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Abstract

Localizing objects and estimating their extent in 3D is
an important step towards high-level 3D scene understand-
ing, which has many applications in Augmented Reality
and Robotics. We present ODAM, a system for 3D Object
Detection, Association, and Mapping using posed RGB
videos. The proposed system relies on a deep learning front-
end to detect 3D objects from a given RGB frame and asso-
ciate them to a global object-based map using a graph neu-
ral network (GNN). Based on these frame-to-model asso-
ciations, our back-end optimizes object bounding volumes,
represented as super-quadrics, under multi-view geometry
constraints and the object scale prior. We validate the pro-
posed system on ScanNet where we show a significant im-
provement over existing RGB-only methods.

1. Introduction

Endowing machine perception with the capability of in-
ferring 3D object-based maps brings AI systems one step
closer to semantic understanding of the world. This task re-
quires building a consistent 3D object-based map of a scene.
We focus on the space between the category-level seman-
tic reconstructions [29] and object-based maps with render-
able dense object models [27, 45] and represent objects by
the 3D bounding volumes from posed RGB frames. As an
analogy to the use of 2D bounding boxes (BBs) in images,
a 3D bounding volume presents a valuable abstraction of
location and space, enabling for example, object-level plan-
ning for robots [13, 15], learning scene-level priors over ob-
jects [55], or anchoring information on object instances. A
robust way of inferring bounding volumes and associated
views of individual objects in a scene is a stepping stone to-
ward reconstructing, embedding and describing the objects
with advanced state-of-the-art methods such as NeRF [32],
and GRAF [47], which commonly assume a set of associ-
ated frames observing an object or part of a scene that can

Figure 1: ODAM overview. Given a posed RGB video,
ODAM estimates oriented 3D bounding volumes of objects
represented by super-quadrics in a scene.

be obtained from the proposed reconstruction system.

Nevertheless, this task of localizing objects and estimat-
ing their extents in 3D using RGB-only videos presents a
number of challenges. First, despite the impressive success
of deep learning methods for 2D object detectors [7, 16, 43],
recent efforts that formulate 3D object mapping as a single-
view 3D detection problem [5, 24, 33] suffer from accu-
racy due to the depth-scale ambiguity in the perspective
projection (as demonstrated empirically in Sec. 4.2). Sec-
ond, unlike estimation of 3D points from multiple 2D ob-
servations that has been studied extensively in SfM and
SLAM [6, 14, 22, 34, 53], there has been little work and
consensus on how to leverage multi-view constraints for 3D
bounding volume location and extent [35, 60]. Specifically,
the representation for 3D volume and how to formulate a
suitable energy function remain open questions. Third, the
crucial problem that needs to be solved prior to multi-view
optimization is the associations of detections of individual
3D object instances from different viewpoints, where un-
like SfM or SLAM incorrect association noticeably biases
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the 3D object localization. However, this problem is under-
explored for cluttered indoor environments, where specific
problems such as having multiple objects with near iden-
tical visual appearance and heavy occlusion (e.g., multiple
chairs closely arranged in a room as can be seen in Fig. 6)
are commonplace. Depth ambiguity and partial observa-
tions complicate the data association problem.

We propose ODAM, a novel framework that incorpo-
rates a deep learning front-end and multi-view optimization
back-end to address 3D object mapping from posed RGB
videos. The advantage of using RGB-only over RGB-D is
significantly less power consumption. We assume the poses
of the images are known; these are readily available with
modern mobile/AR devices. The front-end first detects ob-
jects of interest and predicts each object’s 2D attributes (2D
BB, object class), as well as its 3D BB parameterized by
6 Degree-of-Freedom (DoF) rigid pose and 3 DoF scale
given a single RGB frame as shown in Fig. 2. The primary
use of the 3D attributes for each detection is to facilitate data
association between a new frame and the current global 3D
map. Concretely we develop a graph neural network (GNN)
which takes as inputs the 2D and 3D attributes of the cur-
rent frames detections and matches them to existing object
instances in the map. The front-end of can run 6 fps on av-
erage on a modern GPU on cluttered scenes such as those
in ScanNet [10].

The back-end of ODAM is a multi-view optimization
that optimizes each object’s oriented bounding volume rep-
resented by a super-quadric surface given multiple associ-
ated 2D bounding box (BB) observations. Previous object-
level SLAM frameworks have adopted either cuboids [60]
or ellipsoids [18, 35] as their object representation, but they
are often not a good model for the extent of a generic object
as depicted in Fig. 3. Super-quadric – a unified representa-
tion for shape primitives including cuboids, ellipsoids, and
cylinders – permits blending between cuboids and ellipsoids
(and cylinders) and can therefore provide a tight bound-
ing volume for the multi-view optimization. While super-
quadric has been used to fit point cloud data [39, 40, 49]
or recently parse object shapes from a single image using
a deep network [38], we present the first approach to op-
timize super-quadrics given multiple 2D BB observations
to the best of our knowledge. Besides the representation,
we realize that the 2D BBs given by the object detector are
not error free due to occlusions in cluttered indoor environ-
ments. We incorporate category-conditioned priors in the
optimization objective to improve the robustness.
Contribution. Our contributions are threefold: (1) we
present ODAM, a novel online 3D object-based mapping
system that integrates an deep-learning front-end running
at 6 fps, and a geometry-based back-end. ODAM is the
current best performing 3D detection and mapping RGB-
only systems for complex indoor scenes in ScanNet [10];

(2) we present a novel method for associating single-view
detections to the object-level. Our association employs a
novel attention-based GNN taking as inputs the 2D and
3D attributes of the detections; (3) we identify the limita-
tions of common 3D bounding volume representations used
in multi-view optimization and introduce a super-quadric-
based optimization under object-scale priors which shows
clear improvements over previous methods.

2. Related Work
3D object-based mapping. Approaches to 3D object-
based mapping can be broadly classified into two cate-
gories: learning-based and geometry-based. The first cate-
gory mostly extends existing 2D detectors to also output 3D
bounding box from single images [23, 26, 28, 33, 54, 58].
If a video sequence is available, the single-view 3D esti-
mations can be fused using a filter or a LSTM to create a
consistent mapping of the scene [5, 20, 24]. Yet, the fused
3D detections might not satisfy multi-view geometry con-
straints. While the front-end of our proposed system is in-
spired by these learning-based approaches, we notice that
single-view 3D inference is inaccurate because the inher-
ent scale and depth ambiguity in 2D images and solve this
issue with a back-end multi-view optimization. The sec-
ond category focuses on estimating the bounding volume
of an 3D object given 2D detections from multiple views
in a similar way to the reprojection error used in SfM and
SLAM. [9, 44] estimate the 3D ellipsoid representing the
bounding volume of an object by minimizing the discrep-
ancies between the projected ellipsoid and the detected 2D
bounding boxes. QuadricSLAM [35] represents objects as
dual quadrics to be optimized with a novel geometric error
and extends it to a full SLAM system. CubeSLAM [60]
uses 3D cuboids in the optimization and enforces reprojec-
tion error on the vertices of the 3D cuboids. Our proposed
multi-view optimization uses super-quadric – a representa-
tion subsuming both ellipsoid and cuboid – with the energy
function formulation using joint 2D BBs and a scale prior
constraint.
Object-based mapping with 3D shape estimation. Ex-
tending beyond 3D oriented bounding boxes, several works
focus on estimating dense object shapes via shape embed-
ding [45] or CAD model retrieval [27] given posed RGB
video. RfD-Net [36] explores completing full object shapes
by first detecting 3D bounding boxes followed by a shape
completion network for each detected object from 3D point
cloud. Although these methods estimate high-resolution ob-
ject mapping, they require known 3D shape priors. We do
not assume prior knowledge of CAD models and instead
focus on instance-agnostic pose estimation.
Associating detection across video frames. Associating
object detections of the same 3D object instance across
multiple frames has been studied in different contexts, and



most prominently in the context of Multiple Object Track-
ing (MOT). MOT focuses on tracking dynamic objects
(e.g. cars and pedestrians) and often follows frame-to-frame
paradigm by heavily exploiting the discriminative visual ap-
pearance features of objects [20, 52]. Until the recent end-
to-end tracking approaches [4, 30, 51], most approaches
rely on simple motion continuity priors [11, 31, 57] to
link instances. More closely related to ODAM is Weng et
al. [56] that uses a GNN to learn a matching cost given both
point cloud and RGB images. Our proposed framework
takes as input RGB-only images, and hence solves a more
difficult but ubiquitous problem. Moreover, rather than as-
sociating people or cars with discriminative visual appear-
ance, we focus on indoor static object mapping where we
associate a sets of highly repetitive objects from drastically
different views (e.g. front and back of a chair) in a frame-
to-model fashion. Prior methods working for indoor en-
vironments resort to handcrafted matching by IoU [24] or
SLAM feature point matching [18, 60], whereas we learn
the matching using the GNN.
3D detection from 2.5D and 3D input. There are several
methods for 3D detection using 3D input [42, 48, 61] or sin-
gle RGBD images [8, 50]. Methods for instance segmenta-
tion [17, 19, 59] given 3D input are also able to produce 3D
bounding boxes. Since depth information directly resolves
the scale ambiguity of an observed object, these methods
solve a strictly easier problem.

3. Method

The goal of ODAM is to localize objects and esti-
mate their bounding volume accurately in 3D given posed
RGB-only image sequence. As shown in Fig. 2, given
an RGB frame, the front-end first detects objects and pre-
dicts their 2D and 3D attributes in the camera coordinate
frame (Sec. 3.1). These detections are associated to exist-
ing object instances in the map or become a new object
instance by solving an assignment problem using a GNN
(Sec. 3.2). Given the association from the front-end, our
back-end system optimizes a super-quadric surface presen-
tation of each object from multiple associated 2D BB detec-
tions and category-conditioned object-scale priors from all
associated views. (Sec. 3.3).

3.1. Single-view 2D and 3D Object Detection

ODAM first detects objects of interest given a new RGB
frame. Our detector is a single-view 3D detector that esti-
mates not only 2D attributes – 2D BB and object class – but
also 3D attributes – translation tco, rotation Rco, and 3D
BB dimensions s with respect to the local camera coordi-
nate frame. Specifically, we estimate tco by predicting its
depth and 2D center on the image. Rco is formulated as a
classification on three Euler angles.

3.2. Association of Detections to Object-based Map

Detections from the single-view detector are matched
to existing object instances in the map using an attention-
based GNN as opposed to handcrafted data association al-
gorithms used in prior art [24, 27]. The benefit of using
a GNN for data association is twofold. First, different at-
tributes (e.g. 2D BB, 3D BB, object class) can be taken
as joint input to the network to extract more discriminative
features for matching. Second, instead of only consider-
ing pair-wise relationships in handcrafted data association
methods, the attention mechanism in GNN aggregates in-
formation from other nodes in the graph for more robust
matching. Thus, our GNN can infer the association of an
object detection from the full set of objects in the scene, as
visualized in Fig. 2.

Our association graph is implemented as a GNN where
each node is a feature descriptor comprising of 2D and 3D
information of an object detection and edges connect (1)
among previously associated detections of an object in the
object fusion; (2) a new detection to other detections and
a fused object feature vector to other object feature vectors
for self-attention; (3) a new detection to fused object feature
vectors for cross-attention, as shown in Fig. 2. This graph
predicts a matching between a set of input detection and
existing objects in the map. For every object in the map,
we fuse its descriptors from all associated views using self-
attention GNN layers. These fused descriptors are matched
to the descriptor of the newly detected objects using self-
and cross-attention GNN layers.
Input detection features. The mth new detection at frame
t is represented by a feature descriptor dtm ∈ R16 com-
prising the frame ID, the detected 2D BB, object class, de-
tection score, 6 DoF object pose, and 3 DoF object scale
given by the monocular detector. The nth object instance
is represented by a set of associated detections in previous
frames {dt0n ,dt1n , ...,dtln}, where dtln is a previously asso-
ciated detection of the nth object instance at frame tl. To
facilitate association of the detections in new RGB frame to
the mapped objects, the detected 2D BB and 6 DoF object
pose in dtln are replaced by the projection from the estimated
3D bounding volume to the current frame coordinate.
Object fusion. We first fuse all associated detections of
a mapped object using a self-attention GNN into a single
feature descriptor vector:

on = fd({dt0n ,dt1n , ...,dtln}) , (1)

where fd(·) is the self-attention GNN taking as input a set of
previously associated detections of an object instance, and
on ∈ R256 is the fused feature vector for the object instance
for data association. This step allows information across
observations of the same object from different viewpoints
to be aggregated before matching to the new detection at
the current frame.
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Figure 2: ODAM pipeline. Given a new RGB frame, a single-view detector (Sec. 3.1) detects objects at the current frame. A
GNN takes as inputs the new detections and existing objects in the map to predict the assignment matrix (Sec. 3.2). Concur-
rent with the front-end of the system (i.e. detection and association), the location and extent of each object are represented by
a super-quadric, which is optimized using the associated 2D BBs and category-conditioned scale prior (Sec. 3.3).

Frame-to-model association. After the fusion step, the
frame-to-model data association becomes a bipartite match-
ing problem, where the two disjoint subsets are the fused
vectors of m existing objects and n new detections at the
current frame t respectively. This matching problem is
solved by the second part of the GNN, which contains a
stack of alternating self-attention layers aggregating infor-
mation within the subset and cross-attention layers aggre-
gating information from the other subset. The assignment
matrixM ∈ Rm×n is computed as:

M = fm({o0,o1, ...,om}, {dt0,dt1, ...,dtn}) , (2)

where fm(·) is second part of the GNN taking as input ob-
jects’ fused vectors on and new detections dt. Please refer
to Sec. 3.4 and the supplementary material for more net-
work and training details.

3.3. Multi-view Optimization

Instead of relying on a single-view 3D detector to solve
the ill-posed monocular 3D detection problem, we propose
a multi-view optimization for accurate 3D object mapping
given multiple associated 2D BBs obtained from the pre-
vious step (Sec. 3.2). The key to the optimization is rep-
resenting a bounding volume via a super-quadric with the
realization that both ellipsoid and cuboid used in prior art
are only suitable to a subset of object shapes. Specifically,
given multiple 2D BBs, the estimated 3D bounding volume
is a convex set bounded by the intersection region of all
frustums. As the number of viewpoints increases, the con-
vex set converges to the convex hull (i.e. the tightest con-
vex set of the object shape). However, neither ellipsoid or

cuboid is flexible enough to approximate the convex hull for
generic objects. For instance, while an ellipsoid is suitable
for round objects, it introduces inherent inconsistency when
representing a box-like object as shown in Fig. 3. Super-
quadric alleviates this issue by using the best fitted shape
primitive in the family. Although dense object shape repre-
sentations (e.g. shape codes [37], or CAD models [27] do
not suffer from the inconsistency in projection, they require
knowledge of instance-level object shape.
Super-quadric formulation. We represent an object’s
bounding volume in 3D by a super-quadric. The canonical
implicit function of a super-quadric surface has the follow-
ing form [3]:

f(x) =

((
x

α1

) 2
ε2

+

(
y

α2

) 2
ε2

) ε2
ε1

+

(
z

α3

) 2
ε1

, (3)

where x = [x, y, z] is a 3D point,α = [α1, α2, α3] controls
the scale on three axes (i.e. the object’s 3D dimensions),
and ε1, and ε2 decide the global shape curvature. The shape
transition from an ellipsoid to a cube controlled by ε1, and
ε2 is visualized at Fig. 4.

A point x on the surface of a super-quadric can be trans-
formed from the canonical coordinate to the world coordi-
nate by a 6 DoF rigid body transformation matrix Two ∈
SE(3). Thus, a super-quadric in the world coordinate is pa-
rameterized by θ ∈ R11, comprising of Two (6 DoF to rep-
resent the rigid body transformation), and the 5 parameters
of the super-quadric α and ε1, ε2.
Optimization objective. The detected 2D BBs are in-
evitably inaccurate and noisy. While existing methods us-
ing multi-view constraints for 3D object mapping [18, 27,
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Figure 4: Super-quadric visualization. Dif-
ferent ε1,2 values include cuboids, ellip-
soids, and cylinders (figure credit [1]).

35, 60] only consider the reprojection error, we observe
that prior knowledge on the object’s 3D scale can improve
the robustness of the estimation. To incorporate the prior
knowledge about object scale, we formulate object-based
mapping as Maximum a Posterior (MAP) estimation of
each object’s super-quadric parameters θ. With the re-
projection likelihood P (bi|θ) and the category-conditioned
scale prior P (θ) the MAP problem is:

argmax
θ

P (θ|B) = argmax
θ

P (θ)
∏
i

P (bi|θ) , (4)

where B = {b0, ..., bN} is a set of N associated 2D de-
tected BBs. bi is the detected 2D BB at frame i described
by its four corner points [xmin, xmax, ymin, ymax]. Assum-
ing zero-mean Gaussian noise on the 2D BB detection cor-
ners, the reprojection likelihood is

P (bi|θ) = N (bi|b̂i, σ2) , (5)

where σ is the assumed image noise and b̂i is the super-
quadric’s projection. It is computed as:

b̂i = Box(π(TcwTwoXo)) (6)
Box(X) = [min

x
X,max

x
X,min

y
X,max

y
X] . (7)

The transformation TcwTwo brings sampled surface points
of the super-quadric in canonical coordinates, Xo =
S(α, ε1, ε2), into camera coordinates before projecting
them into the image using the perspective projection func-
tion π. We obtain Xo using the equal-distance sampling
techniques of super-quadrics [41]. We model the prior ob-
ject scale distribution of each object category as P (θ) =
N (α|µ0,Σ0) using a multi-variate Gaussian distribution.
Ideally this prior would capture the uncertainty of the av-
eraged detector-predicted 3D BB µ0 for proper Bayesian

MAP estimation. While there are ways to train CNNs to
produce uncertainty estimates [21], we found that we can
simply use the variance Σ0 of the scale distribution of each
object category in Scan2CAD [2] as a proxy. Intuitively,
since the detector is trained on this distribution, Σ0 is a
conservative upper-bound on the variance—a well trained
3D BB detector should do significantly better.

3.4. Implementation

Detector training. Our detector is built upon DETR [7], a
state-of-the-art 2D object detector that predicts objects as a
set without post-processing. We add three additional heads
to DETR, each of which comprises three 512-dimension
fully-connected layers, for object depth, 3D dimensions, 3D
BB orientation respectively. We fine-tune our detector from
the pre-trained network weights on MSCOCO dataset [25]
for 10 epochs using ScanNet images and Scan2CAD anno-
tations. Although we use DETR in this work, other detec-
tors such as MaskRCNN [16] can also be adopted.
Graph neural network details. A 3-layer MLP encoder
is used to map the input to a 256D feature vector. The de-
tection fusion block contains four self-attention layers pro-
ducing 256D fused features. The matching network for
the fused features and frame detections is similar to Su-
perGlue [46] except we use six alternating cross- and self-
attention layers.
Optimization details. All parameters of the super-quadrics
except ε1,2 which are initialized to 1, are initialized using
the average of associated single-view 3D prediction. We
sample 1000 points on the super-quadric surface for the op-
timization and found an assumed image variance of the 2D
BB detector of σ2 = 20 worked well. We use the Adam op-
timizer in Pytorch to optimize the logarithm of the posterior
in Eq. (4) for 20 iterations for every 50 associated 2D obser-



Prec./Rec./F1
IoU> 0.25

bathtub bookshelf cabinet chair display sofa table trashbin avg.

Vid2CAD [27] 45.5/30.0/36.1 18.0/12.7/14.9 46.3/34.6/39.6 70.1/78.6/74.1 44.1/42.8/43.5 40.8/45.1/42.8 46.6/50/2/48.3 60.2/37.9/46.5 56.1/54.5/55.2
MOLTR [24] 67.5/41.6/51.5 42.8/21.3/28.4 62.7/22.8/33.5 58.7/77.4/68.6 17.7/34.5/23.4 69.4/52.2/59.5 63.5/57.4/60.3 49.0/42.6/45.6 54.2/55.8/55.0
ODAM (ours) 58.6/34.2/43.2 52.0/25.1/33.7 63.0/26.4/37.2 68.3/78.7/73.1 37.5/37.5/37.5 75.9/53.1/62.5 65.5/58.9/62.0 67.8/60.8/64.1 64.7/58.6/61.5

IoU> 0.5
Vid2CAD [27] 2.5/1.6/2.0 0.0/0.0/0.0 7.7/5.7/6.6 29.2/32.8/30.9 0.0/0.0/0.0 0.8/0.8/0.8 6.7/7.2/6.9 23.2/14.6/17.9 16.8/16.3/16.5
MOLTR [24] 10.3/6.6/8.1 8.6/4.7/6.1 19.6/8.1/11.5 20.0/28.4/23.5 1.8/4.1/2.5 20.0/15.9/17.7 12.1/11.7/11.9 13.0/12.9/12.9 15.2/17.1/16.0
ODAM (ours) 14.3/8.3/10.5 11.5/5.7/7.6 25.9/10.9/15.3 39.0/44.8/41.7 7.7/7.7/7.7 39.2/27.4/32.3 26.0/23.3/24.6 31.6/28.0/29.5 31.2/28.3/29.7

Table 1: Quantitative ScanNet evaluation. ODAM outperforms MOLTR [24] and Vid2CAD [27] in four classes at IoU> 0.25
and all classes at IoU> 0.5 respectively.

vations followed by a final optimization for 200 iterations at
the end of the sequence.

4. Experiments
We evaluate the performance of our object-based map-

ping using the precision and recall metrics on ScanNet [10]
and Scan2CAD [2]. Because the original annotations do
not provide amodal 3D BBs, following prior art [24, 27],
we use the amodal 3D BB annotations from Scan2CAD
as ground-truth. The precision is defined as the percent-
age of estimated super-quadrics being close enough to an
annotated ground-truth 3D BB. The recall is the percent-
age of ground-truth 3D BBs that are covered by an esti-
mated super-quadric. Specifically, a super-quadric is con-
sidered a true positive if the Intersection-over-Union (IoU)
between its minimum enclosing 3D oriented 3D BB and a
ground-truth BB in the same object class is above a pre-
defined threshold. We use 0.25 and 0.5 in our experiments.
A ground-truth BB can only be matched once to penalize
repeated objects. Note that we do not use mean Average
Precision (mAP) which is typically used for the object de-
tection because the proposed system outputs an unordered
set of 3D bounding volumes without confidence scores.

4.1. Comparing with RGB-only Methods

We compare ODAM against two previous posed RGB
videos methods, Vid2CAD [27] and MOLTR [24], on Scan-
Net. These methods use are handcrafted data associa-
tion (3D GIoU in MOLTR and Vid2CAD uses a combina-
tion of 2D IoU and visual appearance). MOLTR does not
use multi-view geometry but fuses monocular 3D predic-
tions via a filter in 3D, and the multi-view optimization in
Vid2CAD lacks the scale prior in ours to alleviate the effect
of inaccurate 2D observations. In contrast, we use attention-
based GNN for association, followed by multi-view opti-
mization. Tab. 1 shows precision, recall, and F1 score com-
parison per class at IoU thresholds of 0.25 and 0.5. Overall,
ODAM outperforms Vid2CAD and MOLTR by about 6%
at IoU > 0.25, and about 14% at IoU > 0.5. As shown
in Fig. 6, we can see duplicated objects in MOLTR and
Vid2CAD due to failure in data association. Notably, our
multi-view optimization estimates accurate oriented bound-

Methods Components matching
GNN monocular 3D F2M association accuracy

Baselines
3 3 7 0.86
3 7 3 0.84
7 3 3 0.85

ODAM (ours) 3 3 3 0.88

Table 2: Ablation study on the learned data-association
component of ODAM. The full model using GNN, monoc-
ular 3D detection, and frame-to-model (F2M) association
achieves the best result.

ing volumes of large objects (e.g. tables), wheres MOLTR
and Vid2CAD often produce misaligned results.

4.2. Ablation study

We validate the design choices in all key parts of ODAM
using three ablation studies.
Data association. The key aspects we consider in this ab-
lation study are: (1) GNN vs. handcrafted pairwise cost,
(2) the effect of single-view 3D attribute estimation vs. 2D
only attribute in data association, (3) frame-to-model asso-
ciation vs. frame-to-frame association. When the GNN is
not used, we use 3D BB IoU as the matching cost following
Li et al. [24]. To validate the importance of the detection fu-
sion block in the GNN (i.e. frame-to-model association), we
compare it against a baseline GNN which only takes as in-
put the latest observation of existing object instances, which
can be considered as a frame-to-frame association. Besides
the final 3D mapping result, we also use the matching ac-
curacy as a direct measurement for the data association al-
gorithms. Tab. 2 shows all three key components contribute
to the performance gain. Fig. 5 visualizes how the attention
scores change across different layers in the GNN.
Shape representation. Tab. 3 shows that optimizing
with the super-quadric representation performs better than
cuboid and ellipsoid by 2.5% and 9%, respectively. Cuboid
outperforms ellipsoid because a considerable amount of ob-
jects are cuboid-like in the evaluated object classes. Further
qualitative comparisons can be found in the supplement.
Optimization. Tab. 3 shows the effect of the back-end
multi-view optimization and the scale prior terms in the
objective function. The “no optimization” results are ob-
tained by taking the average of associated monocular 3D
predictions without any multi-view optimization and have



Cross-atten. layer 0 Cross-atten. layer 1 Cross-atten. layer 2 Cross-atten. layer 3Frame detection & model objects

Figure 5: Visualization of GNN attention. The cross-attention scores of the 3D detection from the current frame detection
(green) and model objects (red) are shown across various layers. Higher attention scores correspond to more opaque red BBs.
The spread of the cross-attention shrinks and focuses on the correct assignment in deeper layers of the GNN.

Switched component Result (Prec./Rec./F1)

Shape representation ellipsoid 21.9/19.6/20.7
3D cuboid 28.5/26.1/27.2

Optimization no optimization 25.2/22.8/23.9
wo/ scale prior 22.9/21.3/22.1

ODAM (ours) 31.2/28.3/29.7

Table 3: Ablation study on different shape representations
and the multi-view optimization. The combination of super-
quadric representation and scale-prior in the multi-view op-
timization leads to the best performance.

the worst in the group. This indicates that single-view
3D detector alone is not sufficient for object-based map-
ping. Using only 2D bounding box observations for the
multi-view optimization is also suboptimal, giving a minor
1.8% deterioration. Our full approach (using 2D bbox and
prior jointly) outperforms the “no optimization” baseline by
5.8%. To better demonstrate how the errors in 2D BBs af-
fect the optimization, we show how the performance gap
between optimization w/ and wo/ the prior term changes as
the errors in the 2D BBs increase in the supplement.

4.3. Comparing with RGB-D methods

This comparison is to identify the current gap between
RGB and RGB-D methods. We compare to VoteNet [42],
a state-of-the-art 3D object detection network using colored
point clouds. Compared to RGB-only, the additional depth
information, which is fused into a point cloud before 3D
object detection, significantly simplifies the task. The 3D
structure is explicitly represented and becomes an input to
the 3D object-detection system and does not have to be in-
ferred by the system. Yet the RGB-only methods are valu-
able because depth sensors consume additional power and
most consumer-grade devices have limited range.

We train our detector and the GNN using the original
ScanNet annotations to be consistent with VoteNet. We se-
lect the score threshold in VoteNet that leads to the best F1
score. As shown in Tab. 4, we achieve comparable or even

superior performance to VoteNet in some object classes
(e.g. bed, table, desk, fridge, toilet, and bath). This is be-
cause these objects are normally arranged distantly to other
object instances in the same class, making the data associ-
ation easier. On the other hand, our method struggles with
thin objects, such as door, window, picture, and curtain, be-
cause a small localization error results in a significant drop
in 3D IoU leading to worse F1 score.

4.4. Run-time analysis

All experiments are run on a Nvidia GeForce GTX 1070
GPU. The monocular detector can run at about 10 fps. Al-
though the inference time of the GNN grows linearly with
the number of objects in the map, the GNN runs at 15 fps
on average in all ScanNet validation sequences. Overall,
the front-end of ODAM can achieve around 6 fps. A naive
back-end optimization using the Pytorch Adam optimizer
takes 0.2 seconds for 20 iterations. This back-end optimiza-
tion is not time critical and can be run in a parallel thread.
It could also be accelerated significantly using second order
methods such as implemented in GTSAM [12].

5. Conclusion

We presented ODAM, a system to localize and infer 3D
oriented bounding volumes of objects given posed RGB-
only videos. Key to ODAM is (1) an attention-based
GNN for robust detection-to-map data association, and (2)
a super-quadric-based multi-view optimization for accurate
object bounding volume estimation from the associated 2D
BB and class observations. ODAM is the best performing
RGB-only method for object-based mapping. The fact that
the proposed RGB-only methods can close the accuracy gap
to RGB-D methods in a subset of object categories is en-
couraging and points to a future where depth cameras are
unnecessary for 3D scene understanding.
Acknowledgment KL and IR gratefully acknowledge the
support of the ARC through the Centre of Excellence for
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Figure 6: Qualitative comparison on ScanNet sequences. The colors of 3D BBs denote different categories. Both Vid2CAD
and MOLTR suffer from replicated objects due to data association failure. 3D bounding boxes from our method are closer to
ground-truth boxes thanks to our robust multi-view optimization.
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VoteNet [42] 40.9 88.1 85.2 79.8 60.0 53.0 40.7 50.0 12.5 52.3 62.2 50.0 47.4 50.5 90.7 53.9 91.5
ODAM (ours) 22.1 87.7 74.9 61.8 65.6 12.5 12.8 40.5 7.4 9.3 65.0 13.1 48.7 41.2 93.1 64.8 83.3

Table 4: Comparison to VoteNet [42]. VoteNet relies on colored 3D point cloud which greatly simplifies 3D object localiza-
tion. ODAM performs similarly in most categories but struggles with thin objects such as door, window and curtain.
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