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Abstract

Since 2014 transfer learning has become the key driver
for the improvement of spatial saliency prediction—however,
with stagnant progress in the last 3-5 years. We conduct a
large-scale transfer learning study which tests different Ima-
geNet backbones, always using the same read out architec-
ture and learning protocol adopted from DeepGaze II. By re-
placing the VGG19 backbone of DeepGaze II with ResNet50
features we improve the performance on saliency prediction
from 78% to 85%. However, as we continue to test better Im-
ageNet models as backbones—such as EfficientNetB5—we
observe no additional improvement on saliency prediction.
By analyzing the backbones further, we find that generaliza-
tion to other datasets differs substantially, with models being
consistently overconfident in their fixation predictions. We
show that by combining multiple backbones in a principled
manner a good confidence calibration on unseen datasets
can be achieved. This new model “DeepGaze IIE” yields
a significant leap in benchmark performance in and out-of-
domain with a 15 percent point improvement over DeepGaze
II to 93% on MIT1003, marking a new state of the art on the
MIT/Tuebingen Saliency Benchmark in all available metrics
(AUC: 88.3%, sAUC: 79.4%, CC: 82.4%).

1. Introduction
Saliency detection is involved in many sensory modalities.

It summarizes the associated mechanisms as the ability of
humans and animals to allocate their attention to the most
important subsets of the data. In vision, this means attending
to the elements of a visual input that stand out from their
neighbouring regions, and visual saliency is usually opera-

* indicates joint first authorship

tionalized by measuring fixations locations. Accordingly, in
computer vision, saliency prediction currently refers to either
predicting fixation locations or detecting salient objects.

Early on, researchers found out that the locations of fix-
ations are statistically influenced by features of the visual
stimuli that include both high-level properties such as people
[41] and low-level ones such as spatial contrast [33]. Soon
after the Feature Integration Theory emerged [38], Koch
and Ullmann outlined a computational mechanism to model
attention [21] which was implemented thirteen years later
by Itti et al [15].

The Itti-Koch model was the first to predict a saliency map
from any arbitrary image without the need to precompute
elementary features allowing for a wide range of applications.
This paved the way for many interesting saliency prediction
models [2, 20, 42] leading up to the present day where deep
learning models are dominating the field [39, 25, 28, 32, 16,
23] driven by large scale saliency datasets [19, 17, 1]. As
the saliency domain has substantially less data compared to
some of the more prominent computer vision tasks, transfer
learning has become the key driver for the improvement of
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Figure 1. By leveraging the diversity of different backbones, our
new saliency model DeepGaze IIE very is able to predict human
fixation locations very accurately.



spatial saliency prediction. One of the earliest works on
transfer learning for deep learning is DeCAF [6], where the
authors used features extracted by a deep CNN that was
trained on object recognition, leveraging a large dataset to
tackle generic tasks that lacked labeled data. Following this
transfer learning scheme, they outperformed the state-of-the-
art on various vision challenges. Inspired by the huge success
of deep convolutional models in the domain of classification
and particularly the ImageNet benchmark [5], DeepGaze I
[25] was the first to transfer ImageNet learned features to the
domain of saliency. Since then all high-performing saliency
models use ImageNet as pretext task.

To this day, the problem of spatial saliency is far from
solved and the simple case of the MIT300 benchmark [18]
illustrates a substantial gap between existing models and
the lower bound on the explainable information (e.g., IG
of 0.951 vs 1.317 and sAUC of 0.784 vs 0.823). In 2014,
the introduction of deep learning and transfer learning in
particular, ushered a new era for saliency prediction after
several years of stagnating performance. Similarly, there has
been only gradual progress in the recent 3-5 years, notwith-
standing the significant amount of models proposed during
that time (Figure 2). From a machine learning point of view,
the task of saliency prediction is conceptually interesting
as it requires well-calibrated probabilistic predictions that
are less critical in the much more common setting of highly
deterministic classification problems.

In this work, we significantly improve spatial saliency
modeling by studying how to achieve well-calibrated proba-
bilistic predictions. Beyond proposing a new state-of-the-art
model, we make a systematic analysis of the extent to which
higher ImageNet performance leads to higher performance
in the saliency domain. Specifically, we utilize a broad range
of models that have achieved state of the art on ImageNet as
fixed feature backbones for the saliency prediction task, us-
ing a pointwise nonlinear read out following the DeepGaze
II architecture and learning schedule as described in [28].
Additionally, we study the complementarity between these
models and leverage it by conducting an ensemble learning
approach which ends up yielding a new state of the art, clos-
ing the gap between models and inter-observer consistency
in all metrics.

To gain additional insights into the differences between
the backbones, we study the confidence calibration of the
models based on them. Confidence calibration is especially
relevant when applying models in out-of-domain contexts
where we would expect a good model to realize the domain
shift and decrease its confidence accordingly [31]. Many
established confidence calibration measures [9] are not appli-
cable in situations of very high stochasticity such as fixation
prediction, therefore we propose a new method for testing
confidence calibration which can be applied on datasets with
high entropy. Instead of being well calibrated or conserva-

tively underconfident, we find that most individual models
are highly overconfident on out-of-domain data, while our
ensemble models show much better confidence calibration,
which makes them more trustworthy on unseen datasets.

2. Related Work
Classic models have relied on hand engineered features

to tackle saliency prediction [15, 37, 2, 20, 42]. Saliency
prediction has since then moved on to deep learning models,
the first of which was eDN [39]. However one major hurdle
when tackling saliency prediction with deep learning models
is the small size of available data, stemming from the fact
that collecting fixation data is both time-consuming and ex-
pensive. On top of that, the true saliency of an image is liable
to shift when transformations are applied on it, severely lim-
iting potential augmentations [4]. The first work that applied
transfer learning to the saliency domain was DeepGaze I
[25] which has since then evolved to DeepGaze II that was
built on VGG19 [28]. After DeepGaze I virtually every high-
performing saliency model used transfer learning, usually
based on ImageNet. Among the works that have focused
on a principled transfer learning scheme for saliency pre-
diction in the past was [14], which trained a saliency model
on deep features from three CNNs (AlexNet, GoogleNet,
and VGG16), combining low and high level pre-trained fea-
tures, with a support vector machine on top and DeepFeat
[30] where the authors used a fixed architecture on top of
three pretrained CNN’s features (ResNet, VGG, GoogleNet)
to predict saliency. The EML-NET[16] model introduced
a scalable method to combine multiple deep convolutional
networks of any complexity as encoders for features relevant
to visual saliency.

Other models engineered complex deep architectures or
build upon existing ones that have shown merit in other
tasks, but all of them used transfer learning by pretraining
their architectures with larger datasets as a starting point.
SalGAN [32] and GazeGAN [4] both used adversarial losses
to train their saliency prediction models, which in the first
case consist of an encoder-decoder architecture while the
second one built on a U-net structure. The MSI-NET[23]
tackled the task by integrating global scene information in
its encoder-decoder architecture. UNISAL unified the image
and video modalities of saliency to harness the entirety of
saliency prediction datasets [7].

Arguably, DeepFeat [30] and EML-NET [16] are the two
works closest related to our own so contrasting with them
makes it easier to highlight the finer shades of contribution
in our work. DeepFeat uses a fixed linear readout on top
of the pretrained features, whereas we fine tune a readout
network that consists of 1×1 convolutions following the
DeepGaze II paradigm [28]. Features extracted by multilayer
convolutional networks don’t have a well defined scale due
to many possible transformations, deeming the usage of a
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Figure 2. A visualization of progress in saliency prediction over the last 15 years. The displayed dates correspond to the earliest date we
found the models available, and usually reflect their first date the model was tested or the date of publication (whichever came first). The
AUC corresponds to MIT300 evaluation at the MIT/Tuebingen saliency benchmark [24]. For readability purposes we limited the scale of the
plot to models whose AUC score is above 0.75. The gray line indicates state-of-the-art performance with respect to the models listed in the
MIT/Tuebingen Saliency Benchmark. We could not include models which are only evaluated on the predecessor benchmark saliency.mit.edu
since the evaluation changed slightly, resulting in different model scores.

rigid linear readout too constrained for this type of input.
In contrast, a readout network of 1×1 convolutions is able
to learn nonlinear transformations adjusting the scale of
the input features and leverage interactions between those
features. The small kernel size means that the network is
unable to learn new spatial features but rather combines the
ones given as input, making it an ideal tool for comparing
the feature predictivity between different backbones for any
given task. Aside from this major difference, we also conduct
a series of studies that reveal how different models perform
differently and combine their fixation densities to leverage
their complementarity.

EML-NET aimed at maximal prediction performance,
but we aim at understanding how much relevant information
about fixation placement is encoded in deep features. To that
end, we compare not only two but a large number of relevant
ImageNet trained models. EML-NET is training each CNN
model at the encoder stage while we keep ours fixed, which
not only is less costly but also a much stronger scientific
tool for studying the generalizeability of ImageNet trained
features. Added to that, EML-NET combines these models
at the encoder stage for a more broad prior knowledge, while

in our case we study each model separately, delineating their
individual contribution and later combine their predicted
densities instead.

Finally, compared to either of these works, we use a
much broader array of state of the art ImageNet CNNs as
backbones to our architectures and we train an agglomeration
of each model configuration, accounting for the uncertainty
in our metrics.

3. Methods
3.1. Model and Training Pipeline

The overall pipeline is visualized in Figure 3, where the
final model is derived from the combination of multiple
backbones after a series of principled analyses steps. An im-
age is first processed with a backbone CNN to extract deep
activations, which are subsequently processed in a readout
network of 1 × 1 convolutions. The single output channel
of the readout network is blurred, combined with a center-
bias and fed through a softmax to yield a two-dimensional
fixation distribution (Figure 3a). Essentially, this is an adap-
tation of the architecture of DeepGaze II [28] with a deeper
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Figure 3. A diagram of our adapted DeepGaze II architecture as was used in all our experiments, as well as our best performing variant,
DeepGaze IIE. (a) testing backbones: we collect some layers from CNNs pretrained on ImageNet without any additional training. We apply
a readout network on these layers that consists of blocks of 1×1 convolutions, a layernorm and a softplus function. Afterwards, a blur and a
center bias prior are applied before a softmax that gives us the final probability density of fixations. (b) The ensemble model DeepGaze IIE:
we combine some of the state of the art ImageNet backbones, leveraging inter- and intra- model complementarity which is analyzed in
section 4.2. Confidence Calibration is used as an analytical tool to better understand why these models perform best.

readout network, layer norm and softplus instead of ReLUs
as activation function, and, most notably, with different back-
bones instead of the original VGG19 network. The readout
network, along with the blur size and the centerbias weight
are the only parts of the pipeline that undergo training. The
feature extractor’s weights are kept fixed during this process.
Since our model predicts a fixation density, we have direct
access to the likelihood of fixations and therefore we opti-
mize our model for maximum likelihood. We first pretrain
our model on the SALICON dataset [17] and then finetune
it on the MIT1003 dataset [19]. SALICON includes 10,000
images whose ground truth was collected using mouse traces
as indicated by observers rather than a gaze detector. Al-
beit this seems to sacrifice precision, SALICON makes a
good starting point as it has been proven to be very useful
for pretraining saliency models. MIT1003 is composed of
1003 natural images tested on 15 subjects (with a presen-
tation time of 3 seconds). The dataset contains images of
various dimensions which we resized to either 1024×786 or
768×1024. Images were downsampled by a factor of 1.5 for
SALICON and 2.0 for MIT1003/MIT300. We use a learning
rate scheduler starting with an initial learning rate of 0.001
which then decays by a factor of 10 every set number of
epochs.

We evaluate each configuration of our model following a
10-fold cross validation scheme on the MIT1003 dataset. In
simple terms, given an MIT1003 image there is exactly one
out of the ten models from this procedure that did neither
see this image during training nor for validation in hyper-
parameter tuning, so that its predicted density is suitable
for evaluation. Thus all reported metrics reflect test perfor-
mance.

3.2. Metrics

As our main guide during our experiments, we used the
Information Gain metric [26], which is effectively the differ-

ence in average log-likelihood of the model and a baseline
model. Therefore, the metric measures the extent by which a
model’s knowledge has surpassed that of the baseline model.
Since it’s known that human fixations tend to accumulate
towards the center of an image, we use an image-invariant
center bias as baseline model.

For a model which predicts a fixation density p(x | I)
over possible fixation locations x given an image I , the
information gain is computed as

IG(model) =
1

N

N∑

i

log2 pmodel(xi | Ii)−log2 pbaseline(xi),

where xi is the ith fixation of the dataset, taking place in
image Ii.

We consider Information Gain the most principled metric
[26] and thus mostly rely on it, but we evaluate on other
commonly used saliency metrics later on. These include
AUC, shuffled AUC, KL divergence, Correlation Coefficient,
and Normalized Scanpath Saliency [3]. Saliency metrics
are known to be quite inconsistent when evaluated on the
same saliency map [3]. However, it has recently been shown
that this problem can be mitigated for probabilistic mod-
els by evaluating each metric on the saliency maps which
has highest expected performance under the fixation density
predicted by the model [27].

3.3. Testing Confidence Calibration

One key feature of saliency models is that they predict
probabilistic fixation distributions rather than deterministic
classes. This means that our models predict not only qual-
itatively which regions they expect to be fixated, but also
quantitatively how much more often they expect a certain
salient region to be fixated than any other given region. By
comparing this to the actual numbers of fixations in the low-
density and high-density regions, we can check how well
calibrated the model confidence is—i.e. whether it makes
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Figure 4. Saliency prediction performance compared to ImageNet accuracy of model backbones. (a) Every violin plot is a representation of
the performance distribution of 20 instances that share the same configuration and differ only in the initialization seed of their training. The
red dashed line (DeepGaze IIE) indicates the performance of the best model we present in this paper (93%), which averages multiple instances
of models with different backbones. The black dashed line (Gold standard = 100%) shows an estimate of the achievable performance by the
means of a nonparametric Gaussian KDE model of the fixations. The gray dashed line indicates the performance of the existing DeepGaze II
model (78%). (b): Same on the SALICON validation dataset (using the models after the pretraining phase on SALICON). (c) and (d) We
evaluate all models of (a) without retraining on the PASCAL-S dataset and the Toronto dataset.

overconfident or underconfident predictions. Confidence
calibration has been tested before for deep neural networks
on classification tasks like ImageNet [9], and it is known
that deep neural networks have a tendency to make overcon-
fident predictions on IID data and even more so on OOD
data [12, 31, 11]. Ensembles trained on different augmenta-
tion techniques can mitigate this overconfidence to a certain
degree [35, 31].

Confidence calibration of classification models is usually
tested using the Expected Calibration error, which compares
a model’s accuracy to its average confidence. If a model is
perfectly calibrated, its average confidence matches its accu-
racy. Fixation prediction can be seen as a high-dimensional
classification task where each image pixel constitutes a dif-
ferent class. However, on ImageNet or similar classification
tasks, usually only one or very few classes contain most of
the probability mass, whereas, in fixation prediction, stochas-
ticity is much higher such that even the most salient pixels
have relatively low probability and differences between all
pixels are relatively subtle. While this stochasticity makes
confidence calibration even more important, accuracy will
always be very low and is therefore impractical to be used
for an empirical test of calibration. Instead, here we propose
an approach which is more suited towards settings with high
entropy. First, we sort the pixels of a predicted fixation den-
sity by probability and then split them into multiple bins,
each of identical probability mass. For example, in Figure
1, the model prediction is split by contour lines into four
areas of decreasing size (yellow via green to blue), each of
which accumulates 25% of predicted fixation probability.
After segmenting the predicted fixation density, we count
the empirically measured fixations in each area. If the model
is well calibrated, each area should receive the same number
of fixations. If the model is overconfident, it would assign
a high probability to a region that would receive less than

expected fixations, while other regions would receive more
than expected fixations. By averaging the number of fixa-
tions for each probability quantile, i.e., area, over the full
dataset, we can summarize the confidence calibration in a
histogram.

4. Experiments and Results

4.1. Transferring ImageNet Features to Saliency in
a Principled Way

Our set-up is outlined as follows: first we obtain an archi-
tecture trained on ImageNet classification and train a readout
network that takes as input a certain number of deep lay-
ers whose total number of channels are approximately 2048
(see below for details on the layer selection strategy). These
layers are either convolutional or activation layers (ReLU).
We use the following networks as backbones for our readout
network: AlexNet [22], VGG11 and VGG19 [34], ResNet50
and ResNet101 [10], ShapeNet [8], EfficientNet-B5 [36] and
DenseNet [13]. Note that regarding ShapeNet, there are 3
configurations regarding how the model was trained, and we
choose the one trained on ImageNet and Stylized-ImageNet,
then fine tuned on ImageNet. We will be referring to it as
ShapeNet-C.

4.1.1 Selecting Layers From the Backbone

For each network, we conduct two sets of experiments: first
we deduce which extracted layers are leading to the best
performance (layer search stage), then repeat multiple ini-
tializations of the exact same configuration to gain a robust
metric of final performance (instance search stage). Our
preliminary results showed that fluctuations appear even be-
tween different instances of the same layer configuration
and are of the same magnitude as fluctuations between the



top 5 performing layer configurations, indicating that an ex-
tensive layer search has marginal value. Thus, we test 10
possible configurations during layer search followed by a
training of 20 instances from the top configuration. Given
that there appear to be notable fluctuations even between dif-
ferent instances of the same pipeline, evaluating information
gain across 20 instances gives us a more robust picture of a
model’s true performance and an estimate of its epistemic
uncertainty.

In general, we find that using approximately 3-4 layers
from the ultimate and penultimate layer spaces is ideal while
using a single layer consistently results in highly suboptimal
performance.

4.1.2 ImageNet accuracy as an indicator of saliency
prediction performance

In Figure 4a we show the prediction performances of each
backbone on the MIT1003 dataset. For each backbone we
show the performance distribution of the 20 trained instances.
Our results show that ImageNet performance transfers lin-
early to saliency up until it reaches a plateau. Specifically, we
see a big leap in saliency performance starting from AlexNet
and leading up to ResNet-50 which then slows down until it
peaks at DenseNet-201, dropping off afterwards. This trend
is also visible in all other commonly used saliency metrics
(Supplementary Material, Table 1)

4.2. Investigating Model Complementarity

When two distinct models perform almost as well on a
dataset, there are two potential assumptions: One, that they
are learning the exact same pieces of information and thus
achieve similar performance, likely one of them doing it in
a slightly better way. Two, the models are doing equally
well on the whole dataset but might be achieving that by
encoding different and potentially complementary pieces of
information.

4.2.1 Mixtures of Fixation Densities

In additional experiments we found substantial variances in
per-image performance both for models with different back-
bones and for model instances using the same backbone but
different random seeds (see Supplementary Material). This
suggests that not only the different backbones but also the
different instances of the models using the same backbones
in our experiments encode different information. This find-
ing motivated us to leverage the apparent complementarity
of the information our models encode in terms of inter-model
complementarity (different backbones) and intra-model com-
plementarity (different instances within the same model).
We average the predicted fixation densities in a pairwise
manner across some of our probabilistic models, varying
the weights of each predicted density. After conducting this

experiment in several pairwise combinations, we find that we
consistently get an improvement in performance that peaks
when the two models have equal weights (Supplementary
Material, Figure 3).

We sought to leverage inter-model complementarity by
combining all of our top performing models in a pair-
wise manner, then triple-wise and finally a quadruple-
wise mixture of ShapeNet-C, EfficientNet-B5, ResNext-50,
DenseNet-201 (weights being equal in all cases). Model per-
formances consistently improve when adding models until
the quadruple mixture achieves top performance (Table 1).
Adding ResNet-50 for a total of 5 model mixture decreases
performance and therefore we stop at four backbones.

As even within the same backbone, there is a significant
variance in per sample performance, we exploit not only
inter-model complementarity but also intra-model comple-
mentarity. To do that we keep the 4 backbones we found to
be best and for each of them average several instances, effec-
tively averaging for 4 models × 2 instances, then 4 models
× 3 instances etc leading up to 5 instances per model for a
total mixture of 20 instances. The split does not change each
model’s impact on the total average, but rather makes it so
each model has a more educated decision by averaging over
a greater number of its instances. Leveraging intra-model
complementarity, we achieve further boost in performance
that saturated at 3 instances per model with a final informa-
tion gain score of 1.1329 bit/fixation compared to 1.1285
bit/fixation for only one instance per model (Table 2). This
best performing model DSREx3 will be called “DeepGaze
IIE” in the following (“E” for “ensemble”). In the Sup-
plement, Figure 4, we visualize example predictions of the
different models.

4.2.2 Generalization Performance

In Figure 4c and d, we show how well the models with dif-
ferent backbones generalize to the PASCAL-S dataset [29]
and the Toronto dataset [2]. It can be seen that not all back-
bones generalize similarly well. While VGG, DenseNet and
EfficientNet show good generalization performance on both
datasets, ResNet, ShapeNet and ResNext show substantially
worse performance. The DeepGaze IIE ensemble model
again shows a substantial performance boost compared to all
individual models, with performance close to the gold stan-
dard performance (99% on PASCAL-S and 95% on Toronto).
Especially on PASCAL-S, the performance gain relative to
the best backbone (EfficientNet) is nearly as good as the
performance difference between the best and the worst back-
bone. In Figure 4b, we also show how well the models with
different backbones perform on the SALICON validation set
(using model weights from pretraining on SALICON). Here,
again a very similar pattern can be observed. Since SALI-
CON is a much larger dataset than MIT1003, this provides
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Figure 5. Confidence calibration on different datasets (a: MIT1003, b: PASCAL-S, c: Toronto) for different models (individual histograms).
We split predicted fixation densities into multiple quantiles of identical probability mass but sorted by increasing probablity per pixel and
quantify the number of actual fixations per predicted probability to assess whether models are overconfident (bar heights decreasing from
left to right), underconfident (bar heights increasing from left to right) or well calibrated (uniform histogram). On MIT1003, the dataset used
for training, models with individual backbones are quite well calibrated and ensemble models (DSREx1 and DeepGaze IIE=DSREx3) are
slightly underconfident. In the generalization setting on PASCAL-S and Toronto, individual models are strongly overconfident while the
ensemble models are close to perfectly calibrated.

Table 1. Leveraging inter-model complementarity: We mixed our top performing models, starting with pairwise mixtures and leading up to a
mixture of four. Note that for illustration purposes, darker shades of red represent more components for the corresponding mixture model.

Backbones None DenseNet-201 EfficientNet-B5 DenseNet-201, EfficientNet-B5

None 1.0377 1.0326 1.1077
ResNext-50 1.0368 1.1075 1.1052 1.1256
ShapeNet-C 1.0278 1.1025 1.0986 1.1213
ResNext-50, ShapeNet-C 1.0904 1.1165 1.1143 1.1285

additional evidence that DeepGaze IIE is not simply solving
an overfitting problem but leverages different information
from different backbones.

Finally, we also test our ensemble models on the held-out
MIT300 dataset of the MIT/Tuebingen Saliency Benchmark
[18, 24]. Our pairwise combination of models is already
enough to beat the state of the art, while our final combina-
tion of four models with three instances each leads to an even
higher leap on the state of the art. The power of ensembling
different models with different backbones is further demon-
strated by a mixture of the three current top-performing mod-
els on MIT300 (UNISAL, EML-Net and MSI-Net), which
also outperforms current state-of-the-art, but is still slightly
outperformed by DeepGaze IIE. The benchmark results are
displayed at table 3. In the Supplement, Table 2, we also
report scores on the SALICON test set.

4.2.3 Confidence Calibration

In Figure 5, we visualize confidence calibration for our mod-
els (see Section 3.3 for details). Uniform histograms indicate
perfect confidence calibration while histograms skewed to
the left indicate overconfident models: there are not as many
fixations in high-saliency regions as expected by the model.
Histograms skewed to the right indicate underconfident mod-
els. In Figure 5a, we evaluate confidence calibration for

models with four different backbones as well DSREx1 and
DeepGaze IIE on the MIT1003 dataset. Evidently, all indi-
vidual backbones are fairly well calibrated (the histograms
are close to uniform), with a slight bias towards overconfi-
dence. The ensemble models DSREx1 and DeepGaze IIE on
the other hand are a bit underconfident. When generalizing
to the PASCAL-S and Toronto datasets [2, 29] (Figures 5b
and c), this effect changes: all individual models are now
strongly overconfident, while the ensemble models are close
to perfectly calibrated on both datasets. This suggests that in-
dividual models make different errors on new images, which
are compensated by using an ensemble of models with dif-
ferent backbones. Interestingly, this doesn’t hold when we
exclusively average models with the same backbone. Appar-
ently, the problem is not noise in the readout network, but
overfitting to certain features of the backbone, which hap-
pen to be overly correlated with fixations on the MIT1003
dataset. Since ensembling helps, features used by individual
models likely differ substantially across backbones.

5. Discussion

Although the models trained for ImageNet classification
contain features of high value to saliency prediction, fea-
tures extracted from ImageNet classification have reached a
point of diminishing returns where additional classification



Table 2. Leveraging intra-model complementarity: We split the four model mixture (DSRE) into more instances per model and evaluate for
each number of instances.

Number of instances 1 2 3 4 5

DSRE 1.1285 1.13193 1.13294 1.13285 1.13287

Table 3. Models scores on the MIT300 benchmark. Notably, some models are missing IG as they are not probabilistic and thus impossible to
evaluate under this metric. DINet is not included in the public MIT300 leaderboard, therefore we show the scores reported in their paper.

Model IG ↑ AUC ↑ sAUC ↑ NSS ↑ CC ↑ KLDiv ↓ SIM ↑
DeepGaze IIE (DSREx3) 1.0715 0.8829 0.7942 2.5265 0.8242 0.3474 0.6993
DSREx1 1.0679 0.8825 0.7938 2.5219 0.8234 0.3489 0.6987
UNISAL+EML-Net+MSI-Net 1.0607 0.8824 0.7948 2.5131 0.8239 0.3537 0.7030

UNISAL [7] 0.9505 0.8772 0.7840 2.3689 0.7851 0.4149 0.6746
EML-NET [16] 0.8762 0.7469 2.4876 0.7893 0.8439 0.6756
MSI-NET [23] 0.9185 0.8738 0.7787 2.3053 0.7790 0.4232 0.6704
DeepGaze II [28] 0.9247 0.8733 0.7759 2.3371 0.7703 0.4239 0.6636
TranSalNet 0.8730 0.7471 2.3758 0.7991 0.9019 0.6852
GazeGAN [4] 0.8607 0.7316 2.2118 0.7579 1.3390 0.6491
DINet [40] 0.86 0.71 2.33 0.79

accuracy no longer clearly transfers to higher prediction per-
formance in the saliency domain. However, features from
different backbones don’t seem to be correlated with saliency
in the same way. This is suggested by the fact that models
using different backbones generalize in very different ways
to new datasets, and even more by the fact that ensemble
models substantially outperform even the best individual
models both within dataset and on new datasets.

In order to test how useful our models are in practical
applications on unseen datasets, we test out-of-domain per-
formance not only with respect to prediction performance,
but also with respect to confidence calibration. We find
that our individual models tend to be substantially overcon-
fident on out-of-domain data, while our ensemble models
are slighlty underconfident on within-domain-data but close
to perfectly calibrated on out-of-domain data, which makes
them more applicable on unseen datasets. The method which
we propose for assessing confidence calibration can be easily
applied in settings with a high number of classes and high
stochasticity in the ground truth distribution.

With regards to saliency prediction, performance has
somewhat stagnated in recent years thus making the ob-
served leap even more significant, especially if we consider
that our architectures are not overengineered to the task but
rather are part of a principled pipeline that could potentially
be applied in other domains. We attribute the success to four
factors: First, our choice of readout network, which is less
constrained than a linear readout allowing it to make nonlin-
ear transformations of input features but more constrained
than a typical CNN as it uses only 1×1 kernels. This allows
it to combine the spatial features without creating new ones
making it an efficient tool for transfer learning and allowing

interpretability in its results, since we don’t finetune the back-
bones. While finetuning the backbone in theory could result
in even better performance, we found that by fine tuning the
large parameter space we inevitably overfit MIT1003 and
consistently produces worse results. The second factor is our
utilization of multiple instances of each model. We argue
that this is good practice as it models the uncertainty in these
models which in some cases such as ResNet101 is much
higher than one would expect. Third, we leverage multiple
models and combine them in a principled way utilizing both
the complementarity between architectures and between in-
stances of the same architectures which we labeled inter- and
intra-complementarity respectively. For saliency this sort of
combination is really simple, not requiring an oracle network
but rather a simple averaging process of the fixation densities.
Fourth, we used information gain to guide our experiments
and have highlighted how relative performance transfers re-
liably to other metrics and other datasets. It has been argued
that information gain is ideal for principled studies due to
its foundation in information theory and its independence
of hyperparameters [26]. In the future, maximally diverse
backbones should be further explored to yield even better
models. This could be done through correlation analysis or
by combining ImageNet backbones such as the ones pre-
sented here with self-supervised ones, as well as backbones
pre-trained on other tasks such as object detection.

Taken together we have shown that our principled ensem-
ble learning approach yields a 15 percent point improvement
over DeepGaze II, setting the new state of the art in saliency
prediction on the MIT/Tuebingen Saliency Benchmark in
all available metrics, a significant leap after 4 years of only
gradual progress, highlighting the promise of our approach.
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DeepGaze IIE: Calibrated prediction in and out-of-domain
for state-of-the-art saliency modeling
Supplementary Material
As mentioned in the main text, our initial experiments involved layer selection ex-
periments (10 experiments with 10 different configurations) followed by 20 repeated
experiments for initialization selection (figure 1). We also conducted a detailed evalu-
ation on MIT1003 on all backbones and saliency metrics (table 1). Our combinatoric
experiments were firstly inspired from highlighting how different backbones perform
significantly different on a per-sample basis (figure 2). Towards the making of our
ensembles, we first tried different weights and found that performance consistently
peaks when different backbones get an equal say on the prediction (figure 3). Finally,
we conducted a principled qualitative analysis using samples whose predictions are
maximally different across the backbones of our ensemble (figure 4).
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Figure 1: ResNet50 layer search (top image) reflects our experiments that involved
trying out layers from ResNet50’s final convolutional blocks as features. In the case of
instance search (bottom image) we simply pick the top performing layer configuration
and repeat the same experiment with different seeds (hence different initialization). We
can see that the fluctuations between different instances are just as high as the ones we
see among the top 5 layer configurations.
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Table 1: Evaluation on all models on MIT1003. To assure the robustness of our metrics,
we calculate performance in each metric for 20 instances per model, then take the
average

Backbone IG ↑ AUC ↑ sAUC ↑ NSS ↑ CC ↑ KLDiv ↓
densenet201 1.0377 0.8892 0.7876 2.5994 0.7736 0.5156
resnext50 1.0368 0.8886 0.7854 2.6354 0.7731 0.5214
efficientnet 1.0326 0.8890 0.7870 2.6213 0.7704 0.5237
shapenetC 1.0278 0.8878 0.7848 2.6380 0.7716 0.5263
resnet50 1.0201 0.8874 0.7834 2.6141 0.7657 0.5318
resnet101 1.0045 0.8866 0.7816 2.5909 0.7631 0.5389
vgg19 0.9483 0.8838 0.7747 2.5457 0.7486 0.5653
vgg11 0.9035 0.8803 0.7681 2.4905 0.7346 0.5896
alexnet 0.8046 0.8736 0.7554 2.3073 0.6983 0.6482

Table 2: Performance of DeepGaze IIE on the SALICON test set. For this version of
DeepGaze IIE, we average the individual models after pretraining on the SALICON
training dataset, i.e. without finetuning on MIT1003. The SALICON competition does
not support proper evaluation of probabilistic models, but only of classic saliency maps.
Therefore all reported scores are for saliency maps optimal for NSS (i.e. predicted
fixation densities), except for sAUC, for which we used the correct saliency maps for
sAUC (i.e., predicted fixation density divided by the average of the predicted fixation
densities for all other images).

Model sAUC IG NSS CC AUC SIM KL

DeepGaze IIE 0.767 0.766 1.996 0.872 0.869 0.733 0.285
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Figure 2: Per-image performance variance in between different models. Each point on
the X axis corresponds to an image from MIT1003 while the Y axis is the information
gain difference between the two groups of models, meaning information gain was
calculated and averaged across one group of models then subtracted between the two.
Thus, the different colors signify which of the two groups is leading in the corresponding
sample. On the left plot, we compare 50 instances of ShapeNetC in groups of 25 and
find that even with the exact same architecture, the standard deviation is a non-marginal
value of 0.015. However, when we compared groups of ShapeNetC to ResNet50 (right
plot) we found a significant standard deviation of 0.086 in their per-image information
gain difference.
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Figure 3: Mixtures of models with varying weights. We show the performance when
using a mixture of two models with varying mixing coefficients, so that at 0 we see
the individual performance of one instance, at 1 that of the other instance while at
0.5 both have equal say at the final density. The left figure shows performances of
average densities from instances that use DenseNet-201 as a backbone and is indica-
tive of intra-model complementarity while in the right figure it’s instances from two
distinct distinct backbones (ResNext50 and DenseNet201) and indicative of inter-model
complementarity. Even when mixing instances of the exact same model there is a boost
in performance that peaks at the point where each model has equal weight; however,
we reach a much higher performance when mixing instances of different models. We
empirically found this to be true when combining other models presented in this paper
as well.

3



JS
-D

iv
=0

.2
22

bi
t

Stimulus EfficientNet ShapeNet ResNext DenseNet DeepGaze IIE Ground Truth

JS
-D

iv
=0

.1
43

bi
t

JS
-D

iv
=0

.1
33

bi
t

JS
-D

iv
=0

.1
28

bi
t

JS
-D

iv
=0

.1
26

bi
t

JS
-D

iv
=0

.1
25

bi
t

JS
-D

iv
=0

.1
23

bi
t

JS
-D

iv
=0

.1
22

bi
t

JS
-D

iv
=0

.1
21

bi
t

JS
-D

iv
=0

.1
21

bi
t

Figure 4: We predict the fixation densities from different models using samples of
the MIT1003 dataset. To select samples where our models are qualitatively different,
we compute the Jensen-Shannon divergence (JS-Div) per image amongst our top four
models (not including the mixture DSRE), using mixture of 20 instances per model,
thus removing any noise caused by intra-model variability. These are the top-10 images
in terms of maximal disagreement and are displayed top to bottom with respect to their
JS-Div, the maximum being 0.222 bits corresponding to the top row image.
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