allow the re-



Fig. 2. Modified ResNet architecture. Two fully connected
layers were added to regress the fatigue levels.

tention of low-level textural features. Finally, each inference
shows the prediction of one video frame.

2.4. Training and evaluation

The thermal dataset contains a total of 418,813 frames. We
employed a five-fold cross-validation to evaluate the perfor-
mance. The cost of this regression model is calculated with
the L1 norm. We include RAdam [17] optimizer, enhanced
with an implementation of Lookahead [18] and a ReduceL-
ROnPlateau scheduler with an initial learning rate of 3×10−4

[19]. To evaluate the performance of our models, we provide
the two most common metrics for regression problems, mean
absolute error (MAE) and root mean squared error (RMSE).
This pretrained scheme has shown to be useful for a similar
regression task with textural information [20].

3. RESULTS

We train a set of different models based on ResNet architec-
tures with different number of layers, ranging from 18 to 101
layers, and different pretraining schemes, including ImageNet
and Insight Face. The MAE and RMSE results obtained for
the models are presented in Table 1.

Models MAE ± std RMSE ± std
Insight-ResNet 50 16.18 ± 15.58 20.19 ± 17.83
Insight-ResNet 100 15.74 ± 15.50 19.82 ± 17.84
ImageNet-ResNet 34 15.54 ± 14.44 18.93 ± 16.47
ImageNet-ResNet 101 15.48 ± 15.54 18.99 ± 17.31
ImageNet-ResNet 18 15.37 ± 14.83 18.64 ± 16.75
Insight-ResNet 34 15.10 ± 14.54 18.56 ± 16.34
ImageNet-ResNet 50 13.64 ± 14.43 16.56 ± 16.17

Table 1. Comparison of results of exercise-induced fatigue
results for different ResNet architectures on our dataset.

By observing the results we can see that the MAE is sim-
ilar across different models with a relatively small 3% vari-
ation among them. No particular pre-training strategy seems
to be consistently better, and given the small size of the data-
size, slightly good results can be obtained with small network
sizes.

In order to determine which parts of the face contribute
most significantly to the ResNet regression level, we utilized
a Grad-CAM (Gradient-weighted Class Activation Mapping)

Fig. 3. Camera Grad-CAM applied to ImageNet-ResNet 50
model shows in red the neural network regions of interest.

to determined those regions of interest considered important
by the model [21]. As seen in Figure 3, the example Grad-
CAM maps indicate that the ROIs belong mostly the nose
and mouth regions of the face, which are the areas of heat
exchange in the human face.

The predictions of individual frames for a fatigued video
of one user are illustrated in Figure 4. The graph displays a
clear correlation between individual frames and fatigue lev-
els. This is an intriguing finding as it suggests that an individ-
ual’s level of fatigue could be predicted with only one static
frame. The results suggest that there is a strong correlation
between the predicted values and the rate of fatigue decay. In
addition, we observed that among the users with the highest
error, two distinct classes could be distinguished: misclassi-
fied users and users with a decay ratio different from the one
arbitrarily assigned during labeling.

Fig. 4. Individual fatigue predictions (red) against our la-
belling (black). Case of consistent fatigue-decay correlation.

Figure 5 shows examples of individuals with high regres-
sion error, but that still show a clear correlation between the
fatigue level prediction and the label. This observation points
out that the decay ratio for these users might have been dif-
ferent from the one assigned during labeling, suggesting that
the individuals may have started the test with a lower fatigue
level than expected, or that they were able to recover faster
than normal. Although this indicates that arbitrarily labelling
the fatigue levels from 100 to 0 might be a sub-optimal ap-
proach, the predicted levels of fatigue still decayed gradually
and consistently throughout the video. These observations
further highlight the importance of individual-level analysis
in developing fatigue prediction models that cater to individ-
ual characteristics and needs, and it is left for future work.

Table 2 examines the influence of gender and glasses on
the model’s accuracy. Our findings suggest that the presence
of glasses affects the detection of rested states more than fa-
tigue states. This might cause rested users, especially in high-
temperature change areas like the mouth and nose, to appear



Fig. 5. The top subplot shows an individual that probably
started with a smaller level of fatigue, while the bottom sub-
plot belongs to an individual with a fast recovery time.

more fatigued. When glasses are worn during rest, the dimin-
ished temperature variation and associated labels might de-
crease the detail captured by thermal cameras. However, our
analysis revealed an equal distribution of errors across strati-
fied groups. Although glasses appear to affect predictions for
resting states, this effect is likely attributed to a few outliers
rather than a systemic bias. In terms of gender differences,
our study found almost none, pointing to a consistent perfor-
mance of the model across genders. In addition, the study
outcomes show a balanced distribution between fatigue and
resting level estimations.

Group Combined Fatigue Resting
Men + Women 13.64 22.20 5.40
Men 13.46 23.72 3.59
Women 13.96 19.52 8.60
Men + Women no glasses 14.01 21.44 6.57
Men no glasses 13.77 21.97 5.57
Women no glasses 14.32 20.74 7.91
Men + Women with glasses 13.03 23.52 3.56
Men with glasses 13.06 26.07 1.18
Women with glasses 12.96 15.88 10.40

Table 2. Mean Average Error results stratified by gender and
glasses

We present an analysis of the model’s performance, differ-
entiated by fatigue and rested states, as illustrated in Figure 6.
In this figure, each vertical line represents an individual sub-
ject. The red and blue dots correspond to the error rates for
the fatigue and rested conditions, respectively. Subjects are
ordered based on their error rates in the rested state. Notably,
our analysis indicates that a higher error rate in one state does
not correlate with a higher error rate in the other.

The absence of a strong correlation suggests that the
model may not be discerning broader contextual cues that
differentiate the two states but is instead focused on more
localized patterns. This implies that the model might be hon-

Fig. 6. Sorted MAE by user Stratified results by user. No
correlation between errors in resting and fatigue for the same
user.

ing in on textural features, potentially driven by the unique
thermal emission patterns of individuals. This observation
aligns with visualizations presented in the Grad-CAM 1.

The present study investigates the correlation between
thermal camera frames and levels of fatigue induced by exer-
cise. Although our model seems to grasp this connection, we
acknowledge the limitations of our existing labeling system,
which neglects the individual fatigue decay ratio. Our discov-
eries underscore the significance of conducting a thorough
assessment of the model’s performance across different states
and propose the need for advancing more reliable fatigue
prediction models.

4. CONCLUSION

This research presents a novel system for estimating exercise-
induced fatigue levels, based on individual thermal images.
Our procedure involves the use of thermal cameras that pro-
vide a reliable, illumination-invariant technique. The results
of our method using a new dataset of 418,813 thermal im-
ages from 80 subjects, suggest the feasibility of accurately
determining fatigue levels from thermal images, making a
step forward in fatigue management. Our stratified study of
the dataset allowed us to determine the reliability of different
methods for estimating fatigue levels. We found that resid-
ual neural networks offer a particularly consistent framework
that provides low bias based on gender and facial accessories
such as glasses. This finding underscores the potential of deep
learning methods for accurately estimating fatigue levels from
thermal images. While our research focuses solely on static
images, there is significant scope for future studies to explore
the complementary nature of diverse sources by utilizing var-
ious biosignals. Additionally, future work could address the
creation of labels based on biosignals such as heart rate and
respiration rate to overcome the shortcomings of the different
fatigue ratio decays among users. In conclusion, our work
has demonstrated the potential of thermal imaging and deep
learning methods for accurately estimating exercise-induced
fatigue levels from individual thermal images.
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ing depression estimation from facial videos with face
alignment, training optimization and scheduling,” arXiv
preprint arXiv:2212.06400, 2022.

[21] Jacob Gildenblat and contributors, “Pytorch library for
cam methods,” 2021.


	 Introduction
	 Related work

	 Methodology
	 Benchmark data
	 Preprocesssing
	 Deep Learning Models
	 Training and evaluation

	 Results
	 Conclusion
	 References

