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Abstract

In recent years, attention models have been extensively

used for person and vehicle re-identification. Most re-

identification methods are designed to focus attention on

key-point locations. However, depending on the orienta-

tion, the contribution of each key-point varies. In this paper,

we present a novel dual-path adaptive attention model for

vehicle re-identification (AAVER). The global appearance

path captures macroscopic vehicle features while the orien-

tation conditioned part appearance path learns to capture

localized discriminative features by focusing attention

on the most informative key-points. Through extensive

experimentation, we show that the proposed AAVER method

is able to accurately re-identify vehicles in unconstrained

scenarios, yielding state of the art results on the challeng-

ing dataset VeRi-776. As a byproduct, the proposed system

is also able to accurately predict vehicle key-points and

shows an improvement of more than 7% over state of the

art. The code for key-point estimation model is available at

https://github.com/Pirazh/Vehicle_Key_Point_Orientation_Estimation

1. Introduction

Vehicle re-identification (re-id) refers to the task of re-

trieving all images of a particular vehicle identity in a large

gallery set, composed of vehicle images taken from varying

orientations, cameras, time and locations. Accurately re-

identifying vehicles from images and videos, is of great in-

terest in surveillance and intelligence applications. In con-

trast to vehicle recognition which aims to identify the make

and model of the vehicle, vehicle re-id is concerned with

identifying specific vehicle instances. This task is extremely

challenging as vehicles with different identities can be of

the same make, model and color, and thus it is challenging

for a Deep Convolutional Neural Network (DCNN) to make

accurate predictions. In this paper, we present a novel algo-

rithm driven by adaptive attention for re-identifying vehi-

(a) Front (b) Left (c) Right (d) Rear

Figure 1: Heatmaps grouped as suggested in [23]. Atten-

tion to all subgroup of key-points leads to erroneous results.

Although, only the rear of the car is visible, contributions

from frontal key-points are non-zero.

cles from still images without using information from other

sources such as time and location.

The similar task of person re-id aims at re-identifying

humans appearing in different cameras. While visual ap-

pearance models work reasonably well for person re-id,

the same techniques fail to differentiate vehicles due to the

lack of highly discriminating features. Person re-id models

are not heavily reliant on facial features as they also learn

discriminating features based on clothing and accessories.

However, vehicle re-id poses a new set of challenges. Dif-

ferent vehicle identities can have similar colors and shapes

especially those coming from the same manufacturer with a

particular model, trim and year. Subtle cues such as differ-

ent wheel patterns and custom logos might be unavailable

in the global appearance features. Therefore, it is important

that vehicle re-id model learns to focus on different parts

of the vehicles while making a decision. Previous works in

person re-id such as [25] have used attention models with

human key-points as regions of attention and have shown

significant improvement in performance. Similarly, meth-

ods such as [23] have used vehicle key-points to learn atten-

tion maps for each of the 20 key-points defined by [23]. The

system proposed by Wang et al. [23] grouped key-points

into four groups corresponding to front, rear, left and right.

However, not all key-points provide discriminating in-

formation and their respective contributions depend on the

orientation of the vehicle. For instance, in Figure 1a we

observe that the key-points from the front of the car incor-
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rectly influence the attention of the model as the front of the

car is not visible. Hence, paying attention to all the key-

points, as suggested in [23], can lead to erroneous results.

The proposed method tackles the problem of false attention

by adaptively choosing the key-points to focus on, based on

the orientation of the vehicle hence, providing complemen-

tary information to global appearance features. In this work,

terms with same connotation, path, stream and branch, have

been used interchangeably.

In the proposed method, the first stream is a DCNN

trained to extract discriminative global appearance features

for each vehicle identity. However, this stream often fails to

extract subtle features necessary to distinguish similar vehi-

cles. Therefore, a second path composed of orientation con-

ditioned key-point selection and localized feature extraction

modules is used in parallel to supplement the features from

the first path. By using orientation as a conditioning factor

for adaptive key-point selection, the model learns to focus

on the most informative parts of the vehicle. Additionally,

we develop a fully convolutional two-stage key-point detec-

tion model inspired by the works of Kumar et al. [9] and Bu-

lat et al. [2] for facial key-point detection and human pose

estimation respectively.

The detailed architectures of each module in the pro-

posed method are discussed in section 3. Through exten-

sive experimentation, we show that the proposed Adaptive

Attention model for Vehicle Re-identification (AAVER) ap-

proach improves the re-id accuracy on challenging datasets

such as VeRi-776 [11, 12] and VehicleID [10]. In addition,

the proposed vehicle key-point detection model, improves

the accuracy by more than 7% over state of the art.

2. Related Work

In this section, we briefly review recent relevant works

in the field of vehicle classification and re-identification.

Learning a discriminating representation, requires a large-

scale annotated data for training, especially for recent

DCNN approaches. Yang et al. [27] released a large-scale

car dataset (CompCars) for fine-grained vehicle model clas-

sification which consists of 1,687 car models and 214,345

images. The VehicleID dataset by Liu et al. [10] consists

of 200,000 images of about 26,000 vehicles. In addition,

Liu et al. [12,13] published a high-quality multi-view vehi-

cle re-id (VeRi-776) dataset. Yan et al. [26] released two

high-quality and well-annotated vehicle datasets, namely

VD1 and VD2, with diverse annotated attributes, containing

1,097,649 and 807,260 vehicle images captured in different

cities.

Moreover, besides datasets for training, Tang et al. [22]

claimed traditional hand-crafted features are complemen-

tary to deep features and thus fused both features to realize

an improved representation. Instead, Cui et al. [4] fused

features from various DCNNs trained with different objec-

tives. Furthermore, Liu et al. [12,13] used multi-modal fea-

tures, including visual features, license plate, camera loca-

tion, and other contextual information, in a coarse-to-fine

vehicle retrieval framework. To augment the training data

for robust training, [24] used a generative adversarial net-

work to synthesize vehicle images with diverse orientation

and appearance variations. [31] learns a viewpoint-aware

representation for vehicle re-id through adverserial learning

and a viewpoint-aware attention model.

Besides global features, Liu et al. [14] extracted discrim-

inative local features from a series of local regions of a ve-

hicle by a region-aware deep model. Different from these

approaches, the proposed method leverages orientation to

adaptively select the regions of attentions.

Another effective strategy to learn the discriminative rep-

resentation is metric learning. Zhang et al. [29] proposed

an improved triplet loss which performs joint optimization

with an auxiliary classification loss as a regularizer in order

to characterize intra-sample variances. Bai et al. [1] intro-

duced Group-Sensitive triplet embeding to better model the

intra-class variance. Shen et al. [20] also proposed to im-

prove the matching performance by making use of spatio-

temporal information; they developed a Siamese-CNN with

path LSTM model which generates the corresponding can-

didate visual-spatio-temporal paths of an actual vehicle im-

age by a chain-based Markov random field (MRF) model

with a deeply learned potential function. In contrast, the

proposed method uses the L2 softmax [19] loss function as

it has shown impressive performance for the task of face

verification and trains faster compared to triplet loss-based

methods such as [29] without the hassle of sampling hard

triplets.

3. Adaptive Attention Vehicle Re-identification

(AAVER)

The entire pipeline of the proposed method AAVER is

composed of three main modules: Global Feature Extrac-

tion, Vehicle Key-Point and Viewpoint Estimation, and

Adaptive Key-Point Selection and Feature Extraction

which is followed by a re-ranking based post-processing.

Figure 2 shows the diagrammatic overview of our method.

In AAVER, the global feature extraction module is re-

sponsible for extracting the macroscopic features (fg) of the

vehicles. By looking at the entire vehicle, this model tries to

maximally separate the identities in the feature space. How-

ever, this model may fail to take into account subtle differ-

ences between similar cars, most extremely the ones that are

of the same make, model and color. Therefore, the features

generated by this module are supplemented with features

(fl) from the localized feature extraction module. This can

be achieved by the adaptive attention strategy using the pro-

posed key-point and orientation estimation network.

In order to estimate the vehicle key-points, we draw in-



Figure 2: Adaptive Attention Vehicle Re-identification (AAVER) Model Pipeline. The input vehicle image is processed in

parallel along two paths: In the first path, the global appearance features (fg) are extracted. The second path is responsible for

detecting vehicle key-points and predicting its orientation, after which localized features (fl) are extracted based on adaptive

key-point selection. Subsequently, the two feature vectors fg and fl are fused with a shallow multi-layer perceptron.

spiration from literature on facial key-point detection and

human pose estimation. Inspired by [2,9] we employ a two-

stage model to predict the vehicle’s orientation and land-

marks in a coarse to fine manner; the coarse heatmaps pre-

dicted by a DCNN are refined using a shallower network.

Finally, we use the proposed adaptive key-point selection

module to select a subset of most informative key-points

and pool features from early layers of the global feature ex-

traction module to extract localized features around the se-

lected key-points. The features obtained from the two paths

of AAVER are then merged using a multi-layer perceptron.

The entire model can be trained end-to-end using any differ-

entiable loss function. In our work, we use the L2 softmax

loss as proposed in [19]. During inference, we use the fea-

tures from penultimate fully connected layer as the repre-

sentation of a given vehicle. Additionally, we also perform

re-ranking [30] as a post processing step.

Each module is described in detail in the following sub

sections. Pytorch deep learning framework [17] has been

used in all of the experiments.

3.1. Global Feature Extraction

For extracting the global appearance features, we employ

ResNet-50 and ResNet-101 [6] as backbone networks and

also adopt them as our baseline models. We initialized the

weights of these models using the weights from the models

pre-trained on the CompCars dataset. A 2048-dimensional

features vector from the last convolutional layer of ResNet

is then fed to a shallow multi-layer perceptron. This net-

work is trained using the L2 softmax loss function which

constrains the feature vectors extracted by the network to lie

on a hyper-sphere of radius α. This enables the network to

embed features of identical vehicles together while pushing

apart the features from different vehicles. It is mathemati-

cally expressed as:

LS = − log
exp( WT

y (
αx
‖x‖2

) + by)
∑N

j=1 exp
( WT

j (
αx
‖x‖2

) + bj)
(1)

where x is the feature vector corresponding to class label y,

Wj is the weight and bj is the bias corresponding to class

j, α is a positive trainable scalar parameter, and N is the

number of classes respectively.

3.2. Vehicle KeyPoint and Orientation Estimation

In this work, a two-stage model is proposed for key-point

estimation. In the first stage, a VGG-16 [21] -based fully

convolutional network is employed to do a coarse estima-

tion of the location of N1 (N1 = 21 = 20 key-points plus

background) heatmaps of size H ×W (56× 56). This net-

work is trained using a per-pixel multi-class cross entropy

loss defined as follows:

L1 =
−1

H ×W

H∑

i=1

W∑

j=1

log(
exp(xi,j(t

∗
i,j))∑N1

k=1 exp(xi,j(k))
) (2)

where xi,j is the vector corresponding to pixel location i

and j across all output channels and t∗i,j is the ground-truth

class label for that pixel location. After training the first

stage, the weights of this network are frozen for training of

the subsequent stage. The left side of Figure 3 depicts the

the output of the first stage for a sample vehicle image.

Although the responses of the first stage can be used for

the prediction of visible key-point locations, there might

be erroneous activations in the heatmaps that correspond

to invisible key-points. Consequently, we use the second



Figure 3: Vehicle key-point and orientation estimator network. VGG 16 network outputs 21 coarse heatmaps corresponding

to the 20 vehicle landmarks and the background (Response maps on the left). A two-stack hourglass network refines 20
key-points heatmaps (response maps on the right) excluding background channel and predicts the vehicle’s orientation.

Figure 4: The confusion matrix of the vehicle orientation

estimation network

stage that takes in the sub-sampled version of the input im-

age and the coarse estimates of key-points to refine the re-

sults. The refinement network follows the hourglass archi-

tecture introduced in [16] which is commonly used for re-

fining heatmaps and reducing artifacts due to invisible key-

points. In the second stage, coarse heatmaps estimated from

the first stage, are refined through a two-stack hourglass net-

work with skip connections. Along with refining the esti-

mated key-points, the orientation of the vehicle is also pre-

dicted through a parallel branch composed of two fully con-

nected layers designed to classify the orientation into eight

classes as defined in [23]. This multi-task learning helps

the refinement network to make accurate predictions of the

visible key-points while reducing the response of invisible

key-points. Figure 3 shows the overall schematic flow of

the two-stage network.

To train the heatmap refinement and orientation branches

we use Mean Square Error (MSE) and cross entropy loss re-

spectively. Equation 3 represents the loss function used for

the second stage. It is worth mentioning that in the second

stage we are only interested in foreground heatmaps, hence,

we exclude the refinement of the background channel.

L2 = LH + λ ∗ LO (3)

where LH is the heatmap regression loss:

LH =

N2∑

k=1

H∑

i=1

W∑

j=1

| hk(i, j)− h∗
k(i, j) |

2
(4)

and LO is the orientation classification loss:

LO = − log(
exp(p(p∗))

∑Np

i=1 exp(p(i))
). (5)

In Equation (4), N2 = N1 − 1, hk(i, j) and h∗
k(i, j) are

predicted and ground-truth heatmaps in stage 2 for the kth

key-point at locations i and j respectively. p, p∗ and Np

in Equation (5) constitute the predicted orientation vector,

the corresponding ground-truth orientation and number of

classes respectively. Finally, λ in Equation (3) is a weight

to balance the losses used in model optimization. In our

experiments, λ is set to 10 obtained after cross-validation.

In the right hand side of Figure 3 which shows the the output

of the second stage, it can be observed that the initial coarse

estimates of key-points have been refined.

3.3. Adaptive KeyPoint Selection and Feature Ex
traction

Subtle differences in similar vehicles mostly occur close

to vehicle landmarks, e.g. same car make and models of



Table 1: Seven Prominent key-points in each orientation

group

Orientation Group Visible Key-Points

Front [11, 12, 7, 8, 9, 13, 14]

Rear [18, 16, 15, 19, 17, 11, 12]

Left [8, 1, 11, 14, 15, 2, 17]

Left Front [9, 14, 6, 8, 11, 1, 15]

Left Rear [2, 17, 15, 11, 14, 19, 1]

Right [7, 3, 12, 13, 16, 4, 18]

Right Front [9, 13, 5, 7, 12, 3, 16]

Right Rear [3, 4, 12, 16, 18, 19, 13]

same color might be distinguishable through their window

stickers, rims, indicator lights on the side mirrors, etc. This

can be achieved by focusing the attention on parts of the

image that encompasses these distinctions. To this end, re-

gions of interest within the image are identified based on

the orientation of the vehicle; after which features from the

shallower layer of the global appearance model are pooled.

As suggested in [28] these pooled features contain contex-

tual rather than abstract information. Later, deep blocks

(Res3, Res4 and Res5) of another ResNet model are used

to extract supplementary features corresponding to the re-

gions of interest.

In [23], vehicle’s orientation is annotated into eight dif-

ferent classes, i.e. rear, left ,left front, left rear, right, right

front and right rear; however, there is no absolute bound-

ary between two adjacent orientations. For instance, for the

case of right and right front, the network gets confused be-

tween the two classes when trained for orientation predic-

tion; this can be observed in Figure 4 which shows the con-

fusion matrix for the eight-class classification problem. To

overcome this issue, we designed a key-point selector mod-

ule that takes the predicted orientation likelihood vector and

adaptively selects the key-points based on the likelihoods.

In order to achieve this, we constructed eight groups

shown in Table 1 corresponding to each of the eight orienta-

tions of a vehicle and its two adjacent orientations. During

inference, the likelihood of each orientation group is cal-

culated and the one with the highest probability is picked.

Also, experimentally it was observed that for each orien-

tation group at least seven key-points are always visible.

Consequently, given the orientation group with the highest

probability we select the seven heatmaps shown in Table

1 corresponding to the respective orientation group. These

orientation groups are named based on their center orienta-

tion e.g. the group that contains left front, front and right

front is named front.

After obtaining the seven heatmaps, for each map, a

Gaussian kernel with σ = 2 is placed in the location of

the map’s peak, i.e. the key-point location. This is done

in order to emphasize the importance of the surrounding ar-

eas around the key-points as they may have discriminative

information.

Following the adaptive heatmap selection and dilation

by the Gaussian kernel, is the localized feature extraction

(fl) by Res3, Res4 and Res5 blocks of the parallel ResNet

model. The input to this sub-network is the concatenation

of the seven dilated heatmaps of shape 7× 56× 56 and the

pooled global features of shape 256× 56× 56. Finally, the

localized features fl is concatenated with the global appear-

ance features fg and passed through a multi-layer percep-

tron followed by L2 softmax loss function (refer to Figure

2). Given that features are normalized, we use cosine simi-

larity to calculate the similarity score between image pairs.

3.4. Post Processing Step: ReRanking

In general, Re-ID can be regarded as a retrieval prob-

lem. Given a probe vehicle, we want to search in the gallery

for images containing the same vehicle in a cross-camera

mode. After an initial ranking list is obtained, a good prac-

tice consists of adding a re-ranking step, with the expec-

tation that the relevant images will receive higher ranks.

Such re-ranking steps have been mostly studied in generic

instance retrievals such as [18], [3], [7] and [30]. The main

advantage of many re-ranking methods is that they can be

implemented without requiring additional training samples,

and also can be applied to any initial ranking list.

Significant amount of research in person re-id goes into

re-ranking strategies and vehicle re-id is lacking in that as-

pect. Most of the state of the art methods for vehicle re-id

do not perform re-ranking on their initial ranking list. We

use the re-ranking strategy proposed by Zhong et al. [30] in

our work.

4. Experiments

Here we first present the two large-scale datasets used for

the vehicle re-identification task and their evaluation proto-

cols, after which we describe the implementation details of

the proposed method.

4.1. Datasets

To the best our knowledge, there are mainly two large

scale vehicle datasets that are publicly available and are de-

signed for the task of vehicle re-identification: VeRi-776

[11], [12] and VehicleID [10].

VeRi-776 dataset consists of 49,357 images of 776 dis-

tinct vehicles that were captured with 20 non-overlapping

cameras in variety of orientations and lighting conditions.

Out of these images, 37,778 (576 identities) and 11,579

(200 identities) have been assigned to training and testing

respectively. For the query set, 1,678 images have been se-

lected from the testing set. The evaluation protocol for this



dataset is as follows: for each probe image in the query set

the corresponding identity and the camera ID from which

the image is captured is gathered. The gallery is constructed

by selecting all the images in the testing set except the ones

that share the same identity and camera ID as the probe.

Evaluation metrics adopted for this dataset are mean Aver-

age Precision (mAP), Cumulative Match Curve (CMC) for

top 1 (CMC@1) and top 5 (CMC@5) matches.

VehicleID is another large-scale dataset used for vehi-

cle retrieval task and is composed of 221, 567 images from

26, 328 unique vehicles. Half of the identities, i.e. 13, 164,

are reserved for training while the other half are dedicated

for evaluation. There are 6 test splits for gallery sizes of

800, 1600, 2400, 3200, 6000 and 13, 164. In the recent

works [20,23] the first three splits have been used. The pro-

posed evaluation protocol for each split in VehicleID dataset

is to randomly select an image for each of the identities to

form the gallery of respective size and use the rest of the

images for query. This procedure is repeated ten times and

the averaged metrics, CMC@1 and CMC@5, are reported.

4.2. Implementation Details

In our implementation, all the input images were resized

to (224, 224) and normalized by the ImageNet dataset [5]

mean and standard deviation. Also, in all of our experi-

ments we used batch training with size of 150 and Adam

optimizer [8] with the learning rate of 1e− 4.

Initially, we fine-tuned our baseline models (see section

3.1) on VeRi-776 and VehicleID datasets separately, for 20
epochs. Then, we initialized the key-point and orientation

estimation network with ImageNet pre-trained weights. The

first stage of this network was trained for 40 epochs; after-

wards the second stage was trained for 40 epochs as well.

Next, we trained the orientation conditioned feature ex-

traction branch for each of VeRi-776 and VehicleID datasets

for 20 epochs. Finally, we select the network’s output of the

penultimate layer as the feature vector corresponding to the

input vehicle image.

5. Experimental Evaluations

We first present the evaluation results of our vehicle

key-point and orientation estimation model followed by the

evaluation of the proposed method AAVER on both VeRi-

776 and VehicleID datasets.

5.1. Vehicle KeyPoint and Orientation Estimation
Evaluation

In order to evaluate the performance of the proposed

two-stage key-point detection model, we use the Mean

Square Error (MSE) in terms of pixels for the location of

visible key-points in 56×56 maps over the test set of VeRi-

776 key-point dataset. Table 2 shows the MSE of our model

after first and second stages. Moreover, we measured the

accuracy of the model for viewpoint classification. It can

be observed that the refinement stage reduces the key-point

localization error by 20% compared to the first stage.

To the best of our knowledge, [23] is the only work on

the VeRi-776 key-point and orientation estimation dataset.

[23] used the averaged distance between estimated and

ground-truth locations of all visible key-points for evalua-

tion. If the distance is less than a threshold value (r0 in

terms of pixels in 48 × 48 map), the estimation is consid-

ered to be correct. We follow the same protocol to compare

the precision with [23] and Table 2 shows the result of this

comparison.

Table 2: Accuracy evaluation and comparison of the vehicle

landmark and orientation estimation network

Stage 1 Stage 2

Key-point localization MSE (pixel) 1.95 1.56

Orientation Accuracy - 84.44%

Key-Point Precision Comparison

Model r0 = 3 r0 = 5
OIFE [23] 88.8% 92.05%

Ours 95.30% 97.11%

5.2. Evaluation Results on VeRi776

Table 3 summarizes the results of the global appear-

ance model (baseline) and the proposed AAVER model

with adaptive attention. Note that in both ResNet-50 and

ResNet-101 -based architectures, there is a significant im-

provement in mAP and CMC@1 scores after incorporat-

ing adaptive attention. This indicates that conditioning on

the orientation of the vehicle and selecting corresponding

key-points enables the network to focus more on parts that

contains minute differences in similar cars. This claim is

further studied in section 5.5. Unsurprisingly, we also ob-

serve that ResNet-101 shows better performance compared

to ResNet-50 under similar settings.

Table 3: Performance comparison between baseline and the

proposed method on VeRi-776 dataset

Model mAP CMC@1 CMC@5

Baseline
ResNet-50 52.88 83.49 92.31

ResNet-101 55.75 84.74 94.34

AAVER
ResNet-50 58.52 88.68 94.10

ResNet-101 61.18 88.97 94.70

Figure 5 plots the probe image and the top three returns

of each baseline and the proposed model. It can be observed

that AAVER significantly improves the performance over

the baseline.



(a) Probe Image

(b) Rank 1 (c) Rank 2 (d) Rank 3

(e) Rank 1 (f) Rank 2 (g) Rank 3

Figure 5: Top three returned results of the baseline model

(sub-figures b-d) versus the AAVER model (sub-figures e-

g) on VeRi-776 dataset

(a) Probe Image

(b) Rank 1 (c) Rank 2 (d) Rank 3

(e) Rank1 (f) Rank 2 (g) Rank 3

Figure 6: Top three returned results of the baseline model

(sub-figures b-d) versus the AAVER model (sub-figures e-

g) on VehicleID dataset

5.3. Evaluation Results on VehicleID

Images in this dataset have less variations in viewpoint,

i.e. mostly front and rear, compared to VeRi-776 dataset.

For this dataset, the evaluation metrics are only CMC@1

and CMC@5 as there is only one true match in the gallery

for each probe image. Table 4 presents the re-identification

results of baseline and the proposed models over test splits.

As compared to baseline models, a significant increase

in performance is observed when features from adaptive

attention-based path are fused with global appearance fea-

tures.

Table 4: Performance comparison between baseline and

proposed method on VehicleID dataset

Baseline Model AAVER Model

Split ResNet-50 ResNet-101 ResNet-50 ResNet-101

CMC@1

800 67.27 70.03 72.47 74.69

1600 62.03 65.26 66.85 68.62

2400 55.12 59.04 60.23 63.54

CMC@5

800 89.05 89.81 93.22 93.82

1600 84.31 84.96 89.39 89.95

2400 80.04 80.60 84.85 85.64

Figure 6 shows an examples of a query from VehicleID

dataset and the top three results returned by both global and

adaptive attention model.

5.4. Comparison with State of the Art Methods

In this section, we compare AAVER model with ResNet-

101 backbone against the recent state of the art methods.

The results of this comparison are presented in Table 5.

From Table 5, it can be observed that our pro-

posed method is among the top performers of vehicle re-

identification task and is the state of the art for most of

the evaluation metrics on both VeRi-776 and VehicleID

datasets. Note that in the absence of a deterministic test

set for VehicleID dataset, one cannot provide the basis for

a fair comparison. The reason lies in the fact that random

gallery construction yields different evaluation results with

relatively high variance even when averaged over ten repeti-

tions. Finally, we have to emphasize on the necessity of us-

ing re-ranking as a post processing step whenever there are

multiple instances of the probe image in the gallery. Here

for the VeRi-776 dataset, re-ranking shows significant im-

provement and results in state of the art mAP and CMC@1

scores. Note that for VehicleID dataset re-ranking is not ap-

plicable as there is only one true match in the gallery for

each probe image.

5.5. Ablation Studies

We designed a set of experiments to study the impact of

complementary information that the orientation conditioned

branch provides. Note that in these experiments we only use

the test split 800 for the VehicleID dataset To this end, the

following experiments have been conducted:

1. In the first experiment we examined the depth of the

layer in the global branch from which the global fea-

tures are pooled and then fed to the orientation condi-

tioned branch. To investigate this we tried pooling fea-

tures after Res2, Res3 and Res4 blocks of spatial size

of 56× 56, 28× 28 and 14× 14. Table 6 demonstrates

the results of this experiment. It can be observed that

as we go from shallow to deeper layers, the features

become more abstract and focusing on parts of deep

feature maps do not help in providing a robust repre-

sentation of vehicles with minute differences.

2. In our method, we use two streams for extracting

global and local features from vehicle images, so we

were keen to see whether a single branch can extract

discriminative features that encompass global as well

as local differences. To test this hypothesis, instead of

pooling features from the global branch we fused the

selected heatmaps into the global branch by concate-

nation and used the output as the representation for a

vehicle image. Table 7 depicts the result of this ex-

periment, for both VeRi and VehicleID datasets. we

can infer that the re-identification performance drops

significantly by relying on a single branch.



Table 5: Comparison with recent methods and state of the arts

Dataset

VeRi-776
VehicleID

Test size = 800 Test size = 1600 Test size = 2400

Method mAP CMC@1 CMC@5 CMC@1 CMC@5 CMC@1 CMC@5 CMC@1 CMC@5

SCPL [20] 58.27 83.49 90.04 - - - - - -

OIFE [23] 48.00 65.9 87.7 - - - - - -

VAMI [31] 50.13 77.03 90.82 63.12 83.25 52.87 75.12 47.34 70.29

RAM [14] 61.5 88.6 94.0 75.2 91.5 72.3 87.0 67.7 84.5

AAVER 61.18 88.97 94.70 74.69 93.82 68.62 89.95 63.54 85.64

AAVER + Re-ranking 66.35 90.17 94.34 - - - - - -

Table 6: Experiment 1: Depth of pooled global features

Dataset features size mAP CMC@1 CMC@5

VeRi-776

56× 56 0.612 88.97 94.70

28× 28 0.608 88.50 94.58

14× 14 0.597 85.88 93.03

VehicleID

56× 56 - 74.69 93.82

28× 28 - 72.60 93.24

14× 14 - 71.09 92.13

Table 7: Experiment 2: Single versus Dual-branch feature

extraction

Dataset Type mAP CMC@1 CMC@5

VeRi-776
Single 0.528 80.93 90.52

Dual 0.612 88.97 94.70

VehicleID
Single - 69.61 91.45

Dual - 74.69 93.82

3. In the final set of experiments we scrutinize the

way in which the information from vehicle key-point

heatmaps are incorporated in the proposed model. Our

work is in some aspects similar to [23] which groups

a fixed set of key-points and combines all the corre-

sponding heatmaps into one map by adding them to-

gether. Therefore, we conduct this experiment under

the same settings as of [23]. Table 8 shows the results

of these experiments. The type ”Combined” in Table

8 refers to the method in [23]. We can conclude that

using all heatmaps combined into one group does not

result in competitive results as the adaptive selection

of heatmaps. This validates the hypothesis that not all

the key-points contribute to a discriminative represen-

tation of the vehicle.

6. Conclusions and Future Work

In this paper, we present a robust end-to-end framework

for state of the art vehicle re-identification. We present

a dual path model AAVER which combines macroscopic

Table 8: Experiment 3: Key-points heatmaps utilization

Dataset Type mAP CMC@1 CMC@5

VeRi-776
Combined [23] 0.606 87.66 94.17

AAVER 0.612 88.97 94.70

VehicleID
Combined [23] - 71.79 92.10

AAVER - 74.69 93.82

global features with localized discriminative features to ef-

ficiently identify a probe image in a gallery of varying sizes.

In addition, we establish benchmarks for key-point detec-

tion and orientation prediction on VeRi-776 dataset. Lastly,

we advocate for the adoption of re-ranking when consider-

ing the performance of future vehicle re-identification meth-

ods. Adaptive key-point selection conditioned on vehi-

cle orientation is vital for discriminating between vehicles

of the same make, model and color. Evaluating on both

VeRi-776 and VehicleID shows the strength of our proposed

method. Lastly, we conduct an ablation study to understand

the influence of the adaptive key-point selection step.

In the future, we plan to extend our key-point module

to align vehicle images to a canonical coordinates system

before comparing a given pair of images. Similarly, we can

learn a 3D representation of vehicles to be used in other

tasks such as vehicular speed estimation.
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Supplementary Material

In this section we present the performance of our method on the

newly released VeRi-Wild dataset [15]. This dataset is collected in

a network of 174 surveillance cameras covering a large urban area

and captures unconstrained scenarios. It is composed of 416,314

images (277,797/138,517 for train/test sets) of 40,671 different ve-

hicle identities. The test set, similar to VehicleID dataset is divided

into three Small (41,861), Medium (69,389) and Large (138,517)

images splits. The evaluation for this dataset follows the same pro-

tocol as VeRi-776. Table 9 summarizes the result of our baseline

and proposed AAVER model.

Table 9: Performance comparison between baseline and

proposed method on VeRi-Wild dataset

Baseline Model AAVER Model

Split ResNet-50 ResNet-101 ResNet-50 ResNet-101

mAP

Small 60.22 60.99 60.62 62.23

Medium 51.21 52.49 51.77 53.66

Large 38.89 38.99 40.42 41.68

CMC@1

Small 71.37 72.97 74.60 75.80

Medium 62.84 65.02 65.76 68.24

Large 52.00 54.65 56.03 58.69

CMC@5

Small 90.10 91.57 91.60 92.70

Medium 86.58 87.30 87.16 88.88

Large 77.48 79.52 79.67 81.59

From Table 9 it can be seen that for all splits of VeRi-Wild

dataset like VeRi-776 and VehicleID datasets, a significant boost is

obtained by conditioning the features on the vehicle’s orientation

and corresponding key-points.

Figure 7 shows an examples of a query from VeRi-Wild dataset

and the top three results returned by both global and adaptive at-

tention models.

(a) Probe Image

(b) Rank 1 (c) Rank 2 (d) Rank 3

(e) Rank1 (f) Rank 2 (g) Rank 3

Figure 7: Top three returned results of the baseline model

(sub-figures b-d) versus the AAVER model (sub-figures e-

g) on VeRi-Wild dataset


