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Abstract

Transformer, as a strong and flexible architecture for
modelling long-range relations, has been widely explored
in vision tasks. However, when used in video inpainting
that requires fine-grained representation, existed method
still suffers from yielding blurry edges in detail due to the
hard patch splitting. Here we aim to tackle this problem
by proposing FuseFormer, a Transformer model designed
for video inpainting via fine-grained feature fusion based
on novel Soft Split and Soft Composition operations. The
soft split divides feature map into many patches with given
overlapping interval. On the contrary, the soft composi-
tion operates by stitching different patches into a whole fea-
ture map where pixels in overlapping regions are summed
up. These two modules are first used in tokenization be-
fore Transformer layers and de-tokenization after Trans-
former layers, for effective mapping between tokens and
features. Therefore, sub-patch level information interaction
is enabled for more effective feature propagation between
neighboring patches, resulting in synthesizing vivid content
for hole regions in videos. Moreover, in FuseFormer, we
elaborately insert the soft composition and soft split into
the feed-forward network, enabling the 1D linear layers to
have the capability of modelling 2D structure. And, the
sub-patch level feature fusion ability is further enhanced.
In both quantitative and qualitative evaluations, our pro-
posed FuseFormer surpasses state-of-the-art methods. We
also conduct detailed analysis to examine its superiority.
Code and pretrained models are available at https://
github.com/ruiliu-ai/FuseFormer.

*The first three authors contribute equally to this work.

Figure 1. Illustration of different patch split/composition strategies
for Transformer model. The top row shows hard split/composition,
based on which the trained model generates rough inpainting re-
sults. The bottom row shows soft split/composition, based on
which the trained model generates smooth results due to interac-
tion of features between neighbor patches. Double arrow indicates
the corresponding overlapped regions between adjacent patches.

1. Introduction

Transformer has recently gained increasing attention in
various vision tasks such as classification [8, 42], object de-
tection [28, 47] and image generation [18, 16]. Interest-
ingly, Transformer is suitable to video inpainting, a vision
task that depends on the information propagation between
flowing pixels across frames to fill the spatiotemporal holes
with plausible and coherent content in a video clip.

Spatial Temporal Transformer Net (STTN) [43] is the pi-
oneer work for investigating the use of Transformer in video
inpainting. However, its multi-scale variant of self-attention
intertwined with fully convolutional networks makes it hard
to exploit rich experience from other Transformer models
due to large structural differences. On the other hand, re-
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cent Vision Transformer (ViT) [8] demonstrates the strong
capability of vanilla Transformer [34] in vision recognition
task. These motivate us to build a Video inpainting Base-
line with vanilla Transformer (ViB-T), which differs from
ViT in 2 aspects: a) the tokens are embedded from patches
of multiple frames instead of a single frame; b) a light
convolutional encoder and decoder before and after Trans-
former block is exploited to relieve the computational bur-
den caused by high resolution frames. Experiment verifies
that this simple baseline can reach competitive performance
with STTN [43] under similar computation cost.

Nevertheless, similar to all existing patch-based Trans-
former models [8, 42], the hard split operation used in ViB-
T makes it unable to effectively encode sub-token (sub-
patch) level representations. Since the attention score is
calculated between different tokens, there is no direct sub-
token level feature interaction. For us, human beings, frag-
menting an image into many non-overlapping patches poses
a challenging task to composite them back into an origi-
nal image with masked regions filled. This is the same for
deep learning systems: the lack of accurate sub-token level
feature interaction can lead to inconsistent content between
neighboring patches. As shown in Fig.1, to accurately re-
build the black circle on the canvas, every token correspond-
ing to an image patch has to understand not only the patch
level information but also sub-patch level information. As
a result, in order to fully unleash the power of Transformers
in video inpainting tasks, an improved patch splitting man-
ner and a better sub-token level feature fusion mechanism
to maintain pixel level-feature accuracy is in demand.

To achieve this goal, we propose a Soft Split (SS) module
as well as its corresponding Soft Composition (SC) module.
Built upon the simple and straightforward ViB-T baseline
model, we propose to softly split images into patches with
overlapping regions and correspondingly, to softly compos-
ite these overlapped patches back to images. Specifically,
in the soft split module, we exploit an unfold operation with
kernel size greater than stride to softly split the input im-
age into overlapping 2D patches and are flattened as 1D
tokens. On the contrary, in the soft composition module,
tokens are reshaped to 2D patches maintaining their orig-
inal sizes, and then each pixel is registered to its original
spatial location according to the kernel size and stride used
in soft split module. During this process, features of the
pixels located in the overlapping area are fused from multi-
ple overlapping neighboring patches’ corresponding areas,
thus providing sub-token level feature fusion. We design a
baseline ViB-T model equipped with the Soft Split and Soft
Composition modules as ViB-S where S stands for soft op-
erations. And we find that the ViB-S model easily surpasses
the state-of-the-art video inpainting model STTN [43] with
minimum extra computation cost.

Finally, we propose a Fusion Feed Forward Network

(F3N) to replace the two-layer MLPs in the standard Trans-
former model, which is dubbed as FuseFormer, to fur-
ther improve its sub-token fusion ability for learning fine-
grained feature, yet without extra parameters. In the F3N,
between the two fully-connected layers, we reshape each
1D token back to 2D patch with its original spatial shape
and then softly composite them to be a whole image.
The overlapping features of pixel at overlapping regions
would sum up the corresponding value from all neighbor-
ing patches for further fine-grained feature fusion. Then the
patches are softly split and flattened into 1D vectors, which
are fed to the second MLP. In this way, sub-token segment
corresponding to the same pixel location are matched and
registered without extra learnable parameters, and informa-
tion of the same pixel location from different patches are
aggregated. Subsequently, our FuseFormer model consist-
ing of F3N even surpasses our strong baseline ViB-S by a
significant margin, both qualitatively and quantitatively.

Based on these novel designs, our proposed FuseFormer
network achieves effective and efficient performance in
video restoration and object removal. We testify the supe-
riority of the proposed model to other state-of-the-art video
inpainting approaches by thorough qualitative and quanti-
tative comparisons. We further conduct ablation study to
show how each component of our model benefits the in-
painting performance.

In summary, our contributions are three-fold:

1. We first propose a simple yet strong Transformer base-
line for video inpainting, and propose a soft split and
composition method to boost its performance.

2. Based on the proposed strong baseline and novel soft
operations, we propose FuseFormer, a sub-token fu-
sion enabled Transformer model with no extra param-
eters.

3. Extensive experiments demonstrate the superiority of
FuseFormer over state-of-the-art approaches in video
inpainting, both qualitatively and quantitatively.

2. Related work

Image Inpainting. In traditional image inpainting, the tar-
get holes are usually filled by sampling and pasting the
known textures and significant progress has been made on
this type of image inpainting approach [2, 3, 6, 9, 10].
PatchMatch [1] proposes to fill the missing region by
searching the patches outside the hole based on the approx-
imate nearest neighbor algorithm, which is finally served as
a commercial product.

With the rise of deep neural network [21, 13] and gen-
erative adversarial network [12], some works investigated
on building an end-to-end deep neural network for image



inpainting task with the auxiliary discriminator and adver-
sarial loss [30, 17]. After that, DeepFill propose to use a
contextual attention for filling target holes by propagating
the feature outside the region [41]. Then Liu et al. and
Yu et al. apply partial convolution [25] and gated convolu-
tion [40] to make vanilla convolution kernels aware of given
mask guidance respectively, so as to complete free-form im-
age inpainting.
Video Inpainting. Building upon patch-based image in-
painting, Newson et al. extend PatchMatch algorithm [1] to
video for further modelling the temporal dependencies and
accelerating the process of patch matching [27]. Strobel et
al. [33] introduce an accurate motion field estimation for
capturing object movement. Huang et al. perform an alter-
nate optimization on 3 steps including patch search, color
completion and motion field estimation and obtain success-
ful video completion performance [15].

Deep learning also boosts the performance of video in-
painting. Wang et al. proposes a groundbreaking deep neu-
ral network that combines 2D and 3D convolution seam-
lessly for completing missing contents in video [35]. Kim
et al. propose a recurrent neural network to cumulatively
aggregate temporal features through traversing all video se-
quences [19]. Xu et al. use existing flow extraction tools to
obtain robust optical flow and then warp the regions from
reference frames to fill the hole in target frame [39]. Lee
et al. propose a copy-and-paste network that learns to copy
corresponding contents in reference frames and paste them
to fill the holes in the target frame [23]. Chang et al. de-
velop a learnable Gated Temporal Shift Module and adapt
gated convolution[40] to a 3D version for performing free-
form video inpainting [5, 4]. Zhang et al. adopts internal
learning to train one-size-fits-all model for different given
videos [44]. Hu et al. propose a region proposal-based strat-
egy for picking up best inpainted result from many partic-
ipants [14]. Recently attention mechanisms are adopted to
further promote both realism and temporal consistency via
capturing long-range correspondences in video sequences.
Temporally-consistent appearance is implicitly learned and
propagated to the target frame with a frame-level atten-
tion [29] and dynamic long-term context aggregation mod-
ule [24].
Transformers in Vision. Transformers are firstly proposed
in 2017 [34] and gradually dominated natural language pro-
cessing models [7, 32, 26]. A Transformer block basically
consists of a multi-head attention module for modelling
long-range correspondence of the input vector and a multi-
layer perceptron for fusing and refining the feature repre-
sentation. In computer vision, it has been adapted to various
tasks such image classification [8, 42], object detection and
segmentation [28, 47, 45, 11], image generation [18, 16],
video segmentation [37], video captioning [46] and so on in
past two years.

As far as our knowledge concerns, STTN [43] is the only
work for investigating the use of Transformer in video in-
painting and propose to learn a deep generative Transformer
model along spatial-temporal dimension. It roughly splits
frames into non-overlapped patches with certain given patch
size and then feeds the obtained spatiotemporal patches into
a stack of Transformer encoder blocks for thorough spa-
tiotemporal propagation. However, it suffers from captur-
ing local texture like edges and lines and modelling the
arbitrary pixel flowing. In this work, we propose a novel
Transformer-based video inpainting framework endorsed
by 2 carefully-designed soft operations, which improve the
performance on both video restoration and object removal
and make the inference much faster as well.

3. Method
In this section we introduce our FuseFormer model for

video inpainting. We start by proposing a simple Trans-
former baseline, named ViB-T (Video inpainting Baseline
with vanilla Transformer), then we introduce our novel de-
signs step by step by first introducing our Soft Split (SS) and
Soft Composition (SC) technique, which boost the perfor-
mance of ViB-T. We term ViB-T with SS and SC as ViB-
S. Finally, build upon ViB-S, we introduce FuseFormer, a
fine-grained vision Transformer block whose regular feed
forward network is replaced with fusion feed forward net-
work, and term the final model as ViF (Video inpainting
with FuseFormer).

3.1. Video inpainting Baseline with Transformer

We start by proposing a straightforward baseline model
ViB-T for directly deploying patch-based Transformer in
video inpainting without complex modifications. It consists
of three parts: a) a convolutional encoder and a correspond-
ing decoder; b) a stack of Transformer blocks between the
encoder and decoder; and c) a pair of patch-to-token and
token-to-patch module. The patch-to-token module locates
between the convolutional encoder and the first Transformer
block, and token-to-patch locates between the last Trans-
former block and the convolutional decoder. Different from
STTN [43], this baseline model’s Transformer block is the
same as standard Transformer [34] where there is neither
the scheme of multi-scale frames for different multi-head
self-attention nor using 3 × 3 convolution to replace linear
layers in feed forward network. Patches are hard split from
feature map and linearly embedded to feature vectors with
much lower channel dimension, which is more computa-
tionally friendly for following processing.

As shown in Fig. 2, given corrupted video frames fi ∈
Rh×w×3, i ∈ [0, t), it would work as follows:

First, it encodes video frames with a CNN encoder,
obtaining c channel convolutional feature maps of frames
Xi ∈ Rh/4×w/4×c, i ∈ [0, t), and each X is split into k×k



Figure 2. Illustrations of our proposed FuseFormer. On the left is our proposed video inpainting pipeline with Transformers. On the right is
our proposed FuseFormer block and Fusion Feed Forward Network (F3N). The tuple indicates the counting number of patch along spatial
dimension.

smaller patches with stride s. Then all patches are linearly
embedded into tokens Z ∈ R(t·n)×d, where n is the number
of tokens in one image and d is the token channel.

Second, Z is fed into standard Transformer blocks for
spatial-temporal information propagation, resulting in re-
fined tokens Z̃ ∈ R(t·n)×d.

Third, each refined token z̃i ∈ Rd, i ∈ [0, n · t) from
Z̃ is linearly transformed to k · k · c channel vector and
reshaped to patch shape k× k× c. All the resulting patches
are registered back to its original frame’s location pixel by
pixel, obtaining feature maps X̃i ∈ Rh/4×w/4×c, i ∈ [0, t).
This re-composited feature map is of the same size as the
feature map input to the first Transformer block.

Finally, the re-composited feature maps X̃ are decoded
with a couple of deconvolution layers to output the in-
painted video frames f̃i ∈ Rh×w×3, i ∈ [0, t) with original
size.

For the baseline model ViB-T, we set kernel size equal
to the stride in patch splitting. As a starting point, this sim-
ple model already has competitive performance with STTN
[43] but with faster inference speed and fewer parameters
(refer to appendix C).

The key of our proposed method is the sub-token level
fine-grained feature fusion, which is realized by the newly-
proposed Soft Split (SS) and Soft Composite (SC) process-
ing, it enables precise sub-token level fusion between neigh-
boring patches. In the following section, we will first intro-
duce the SS and SC modules, based on which we introduce
our proposed FuseFormer in section 3.3.

3.2. Soft Split (SS) and Soft Composite (SC)

Different from STTN [43] that roughly split frames into
patches without overlapping region, here we propose to

Figure 3. The illustration of Soft Split (SS) and Soft Composite
(SC) module.

softly split each frame into overlapped patches and then
softly composite them back, by using an unfold and fold
operator with patch size k being greater than patch stride
s. When compositing patches back to its original spatial
shape, we add up feature values at each overlapping spatial
location of neighboring patches.

Soft Split (SS). As shown in Fig. 3, it softly split each
feature map into overlapped patches of size k×k with stride
s < k, and flattened to a one-dimensional token, which is
similar to the image spliting strategy in T2T-ViT [42]. The
number of tokens is then

n = bh+ 2 · p− k
s

+ 1c × bw + 2 · p− k
s

+ 1c, (1)

where p is the padding size.

Soft Composite (SC). The SC operator composites the
softly split n patches by their original spatial location and
form a new feature map with the same h and w as original



feature map size. However, due to the existence of overlap-
ping area, the SC operator sums up pixel values that over-
lapped on the same spatial location, as shown in Fig. 3.

This design of soft split and composition lays founda-
tion for our final FuseFormer, as when softly compositing
patches back to its original position after Transformer pro-
cessing, the overlapped position aggregated a piece of in-
formation from different tokens, contributing to smoother
patch boundaries and enlarges its receptive field by fus-
ing information from neighboring patches. As our exper-
iment shows, the baseline model equipped with these two
operators, dubbed as ViB-S, have already surpassed the
state-of-the-art video inpainting performance reached by
STTN [43].

3.3. FuseFormer

A FuseFormer block is the same to standard Transformer
block except that feed forward network is replaced with our
proposed Fusion Feed Forward Network (F3N). Given in-
put patch tokens Zl at l-th stack where l ∈ [0, L), L is
the stacking number of FuseFormer blocks, a FuseFormer
block can be formulated as:

Z′
l = MSA(LN1(Zl−1)) +Zl, (2)

Zl+1 = F3N(LN2(Z
′
l)) +Z′

l, (3)

where the MSA and LN respectively denote standard multi-
head self-attention and layer normalization in Transform-
ers [34] and our key difference from other Transformers
lies in the newly-proposed Fusion Feed Forward Network
(F3N).

Fusion Feed Forward Network (F3N). F3N brings no
extra parameter into the standard feed forward net and the
difference is that F3N inserts a SC and a SS operation be-
tween the two layer of MLPs. For clear formulation, we let
F ′ = F3N(F ) = F3N(LN2(Z

′
l)) where F ,F ′ ∈ Rtn×d

and the mapping functions are the same to Equ. 3. Let
f i,f

′
i be the token vectors from F ,F ′ where i ∈ [0, t ·n),

so the F3N can be formulated as

pi = MLP1(f i), i ∈ [0, t · n) (4)
Aj = SC(pj,0, ...,pj,n−1), j ∈ [0, t) (5)

p′
j,0, ...,p

′
j,n−1 = SS(Aj), j ∈ [0, t) (6)

f ′
i = MLP2(p

′
i), i ∈ [0, t · n) (7)

where MLP1 and MLP2 denote the vanilla multi-layer per-
ceptron. SC denotes soft composition for composing those
1-D vectors pj,0, ...,pj,n−1 to a 2-D feature map Aj and
SS denotes the soft split for splitting Aj into 1-D vectors
p′

j,0, ...,p
′
j,n−1. Note that there is a feature fusion pro-

cessing during the mapping p′
i = SS(SC(pi)).

Besides the introduction of soft composition and soft
split module, there is another difference between F3N and
FFN. In FFN, the input and output channel of MLP1 and
MLP2 are (4 · d, d) and (d, 4 · d), respectively. On the
contrary, in F3N, we change the input and output chan-
nel of the two MLPs to (d, k2 · c′) and (k2 · c′, d), where
c′ = 10 · b4 ·d/(10 ·k2)c, which aims to ensure the interme-
diate feature vectors are able to be reshaped to feature 2-D
maps.

For each soft composition module in F3N, different pixel
locations may correspond to various number of overlapping
patches, which leads to large variance on pixel value. Mean-
while, the spatial location of the reshaped patch is actually
mixed up after passing through the MLP1. Therefore, we
introduce a normalization for Equ. 5. Let 1 ∈ Rn×(k2·c′) be
the vectors where all elements’ value are 1, so the normal-
ized SC can be formulated as:

Ãj =
SC(pj,0, ...,pj,n−1)

SC(1)
, j ∈ [0, t) (8)

3.4. Training Objective

We train our network by minimizing the following loss:

L = λR · LR + λadv · Ladv, (9)

where LR is the reconstruction loss for all pixels, Ladv is the
adversarial loss from GAN [12], λR and λadv weigh the im-
portance of different loss functions. For reconstruction loss,
L1 loss is utilized for measuring the distance between syn-
thesized video Ỹ and original one Y. It can be formulated
as

LR = ‖(Ỹ −Y)‖1 (10)

In addition, following [43], we also adopt a discrimina-
tor D for assisting training the FuseFormer generator, in
order to obtain a better synthesis realism and temporal con-
sistency. This discriminator takes both real videos and syn-
thesized ones as input and outputs a scalar ranging in [0, 1]
where 0 indicates fake and 1 indicates true. It is trained
toward the direction that all the synthesized videos could
be distinguished from real ones. The FuseFormer generator
is trained towards an opposite direction where it generates
videos that can not be told byD anymore. The loss function
for D is formulated as

LD = EY [logD(Y] + EỸ

[
log (1−D(Ỹ))

]
(11)

And the loss function for the FuseFormer generator is

Ladv = EỸ

[
logD(Ỹ)

]
(12)



Figure 4. Qualitative results of our proposed ViB-S and ViF. Ref-
erence denotes masked object found in the same video. Compared
to STTN, with soft patch split/composition, our ViB-S can bet-
ter handle detail information. When replacing Transformer block
in ViB-S with FuseFormer, ViF excels at recovering details and
heavily occluded objects.

4. Experiments

4.1. Implementation details

Dataset. Following previous works [43, 23], we choose 2
video object segmentation datasets for training and eval-
uation. YouTube-VOS [38] contains 3, 471, 474 and 508
video clips in training, validation and test set, respectively.
DAVIS [31], short for Densely Annotated Video Segmenta-
tion, contains 150 video sequences in various scenes. Fol-
lowing STTN [43], a test set including 60 video clips is split
from the whole dataset for fair comparison with other ap-
proaches. We do not use this dataset for training.
Network and training. We use 8 stacks of Transformer
(FuseFormer) layers in our ViB-T, ViB-S and ViF models,
whose token dimension is 512. For ViF, the token is ex-
panded to 1960 instead of 2048 for patch reshape compati-
bility. Other network structures including the CNN encoder,
decoder and discriminator are the same as STTN [43], ex-
cept that we insert several convolutional layers between en-
coder and the first Transformer block to compensate for ag-
gressive channel reduction in patch tokenization. Note that
different from STTN [43], we do not finetune our model
on DAVIS training set and the same checkpoint is used for
evaluation on both YouTube-VOS test set and DAVIS test
set. In all our ablations, we train our model with Adam op-
timizer [20] for 250k iterations. At each iteration, 5 random
frames from one video is sampled on each GPU and 8 GPU
is utilized. The initial learning rate is 0.01 and is reduced by
factor of 10 at 200k iteration. For our fair comparison with
state-of-the-art models, we train our best model for 500k it-
erations, and the learning rate is reduced at 400k and 450k
iterations respectively.
Evaluation metrics. First, we take Video-based Fréchet In-

Model Patch Size Overlap PSNR ↑ SSIM ↑
STTN [43] (5,9)∗ no 30.67 0.9560
ViB-T (3,3) no 30.68 0.9569
ViB-T (5,5) no 30.56 0.9563
ViB-T (7,7) no 30.50 0.9559
ViB-SB (7,7) yes 30.74 0.9577
ViB-SC (7,7) yes 30.99 0.9597

ViB-S (5,5) yes 30.91 0.9588
(7,7) yes 31.02 0.9598

ViF† (7,7) yes 31.72 0.9654
ViF (7,7) yes 31.87 0.9662

Table 1. Evaluation of our proposed SS, SC module and Fuse-
Former. All models except STTN use patch stride of 3. ViB-SB

and ViB-SC denotes using only SC or SS respectively. ViF† de-
note using F3N without normalizing in Equ.8 and ViF denote us-
ing F3N with normalizing. ∗: STTN uses multi-scale patch sizes
and refer to [43] for more details.

ception Distance (VFID) as our metric for scoring the per-
ceptually visual quality by comparing with natural video se-
quences [36, 43]. Lower value suggests better realism and
visually closer to natural videos. We also use a optical flow-
based warping errorEwarp for measuring the temporal con-
sistency [22]. Lower value indicates better temporal consis-
tency. Finally, we use two popular metrics for measuring
the quality of reconstructed image compared with original
one: Structural SIMilarity (SSIM) and Peak Signal to Noise
Ratio (PSNR). The score is calculated frame by frame and
their mean value is reported. Higher value of these two met-
rics indicates better reconstruction quality.

4.2. Ablations

The effectiveness of soft split and soft composition. In
Tab. 4.1 we show the performance under different patch
size used in soft split and soft composition operation on our
baseline model ViB-T and ViB-S. For ViB-T, we keep the
stride the same as the patch size. For ViB-S and TiF, they
share the same stride 3 to ensure the same number of tokens
for each frames.

First, by changing the patch size for ViB-T, we find that
ViB-T with patch size 3, a straight-forward variant of Trans-
former has already achieved competitive performance com-
pared to the state-of-the-art STTN [43], even without soft
split and soft composition operations. For ViB-S and ViF,
when patch size is larger than 3, SS and SC operations are
incorporated to handle overlap area between patches. All
larger patches improves the performance for a significant
margin, showing the effectiveness of overlapping patches.
Here we further vary the patch size between SS and SC,
limiting the overlapping area to appear in either SS or SC
operations. Apart from SS, the overlapped composition in
SC can also improve the performance even without SS.



Figure 5. Qualitative comparison with other methods.

Accuracy
YouTube-VOS DAVIS

Models PSNR ↑ SSIM ↑ VFID ↓ Ewarp(×10−2) ↓ PSNR ↑ SSIM ↑ VFID ↓ Ewarp(×10−2) ↓
VINet [19] 29.20 0.9434 0.072 0.1490 / - 28.96 0.9411 0.199 0.1785 / -
DFVI [39] 29.16 0.9429 0.066 0.1509 / - 28.81 0.9404 0.187 0.1880 / 0.1608∗

LGTSM [5] 29.74 0.9504 0.070 0.1859 / - 28.57 0.9409 0.170 0.2566 / 0.1640∗

CAP [23] 31.58 0.9607 0.071 0.1470 / - 30.28 0.9521 0.182 0.1824 / 0.1533∗

STTN [43] 32.34 0.9655 0.053 0.1451 / 0.0884∗ 30.67 0.9560 0.149 0.1779 / 0.1449∗

ViB-S 32.47 0.9635 0.056 - / 0.0889∗ 31.50 0.9636 0.144 - / 0.1346∗

ViF 33.16 0.9673 0.051 - / 0.0875∗ 32.54 0.9700 0.138 - / 0.1336∗

Table 2. Quantitative results of video completion on YouTube-VOS and DAVIS dataset. ∗: our evaluation results following descriptions in
STTN [43], the numerical differences may result from different optical flow models in the evaluation process.

The effectiveness of F3N in FuseFormer. As shown in
Tab.4.1, by replacing standard Transformer block with our
proposed FuseFormer block in ViB-S, the performance is
boosted significantly, showing the effectiveness of sub-
token level feature fusion. Moreover, with the proposed nor-
malizing technique in Equ.8, the performance has been fur-
ther improved. Compared to standard Transformer in video

inpainting, FuseFormer has slightly fewer parameters and
negligible time cost but enabled the sub-token level fine-
grain feature fusion.

Fig.4 further illustrates the qualitative results of VIB-S
and ViF, demonstrating that their better performance comes
from more detailed inpainting results, showing the effec-
tiveness of sub-token level feature fusion.



Figure 6. Image decoded from different layers of our trained ViF.
It shows that images are refined in a coarse to fine manner.

Figure 7. Visualization of attention between patches cross multiple
frames in object removal.

4.3. Comparison with other methods

Qualitative comparison. In Fig.5 we show the qualitative
results of our model compared with state-of-the-art meth-
ods including CAP [23], LGTSM [5], and STTN [43] and
our proposed FuseFormer synthesize the most realistic and
temporally-coherent videos.
Quantitative comparison. In Tab.2 we show the perfor-
mance comparison with state-of-the-art models on video
completion, evaluated on both YouTubeVOS. Our ViF
model outperforms all the state-of-the-art video inpainting
approaches in video restoration by improving PSNR and
SSIM by 3.3% and 0.7%, and it yields videos with best real-

Figure 8. User study results. Percentage of ranking first among 38
viewers of 30 videos on video completion and object removal task.

ism and temporal coherence by reducing VFID and warping
error by 7.4% and 7.8%.
User study. We choose CAP [23] and STTN [43], two
of the state-of-the-art video inpainting models as our base-
lines for user study. 30 videos are randomly sampled from
DAVIS [31] for object removal and video completion evalu-
ation. 38 volunteers has participated this user study. Videos
processed by 3 models are presented at each time for vol-
unteers to rank the inpainting quality. On our dedicated
software for this user study, volunteers can stop/replay any
video until they make final judgement. The percentage of
first ranking model from each user on each video are shown
in Fig.8, where for both object removal and video comple-
tion we have the best performance.
Visualizing inpainting process. Fig.6 demonstrates im-
ages decoded at different layer of ViF, showing the process
of how the our model inpaints a video frame. We can see
it starts with coarse context information and gradually re-
fine features in deeper layers. In Fig.7, we further show
the detailed attention process between different multi-frame
patches in an object removal task. We can see how our
proposed model accurately find reference patch and explore
the spatiotemporal information to inpaint the background as
well as the pillar.

5. Conclusion

In this work we propose FuseFormer, a Transformer
model designed for video inpainting via fine-grained fea-
ture fusion. It aims at tackling the drawbacks of lacking
fine-grained information in patch-based Transformer mod-
els. The soft split divides feature map into many patches
with given overlapping interval while the soft composition
stitches them back into a whole feature map where pixels
in overlapping regions are summed up. FuseFormer elab-
orately builds soft composition and soft split into its feed-
forward network for further enhancing sub-patch level fea-
ture fusion. Together with our strong Transformer baseline,
our FuseFormer model achieve state-of-the-art performance
in video restoration and object removal.
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Darrell, and Alexei Efros. Context encoders: Feature
learning by inpainting. In Computer Vision and Pattern
Recognition (CVPR), 2016.

[31] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.
Gross, and A. Sorkine-Hornung. A benchmark dataset and
evaluation methodology for video object segmentation. In
Computer Vision and Pattern Recognition, 2016.

[32] Alec Radford and Ilya Sutskever. Improving language un-
derstanding by generative pre-training. 2018.

[33] M. Strobel, Julia Diebold, and D. Cremers. Flow and color
inpainting for video completion. In GCPR, 2014.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, pages 5998–6008, 2017.

[35] Chuan Wang, Haibin Huang, Xiaoguang Han, and Jue Wang.
Video inpainting by jointly learning temporal structure and
spatial details. In AAAI, 2019.

[36] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-
to-video synthesis. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[37] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua
Shen, Baoshan Cheng, Hao Shen, and Huaxia Xia. End-
to-end video instance segmentation with transformers. In
Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2021.

[38] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen
Liang, Jianchao Yang, and Thomas Huang. Youtube-vos:
A large-scale video object segmentation benchmark. arXiv:
1809.03327, 2018.

[39] Rui Xu, Xiaoxiao Li, Bolei Zhou, and Chen Change
Loy. Deep flow-guided video inpainting. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2019.

[40] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Free-form image inpainting with gated
convolution. arXiv preprint arXiv:1806.03589, 2018.

[41] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Generative image inpainting with con-
textual attention. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5505–5514,
2018.

[42] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-
to-token vit: Training vision transformers from scratch on
imagenet. arXiv preprint arXiv:2101.11986, 2021.

[43] Yanhong Zeng, Jianlong Fu, and Hongyang Chao. Learn-
ing joint spatial-temporal transformations for video inpaint-
ing. In The Proceedings of the European Conference on
Computer Vision (ECCV), 2020.

[44] Haotian Zhang, Long Mai, Ning Xu, Zhaowen Wang, John
Collomosse, and Hailin Jin. An internal learning approach to
video inpainting. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2720–2729, 2019.

[45] Minghang Zheng, Peng Gao, Xiaogang Wang, Hongsheng
Li, and Hao Dong. End-to-end object detection with adaptive
clustering transformer. CoRR, abs/2011.09315, 2020.

[46] Luowei Zhou, Yingbo Zhou, Jason J Corso, Richard Socher,
and Caiming Xiong. End-to-end dense video captioning with
masked transformer. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8739–
8748, 2018.

[47] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020.


