
MR-PDP: Multiple-Replica Provable Data Possession

Reza Curtmola
Department of Computer Science

Purdue University
crix@cs.purdue.edu

Osama Khan, Randal Burns, Giuseppe Ateniese
Department of Computer Science

Johns Hopkins University
{okhan, randal, ateniese}@cs.jhu.edu

Abstract

Many storage systems rely on replication to increase
the availability and durability of data on untrusted stor-
age systems. At present, such storage systems provide no
strong evidence that multiple copies of the data are actu-
ally stored. Storage servers can collude to make it look
like they are storing many copies of the data, whereas in
reality they only store a single copy. We address this short-
coming through multiple-replica provable data possession
(MR-PDP): A provably-secure scheme that allows a client
that stores t replicas of a file in a storage system to verify
through a challenge-response protocol that (1) each unique
replica can be produced at the time of the challenge and
that (2) the storage system uses t times the storage required
to store a single replica. MR-PDP extends previous work
on data possession proofs for a single copy of a file in a
client/server storage system [4]. Using MR-PDP to store t
replicas is computationally much more efficient than using
a single-replica PDP scheme to store t separate, unrelated
files (e.g., by encrypting each file separately prior to storing
it). Another advantage of MR-PDP is that it can generate
further replicas on demand, at little expense, when some of
the existing replicas fail.

1 Introduction

We address the problem of creating multiple unique
replicas of a file in a distributed storage system. This al-
lows a client to query the distributed system to ensure that
there are multiple unique copies of its file stored in the net-
work even when storage sites collude. Our original mo-
tivation was to give a data owner that archives data with
third-party storage services, such as Amazon S3 [3] or the
Storage Request Broker [26], the ability to perform intro-
spection and maintenance on its data. However, these tech-
niques apply to all replication-based, distributed, and un-
trusted storage systems, including peer-to-peer storage sys-
tems [1, 11, 18, 19, 21].

Replication is a fundamental principle in ensuring the
availability and durability of data [16]. Managing the num-
ber and placement of replicas is critical to this process. Sys-
tems re-replicate data when replicas fail [10, 12], evaluate
the correctness of replicas in the system [20], and move
replicas among sites to meet availability goals [2, 9].

However, distributed storage systems lack constructs that
allow them to securely determine the number and location
of replicas in the system. Distributed storage systems that
perform replica maintenance often have storage sites cross-
check the contents of replicas through content hashing [10,
20]. Recently, there has been much interest in having clients
(that do not have a copy of the data) check that servers have
a copy of the data [4, 17, 23, 24]. Both types of protocols
are vulnerable to collusion attacks in which multiple servers
that appear to be storing multiple replicas are in fact storing
only a single copy of the data. In general, this can be done
by redirecting and forwarding challenges from the multiple
sites to the single site that stores the data.

Storing a single copy, while appearing to store many
copies, benefits servers; redirection and forwarding attacks
are practical and servers are motivated to perform them.
In peer-to-peer storage systems, servers can use this at-
tack to freeload [15], using resources in the system without
contributing a commensurate amount of resources back to
peers. Third-party, outsourced storages sites can use this
type of attack to sell the same storage space multiple times.
In both cases, clients (data owners) remain unaware of the
reduction in the availability and durability of data that re-
sults from the loss of replicas.

The natural solutions to this problem result in significant
time, space, and management overheads. A simple way to
make replicas unique and differentiable is by encryption.
If the client were to generate each replica by encrypting
the data under different keys that are kept secret from the
servers, then the servers could not compare the replicas, use
one replica to answer challenges for another, or compress
replicas with respect to one another. Each replica is a sepa-
rate file to be created and checked individually, using a pro-
tocol for checking data possession. (Cross-checking proto-

1

cols [10,20] would not work as encrypted replicas cannot be
compared.) In this simple approach, the computation time
for both replica creation and checking grow linearly in the
number of replicas.

In this paper, we describe cryptographic constructs that
allow for a client to securely establish that the network
stores multiple unique replicas. The scheme uses a constant
amount of metadata for any number of replicas and new
replicas may be created dynamically without pre-processing
the file again. Also, multiple replicas may be checked con-
currently, so that checking t replicas is less expensive than t
times the cost of checking a single replica. Thus, our solu-
tion overcomes the time, space, and management overheads
associated with the natural solution mentioned previously.

These constructs build upon the provable data possession
(PDP) [4] client/server data checking scheme and, thus, in-
herit PDP’s benefits. PDP allows a client to store a file on
a server so that it may later challenge the server to prove
possession. In responding to the challenge, the server pro-
vides a probabilistic proof that it has access to the exact
data stored by the client previously. Because the challenge
is probabilistic, it is I/O efficient; the server accesses a small
constant amount of data in generating the proof. The client
stores only a small O(1) amount of key material to verify
the server’s proof. The scheme introduced the notion of ho-
momorphic verification tags, which are crucial for achiev-
ing low-bandwidth verification. A set of verification tags is
stored on the server together with each file (one tag per file
block), allowing the client to check possession of file blocks
without access to the actual blocks; moreover, these tags can
be aggregated, resulting in compact proofs of possession.
As a result, the scheme uses O(1) bandwidth: The chal-
lenge and the response are each approximately 200 bytes.
Thus, PDP allows a client to verify data possession without
retrieving the data from the server and without having the
server access the entire file; this makes it practical to check
possession of large amounts of data that are stored remotely.

We extend PDP to apply to multiple replicas so that a
client that initially stores t replicas can later receive a guar-
antee that the storage system can produce t replicas, each
of which can be used to reconstruct the original file data.
A replica comprises the original file data masked with ran-
domness generated by a pseudo-random function (PRF). As
each replica uses a different PRF, replicas cannot be com-
pared or compressed with respect to each other. We modify
the homomorphic verification tags of PDP [4] so that a sin-
gle set of tags can be used to verify any number of replicas.
These tags need to be generated a single time against the
original file data. Thus, replica creation is efficient and in-
cremental; it consists of unmasking an existing replica and
re-masking it with new randomness. In fact, our multiple-
replica PDP scheme (MR-PDP) is almost as efficient as a
single-replica PDP scheme in all the relevant parameters.

Establishing the existence of different replicas is critical
to making PDP usable in distributed systems. It removes a
server’s ability to cheat in order to reduce storage require-
ments. At the same time, it preserves the provable secu-
rity and I/O and network efficiency of PDP when applied to
complex distributed systems.

2 The Multiple-Replica PDP Guarantees

In this section, we present the guarantees we seek to
achieve with our multiple-replica PDP system. We also dis-
cuss the practical implications of these guarantees and some
of their limitations.

Our multiple-replica PDP system uses replication in or-
der to improve the data availability and reliability of a
single-replica PDP system. The basic principle of data
replication is well understood. By storing redundant copies
of the data, one can ensure that if some of the copies are de-
stroyed, the data can still be recovered from the remaining
copies.

Most replication systems can tolerate failures if the fail-
ure modes of the replicas are independent. In the absence
of failure independence, all replicas may fail simultane-
ously and replication does not help (e.g., because all repli-
cas are stored in the same geographical location or because
data dependencies exist among replicas). When the storage
servers are non-malicious, geographic diversity can ensure
failure independence; e.g., the client stores data on servers
that have different locations. Thus, the main function of
the replication system is to tolerate independent, accidental
(i.e., non-malicious) failures, such as hardware failures.

The situation is different when storage servers are un-
trusted, i.e., servers are malicious and can collude. A repli-
cation system relying on untrusted servers cannot offer the
same assurance level as a system relying on benign servers,
because failure independence cannot be assumed. Even if
the client initially stores replicas on servers in different ge-
ographic locations, the servers can then move all the repli-
cas to one location and access them from that location on
demand. Such a system is not more reliable than a single-
replica system, even though it leads the client to believe so.
We are not aware of any system that guarantees improved
reliability against such a strong adversarial model, and our
system does not offer it either. Establishing the physical
location of the data is an important open problem.

Replication systems that rely on untrusted servers have
another generic limitation. To prove data availability, the
servers can produce replicas on demand upon a client’s
challenge; however, this does not prove that the actual repli-
cas are stored at all times. For example, malicious servers
may chose to introduce dependencies among replicas, by
encrypting the replicas before storing them. Replicas can
then be decrypted and served on demand whenever they are

2

requested by clients. By storing the encryption key in a
single location, the malicious servers can effectively negate
any reliability improvements achieved by storing the repli-
cas at different locations. Loss of the encryption key means
loss of all the replicas.

Given these generic limitations of replication systems
that rely on fully dishonest servers, we consider a model
in which storage servers are rational and economically mo-
tivated. In this context, cheating is meaningful only if it
cannot be detected and if it achieves some economic benefit
(e.g., using less storage than required by the contract). We
note that such an adversarial model is reasonable and cap-
tures many practical settings in which malicious servers will
not cheat and risk their reputation, unless they can achieve
a clear financial gain.

A client that stores equal-sized replicas F1, . . . ,Ft of a
file F with a multiple-replica PDP system achieves the fol-
lowing multiple-replica PDP guarantees:

MRG1: When it receives a challenge from the client, the
system can produce replicas F1, . . . ,Ft such that the client
can recover the original file from any of these replicas;

MRG2: The amount of storage used by the system is at
least t times the storage required by the system to store one
replica.

The practical implications of these guarantees are that
the multiple-replica PDP system can produce on demand
the data of the different replicas and that it cannot eliminate
replicas to save on storage space. The most practical and
beneficial attacks are those that reduce the servers resource
consumption. MRG2 ensures that servers cannot cheat by
claiming to store t replicas (and charging for storage of t
replicas), but storing fewer than t replicas; servers are also
motivated to store the actual replicas, because introducing
data dependencies does not achieve any storage savings and,
thus, it does not provide any economic benefit. Even with
MRG2 in place, servers may still try to cheat by deleting
parts of the data that are rarely accessed and hoping this will
go undetected; MRG1 addresses this by ensuring that, with
high probability, servers possess replicas in their entirety.

3 Multiple-Replica Provable Data Possession
(MR-PDP) Schemes

The client C has a file F, viewed as a finite ordered col-
lection of n blocks: F = (f1,f2, . . . ,fn), in which every
file block has β bits. The client wants to generate and store
t replicas of the file, F1, . . . ,Ft, on t servers, S1, . . . , St.

3.1 Definition of a MR-PDP system

We follow the definition of a PDP system introduced in
the context of storing a single replica at a single server [4]

 Challenge Phase

Setup Phase

.

➊ KeyGen
➋ TagBlock → tags
➌ ReplicaGen →
(F1,F2,...,Ft)

.

➍ CheckProof

➋ GenProof

➍
 F
2

, t
ag

s

➍ F t
, tags

➍
 F
1, t

ag
s

➋ GenProof ➋ GenProof

➊
 C

ha
lle

ng
e

➌
 P

ro
of

➊
 C

ha
lle

ng
e

➌
 P

ro
of

➊
 Challenge

➌
 Proof

S1 S2 St S1 S2 St

C

C

Figure 1. The Setup and Challenge phases of
a multiple-replica PDP system. During Setup,
the client C generates t replicas and tags and
stores them on t servers. During Challenge,
for a complete challenge, the client executes t
individual challenges.

and adapt this definition to the setting of multiple-replica
PDP in which multiple servers store multiple replicas.

A multiple-replica PDP scheme consists of five al-
gorithms (KeyGen,ReplicaGen,TagBlock,GenProof,
CheckProof). KeyGen is a key generation algorithm that is
run by the client to setup the scheme. ReplicaGen is used
by the client to generate a replica of F. TagBlock is run by
the client to generate the verification tag for a file block.
GenProof is run by a server and CheckProof is run by the
client in order to generate and to validate a proof of data
possession respectively.

As shown in Fig. 1, a multiple-replica PDP system has
three phases: Setup, Challenge and Replicate.

Setup: The client initializes the system by executing
KeyGen, uses ReplicaGen to generate t replicas of F and
pre-processes the file by using TagBlock to generate the
verification tags for these replicas. The client then stores
the replicas and the verification tags at the servers and re-
tains a small, constant amount of information that will be
used in the Challenge phase. Finally, the client may delete
the file, the replicas, and the tags from its local storage.

Challenge: The client can execute individual challenges
or complete challenges. For individual challenges, the client
interacts with a particular server Su and determines if Su
possesses replica Fu at the time of the challenge. A com-
plete challenge consists of t individual challenges, which
can be executed in parallel: The client challenges server Su
to prove possession of replica Fu, for 1 ≤ u ≤ t. There
is no restriction on how many times the client may run the
challenge protocol to ascertain if servers still possess file
replicas.

Replicate: This phase allows the client to perform replica
maintenance: The client can dynamically create new repli-
cas using ReplicaGen in order to maintain a desired repli-

3

cation factor whenever it detects a replica failure (i.e., some
server cannot prove possession of a replica).

3.2 Multiple-Replica PDP Schemes

In this section, we present our main result, an efficient
multiple-replica PDP scheme (MR-PDP) that guarantees
that the storage servers are storing multiple unique replicas.
To illustrate the pitfalls behind building such a scheme, we
first present two warmup schemes. The first one does not
ensure the multiple-replica PDP guarantees and the second
one is not as efficient as we would like. Our main scheme
overcomes these drawbacks. It successfully enforces the
multiple-replica PDP guarantees and its efficiency is close
to that of a single-replica PDP scheme.

A first attempt. Given a PDP scheme that ensures posses-
sion of a single file replica [4], it is tempting to use this
scheme repeatedly t times to ensure possession of t file
replicas at t servers: The client generates t different sets
of tags using different key material and stores a copy of the
file F and a set of tags at each server Su, for 1 ≤ u ≤ t;
the client then uses the single-replica PDP scheme to chal-
lenge the servers in proving possession of the replicas. Un-
fortunately, this scheme succumbs to the following collu-
sion attack, which breaks the MRG2 guarantee: Because
the replicas of the file are identical, the servers can collude
and collectively store only one replica, instead of storing t
replicas, unbeknownst to the client.

A second attempt (ENC-PDP). To prevent the collusion at-
tack described above, the client needs to generate and store
unique and differentiable file replicas.

We present a generic transformation that allows the
client to transform any PDP scheme that ensures possession
of a single file replica [4, 17] into a scheme that allows the
client to create and store t unique and differentiable repli-
cas at t servers: The client creates t different replicas by en-
crypting the original file under t different keys, stores these
t replicas and then uses the single-replica PDP scheme to
enforce possession of each of the t replicas. In essence,
this is equivalent to the client applying the single-replica
PDP scheme independently on t different files. We refer
to such a PDP scheme as ENC-PDP. While this transfor-
mation is generic, the efficiency of the resulting ENC-PDP
scheme is not optimal: The client cost (for both the Setup
and Challenge phases) is t times larger than the client cost
for the single-replica PDP scheme. It was shown in previ-
ous work [4] that the cost of the pre-processing phase rep-
resents the limiting factor for PDP schemes, as perceived
by the client. Thus, applying a single-replica PDP scheme
independently t times will require a significant effort on the
client and may render the scheme impractical, especially for
large values of t. Moreover, in order to create a new replica
during the Replicate phase, the client has to perform the

+ =

+ =

...

TagBlock

F̃

F̃

F̃

Encrypt

F F̃

F1

Ft

Σ

R1

Rt

Figure 2. During Setup the client encrypts the
file F into F̃ and uses F̃ to generate Σ (the set
of verification tags) and t different file repli-
cas F1, . . . ,Ft.

same amount of computation that was necessary to gener-
ate one of the original t replicas.

An efficient solution (MR-PDP). Our goal is to create t
unique and differentiable replicas suitable for use in PDP
based on pre-processing the input file “a single time.” A
single time means that the cost of the pre-processing phase
scales as O(n), the number of file blocks, rather than the
O(nt) required when pre-processing each replica separately
as in ENC-PDP. Another goal is to have a “cheap” way to
dynamically generate new replicas; in other words, gener-
ating new replicas should be able to reuse the effort put in
generating the first replica. Next, we give an overview of
our main scheme, MR-PDP, followed by its detailed de-
scription. In Section 4, we give a simple step-by-step ex-
ample of how MR-PDP operates.

Overview of the MR-PDP scheme. In the Setup phase,
the client pre-processes the file to be stored. As shown in
Fig. 2, the client first encrypts the original file F into F̃, and
then uses F̃ to generate a set of verification tags (one tag
per file block). The client uses the encrypted file F̃ to also
generate t different file replicas, where each replica Fu is
obtained by masking the blocks of F̃ with a random value
Ru (specifically generated for that replica). The client then
stores on each server Su a replica Fu and the set of veri-
fication tags. Note that the client generates a single set of
verification tags, independently of the number of replicas
created initially during Setup or later during Replicate.

In the Challenge phase, the client challenges Su to prove
possession of a subset of blocks from replica Fu (Fig. 3).
By sampling a random subset of blocks in each challenge,
the client ensures that (a) the server cannot reuse answers
to previous challenges, (b) the server’s overhead is bounded
by the number of sampled blocks (usually a small number),
and (c) the data possession guarantee holds over the entire
replica Fu. Server Su computes a proof of possession based
on the client’s challenge, the stored replica Fu, and the set

4

GenProof

chal

chal

chal

SK

CheckProof 0/1

1

3

4

2

Ru

Fu
V

V

V

C Su

Σ

Figure 3. In the Challenge phase, an individual
challenge for replica Fu consists of a 4-step
protocol between the client C and server Su:
(1) C challenges Su to prove possession of
replica Fu; (2) Su generates a proof of pos-
session V; (3) Su sends proof V to C; (4) C
checks the validity of V.

of verification tags. The client checks the validity of the
proof received from Su based on the random value Ru (re-
computed using its secret key), the challenge, and the proof
of possession.

In the Replicate phase, the client creates a new replica Fj
in the same fashion that replicas were created in the Setup
phase: It masks the encrypted file F̃ with random value Rj .

The most expensive operation for the client is the gen-
eration of the verification tags, but this is done only once
during Setup. New replicas are tied to the same set of ver-
ification tags generated during Setup. Thus, generating a
new replica is a lightweight operation, because it does not
require any expensive exponentiations on the client. Note
that the Challenge and Replicate phases can alternate.

Details of the MR-PDP scheme. We start by introduc-
ing some additional notation used by the construction, fol-
lowed by a detailed description of the Setup,Challenge and
Replicate phases of MR-PDP.
Preliminaries. We write fk(x) to denote f keyed with key
k applied on input x. Let p = 2p′+1 and q = 2q′+1 be safe
primes and letN = pq be an RSA modulus. Let g be a gen-
erator1 of QRN , the unique cyclic subgroup of Z∗N of order
p′q′ (i.e., QRN is the set of quadratic residues modulo N).
All exponentiations are performed moduloN , which we of-
ten omit writing explicitly. Let h : {0, 1}∗ → QRN be a
secure deterministic hash-and-encode function2 that maps
strings uniformly to QRN . Let κ, `, λ, ε be security param-

1g is obtained as g = a2, where a
R← Z∗N and gcd(a± 1, N) = 1.

2h is computed by squaring the output of the full-domain hash function
for the provably secure FDH signature scheme [6, 7] based on RSA. We
refer the reader to [6] for ways to construct an FDH function out of regular
hash functions, such as SHA-1. Alternatively, h can be the deterministic
encoding function used in RSA-PSS[8]

eters and let H be a cryptographic hash function. In addi-
tion, we make use of a pseudo-random function ψ and two
pseudo-random permutations π,EK defined as:

ψ : {0, 1}κ × {0, 1}log2(t)+log2(n) → {0, 1}β+ε;
π : {0, 1}κ × {0, 1}log2(n) → {0, 1}log2(n);
EK : {0, 1}κ × {0, 1}β → {0, 1}β ,

where β is the bit size of a file block, and both β and ε must
be large enough (e.g., β ≥ 160, ε ≥ 80). In practice, EK
can be implemented with a standard symmetric cipher.

MR-PDP: Setup phase. The client runs KeyGen to gener-
ate the system’s public and secret parameters. The public
parameters are N and g. The secret parameters are e, d, v, z
and K. The values e and d are chosen such that e is a large
secret prime, both are larger than λ, and ed ≡ 1 mod p′q′.
The parameters v, z,K are κ-bit randomly chosen values
that will be used as key material.

The client first obtains an encrypted file F̃ by encrypting
the original file F with the key K: F̃ = {b1,b2, . . . ,bn},
where bi = EK(fi), for 1 ≤ i ≤ n. The client then gen-
erates t different file replicas as follows. Replica Fu, for
1 ≤ u ≤ t, is generated by masking the blocks of the en-
crypted file F̃ with random values computed specifically for
the u-th replica. More precisely, Fu = (mu,1, . . . ,mu,n),
where mu,i = bi + ru,i, for 1 ≤ i ≤ n. We emphasize
that the blocks bi and ru,i are added as large integers in
Z. Note that the blocks bi could be arbitrarily large (even
larger than N). The random-looking value ru,i is obtained
as the output of the pseudo-random function ψ applied on
u||i (i.e., ru,i = ψz(u||i)).

The client also generates the set of verification tags
Σ = {T1,T2, . . . ,Tn} by computing a tag Ti for each block
bi of the encrypted file F̃: Ti = (hi · gbi)d mod N , for
1 ≤ i ≤ n, where hi = h(v||i). Note that each tag Ti
is a function of the tagged block bi, which will allow a
server Su to prove possession of the corresponding block
mu,i from replica Fu. Also, note that each tag Ti includes
information about the index i, which binds the tag to the i-
th block and prevents a server from using the tag to prove
possession for a block with a different index. The set of
verification tags is computed only once and all the replicas
generated during the Setup and Replicate phases will be
tied to this set of tags.

At the end of the Setup phase, the client stores on each
server Su the corresponding replica Fu and the set of veri-
fication tags Σ. The client may then delete the original file,
the replicas and the verification tags from its local storage.
Note that while the servers need to collectively store t dis-
tinct replicas, they only have to collectively store one copy
of Σ, which may lead to a reduction in the additional server
storage when compared to the ENC-PDP scheme.

MR-PDP: Challenge phase. To check possession of replica
Fu = (mu,1, . . . ,mu,n), the client challenges server Su to

5

prove possession of a random subset of blocks from Fu.
Previous work [4] showed that if the server is missing a
fraction of the data, then the number of blocks that needs
to be checked in order to detect server misbehavior is in the
order of O(1). For example, if the server Su is missing 1%
of the replica Fu, then the client only needs to ask proof of
possession for c = 460 randomly chosen blocks of Fu.

The client’s challenge for Su includes c (the number
of challenged blocks), k (the key for the pseudo-random
function π which determines the challenged blocks) and
gs = gs mod N . Here k is a κ-bit value, s ∈ Z∗N , and
both k and s are chosen randomly for each challenge.

Upon receipt of a challenge, server Su determines the
indexes of the challenged blocks i1, . . . , ic from replica
Fu using the pseudo-random permutation π keyed with k:
ij = πk(j), for 1 ≤ j ≤ c. Su then generates a proof of
possession V = (T, ρ) for these blocks and returns it to the
client. The first value of the proof, T, is computed by multi-
plying the verification tags corresponding to the challenged
blocks: T = Ti1 · . . . ·Tic . The second value, ρ, is computed
by raising gs to the sum of the challenged replica blocks:
ρ = g

mu,i1+...+mu,ic
s mod N .

Let bchal =
∑c
j=1 bij , mchal =

∑c
j=1 mu,ij and rchal =∑c

j=1 rij , be the sum of the challenged blocks in the en-
crypted file F̃, the sum of the challenged blocks in the
replica Fu, and the sum of the random values used to ob-
tain the blocks in Fu from the blocks of F̃ respectively.
From the definition of the replica blocks, we have mchal =
bchal + rchal.

If the proof of possession V = (T, ρ) that the client gets
back has been correctly computed, then T and ρ should look
as follows: T = (hi1 · . . . ·hic ·gbchal)d, ρ = gmchal

s . The client
verifies the validity of the proof by checking if a relation be-
tween T and ρ holds, namely if (Te

hi1 ·...·hic
·grchal)s equals ρ.

The correctness of this check results from the commutativ-
ity of the exponents in (gmchal)s and (gs)mchal . The intuition
behind this check is that the client can “re-generate” the ran-
dom values ru,i (used to generate replica Fu from the en-
crypted file F̃) and then combine them with the blocks of
the encrypted file F̃ in the exponent (these are contained in
the value T in the proof), so that it can verify if they match
the replica blocks (used by the server to compute the value
ρ in the proof). The algebraic properties of our construct
allow the client to perform this check without retrieving the
replica blocks from the server.

MR-PDP: Replicate phase. The client can dynamically
generate a new replica Fu from the encrypted file F̃. If it
does not have F̃ in its local storage, the client retrieves any
of the existing replicas, say Fw, and unmasks it in order to
recover F̃ (e.g., bi = mw,i − rw,i, for 1 ≤ i ≤ n). The
new replica Fu is derived from F̃ by using the same mask-
ing method that was used to derive replicas during the Setup

phase. The replica creation process is lightweight, because
it does not require any expensive exponentiations on the
client. This allows the client to easily create new replicas
on demand, meeting an essential requirement of any replica
management system.

Efficiency of the MR-PDP scheme. Our multiple-replica
PDP scheme is as efficient as a single-server PDP scheme
in most of the parameters. We express the computation cost
as the cost of performing modular exponentiations. Pre-
processing in the Setup phase requires O(n) computation
on the client and is independent on the number of replicas.
An individual challenge in the Challenge phase requires
O(1) computation for both the client and the challenged
server (in fact, each has to perform roughly 2 exponenti-
ations). Also, a server only needs to access O(1) blocks
to answer an individual challenge. The communication cost
for an individual challenge is alsoO(1), because the client’s
challenge and the server’s reply each have around 200 bytes.
The client stores only a small, constant amount of key ma-
terial; the storage servers need to store a single set of ver-
ification tags (in addition to the actual replicas), regardless
of the number of replicas. The client can cheaply generate
a new replica during the Replicate phase, because this does
not involve any exponentiations.

Security of the MR-PDP scheme. The security of the
MR-PDP scheme is captured by the following theorem:

Theorem 3.1 MR-PDP achieves the multiple-replica
PDP guarantees MRG1 and MRG2.
The proof, omitted due to space limitations, follows from
the security proof for a single-replica PDP scheme [4].
Remarks. Instead of sending the value ρ, the server could
hash this value and send H(ρ) (the client’s check would
change accordingly). For ease of exposition, we presented
MR-PDP without this optimization that would further re-
duce the size of a proof of possession.

Also, note that the MR-PDP scheme achieves private
verifiability (only the client, owner of the data, can check
data possession), while single-replica PDP schemes [4] also
achieve public verifiability.

MR-PDP proves possession of the sum of the challenged
blocks mu,i1 + . . . + mu,ic , which offers a level of security
adequate for most practical purposes and leads to very effi-
cient protocols. The client can be assured that the Su pos-
sesses each one of the challenged blocks by asking proof
for ai1 · mu,i1 + . . . + aic · mu,ic , where the coefficients
ai1 , . . . , aic are randomly chosen for each challenge. How-
ever, this stronger guarantee requires additional computa-
tion at both server and client (see [4] for more details).

4 A MR-PDP Example
Fig. 4 demonstrates the operation of MR-PDP when the

client performs an individual challenge for replica Fu by

6

T1
b1 +
ru,1

T2
b2 +
ru,2

T3
b3 +
ru,3

T4
b4 +
ru,4

T5
b5 +
ru,5

T6
b6 +
ru,6

T7
b7 +
ru,7

T8
b8 +
ru,8

....

C

T2

b2 +
ru,2

client challenges
server for random
subset of blocks

T4

b4 +
ru,4

x

+

T7

b7 +
ru,7

x

+ =

T

b +
ru

server computes
proof for random

block subset exp

Ti =

T =

(

h2 · h4 · h7 · g
b2+b4+b7

)d

=

(

hi · g
bi

)d

= g
(b

2
+ru,2)+(b4+ru,4)+(b7+ru,7)

s

client gets
small constant-

size proof

client checks
proof

(

T
e

h2 · h4 · h7

· gru,2+ru,4+ru,7

)

s

?
= ρ

➊

➌

➍

➋

gs

ρTn

ρ

bn +
ru,n

Figure 4. In the Challenge phase, an individual challenge for replica Fu consists of a 4-step protocol
between the client C and server Su: (1) C challenges Su to prove possession of replica blocks with
indices 2, 4 and 7; (2) Su generates a proof of possession V = (T, ρ) for the challenged blocks; (3) Su
sends proof V to C; (4) C checks the validity of V.

asking server Su for proof of possession of replica blocks 2,
4, and 7. It provides an informal run-through of the protocol
that gives insight into the operation of MR-PDP.

To respond to a challenge successfully, the server must
have available the replica Fu, comprised of blocks (b1 +
ru,1), . . . , (bn + ru,n), and the verification tags, which are
of the form (hi · gbi)d for block bi. This replica differs
from other replicas in the system only in the masking in-
formation, i.e., ru,i for the i-th block. Informally, each tag
consists of (1) a secure hash of the block index h(i), which
binds the tag to the block offset, and (2) the block’s data
exponentiated, which binds the tag to the data. Both parts
are bound to the user’s private key d.

The client submits a random challenge to the server,
which consists of a new base of exponentiation gs =
gs mod N , in which s is drawn at random and g is the base
used in the verification tags.

The client also selects a random subset of blocks, which
the server must possess in order to pass the challenge (step
1). In doing so, the client achieves a probabilistic posses-
sion guarantee by sampling (spot checking) the server. This
random selection is part of the PDP scheme and limits the
I/O overhead at the server.

In response to this challenge, the server computes the
proof of possession that consists of two values: T and ρ
(step 2). The first value, T, is assembled by multiplying
the tags of the challenged blocks. The second value, ρ, is
derived from the contents of the challenged blocks them-
selves. The server sums the file blocks (seen as large num-
bers) and then exponentiates to this sum. By summing first,
the server calculates the proof with a single exponentiation,
regardless of how many blocks are challenged. The size of
the data used for exponentiation is β log cwhen challenging
c blocks of size β.

The proof of possession is then transferred to the client
(step 3). It is of small constant size, because all compu-
tations are performed modulo N . We use 1024-bit RSA

moduli in our implementation, which makes the size of data
transferred around 400 bytes. The client verifies the proof
based on its knowledge of the masking information ru,i and
its selection of the random challenge s (step 4). The mask-
ing information can be generated on demand and, thus, has
not been stored by the client.

The protocol verifies both the specific replica in addition
to ensuring that the replica corresponds to the original file.
The verification tags have no replica information in them
and do not include any masking data. Thus, they verify the
original file. The same set of verification tags applies to
all replicas. But the client uses the replica-specific masking
information to ensure that the data came from the specific
checked replica.

5 Experimental Evaluation

We evaluate MR-PDP against the ENC-PDP solution
presented in Section 3. ENC-PDP is the natural, obvious
solution to prevent collusion among storage servers. It cre-
ates unique, incomparable replicas by encrypting files under
different keys. It then stores the replicas with an untrusted
storage system and uses standard, single-replica PDP [4] to
check that servers possess data. The combination of en-
cryption and single-replica PDP allows ENC-PDP to meet
the multiple-replica guarantees put forth in Section 2.

Our performance evaluation focuses on the key perfor-
mance metrics of PDP and MR-PDP. Pre-processing per-
formance (the time to generate tags and, for MR-PDP, to
mask the file) governs the write (creation) throughput of the
system [4]. We also look at server performance during the
challenge phase. Critical to the viability of any data check-
ing system will be that it does not burden storage servers
with I/O or computation. This is PDP’s principal benefit
[4]. Less important is computation at the client during the
challenge phase, although we evaluate this as well.

7

All experiments were conducted on a PowerPC G5 sys-
tem with two CPUs running at 2 GHz each, and with a 512
KB cache, a 1 GHz frontside bus per processor, and 1024
MB of RAM. The system runs Max OS X v 10.4.10, kernel
version 8.10.0. Algorithms use the OpenSSL cryptographic
library (version 0.9.8g) with a modulus N of size 1024 bits
and 4 KB file blocks. The experiments were performed us-
ing a Maxtor 6Y160M0 SATA 7200 rpm hard disk with
160 GB capacity running the HFS filesystem. Purely for
evaluation purposes, we instantiated EK with AES using
128-bit keys to encrypt the blocks for both MR-PDP and
ENC-PDP, and we used SHA1 for h and set ε = 0 for the
PRF ψ. The random values used for masking in MR-PDP
were generated using the key derivation function proposed
by Shoup [25].

Experiments measure the processing costs of the dif-
ferent schemes by measuring the computation time in the
OpenSSL library. These costs do not include time to per-
form disk I/O. All data represent the mean of 20 trials. We
do not include confidence intervals as the variation between
experiments was negligible.

5.1 Pre-Processing Multiple Replicas
We study the scalability of MR-PDP when creating

multiple replicas and compare its performance to that of
ENC-PDP. Pre-processing is the fundamental performance
concern in MR-PDP and the original motivation for this
work. The original single-replica PDP scheme [4] provides
an extremely efficient challenge phase, but is performance-
limited by the time to pre-process one file prior to storage.
This limitation is mitigated by the fact that pre-processing
is only done once, while challenges are frequent over a long
period of storage. However, in the multiple replica setting,
the system needs to initially create several replicas, and later
to create new replicas on demand; this potentially worsens
the limitations of pre-processing.

Our pre-processing experiments show that MR-PDP re-
duces overall pre-processing costs by amortizing these costs
over multiple replicas. This is our principal performance
improvement. Fig. 5 gives the per-replica cost of pre-
processing a 1 MB file as a function of the number of
replicas for MR-PDP, ENC-PDP, and re-replicating with
MR-PDP. Re-replicating measures the cost of creating a
new replica given that the tags for existing replicas have al-
ready been created. It consists of unmasking the file and
re-masking it with new randomness.

For a single replica, MR-PDP and ENC-PDP take the
same amount of time, because they perform essentially
the same tasks (encryption and the generation of tags).
ENC-PDP realizes no benefit from generating more repli-
cas and each replica takes less that 9 seconds to pre-process.
Re-replicating with MR-PDP measures the cost to unmask
and re-mask data only. No new verification tags need to

0

1

2

3

4

5

6

7

8

9

10

0 4 8 12 16

Number of Replicas

T
im

e
(s

ec
s)

ENC-PDP MR-PDP MASK ONLY

Figure 5. Per-replica computational cost
of pre-processing a 1 MB file using
ENC-PDP, MR-PDP, and re-replicating with
MR-PDP (MASK ONLY).

be computed. Each replica takes only about 0.07 seconds.
As we increase the number of replicas, the per-replica cost
of MR-PDP decreases. The expensive step of generating
the verification tags is amortized over all replicas. In the
limit, the performance of MR-PDP approaches that of re-
replication. For 16 replicas, MR-PDP takes only 0.56 sec-
onds per replica.

5.2 Challenging Multiple Replicas

We now turn to the performance of MR-PDP in the chal-
lenge phase. Fig. 6 shows the client and server processing
costs when challenging 460 blocks from a single 100 MB
replica. This challenge represents 99% confidence that less
than 1% of the data have been damaged [4].

MR-PDP places no additional burden on the storage
server during the challenge phase. The server protocol is
identical for both MR-PDP and ENC-PDP and, thus, server
processing costs are the same. Exponentiating to the sum of
the data comprises the entire 0.55 seconds, as the server ex-
ponentiates to a number slightly larger than the block size
(i.e., 4096 bytes + log2(460) bits). The costs of summing
and multiplying the information are neglibible. Minimiz-
ing the server’s effort is essential given that many clients
share a server’s resources. In fact, limiting I/O and com-
putation costs at the server is one of the principal benefits
of the single-replica PDP scheme [4] on which ENC-PDP
relies. MR-PDP inherits this benefit.

Challenges incur relatively more cost at the client for
MR-PDP than for ENC-PDP. The reason is that the client
has the additional cost of generating and exponentiating to
the masking information (gru,2+ru,4+ru,7 in the example in
Fig.4), which costs an additional 0.111 seconds. This makes

8

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4

T
im

e
 (

se
c
s)

Exponentiations
Masking
Other

Client Server

Figure 6. Challenge performance of
ENC-PDP and MR-PDP for a single replica.

the MR-PDP client computation almost four times as ex-
pensive as ENC-PDP: 0.047 seconds versus 0.177 seconds.

The additional computational cost at the client is not
a performance or scalability concern when deploying
MR-PDP in distributed storage systems. The absolute time
spent on computation is still much less than that of the
server. The overheads are small and client computation is a
scalable resource.

The increased computational demand on the client can
be mitigated by conducting concurrent challenges against
multiple replicas. In doing so, the client computes a por-
tion of the verification step only once and amortizes this
cost over all replicas. Informally, a concurrent challenge
breaks the verification computation into two components,
which we illustrate using the example in Fig. 4: (1) the
data component (gb2+b4+b7) is obtained from the aggre-
gated tag (Te/(h2 · h4 · h7)); (2) the masking compo-
nent (gru,2+ru,4+ru,7). If we use the same indices for the
challenged blocks across replicas, then the data component
needs to be computed only once for all replicas, whereas the
masking component differs for every replica. Fig. 7 shows
the relative cost of conducting challenges using ENC-PDP,
MR-PDP individually on each replica, and MR-PDP us-
ing this optimized concurrent challenge against all replicas.
The optimization for checking multiple replicas results in
modest, although not insubstantial, savings. At 16 replicas,
concurrent checking reduces costs by about 16%. Again,
generating the randomness dominates the cost of checking
and this component of checking needs to be performed for
each replica.

6 Related Work
Replica Maintenance. Previous work on the maintenance
of replicas tracks multiple copies of a file throughout a dis-

0

0.5

1

1.5

2

2.5

3

0 4 8 12 16

Number of Replicas

T
im

e
(s

ec
s)

ENC-PDP MR-PDP MR-PDP (Optimized)

Figure 7. Challenge performance of
ENC-PDP and MR-PDP with and without
multiple-replica optimizations.

tributed storage system and then creates or destroys replicas
in order to achieve management goals. These goals include
availability [9], preservation [20], and censorship resistance
[28]. None of the previous work on replica maintenance in-
cludes guarantees that multiple copies of data are actually
maintained.

Maintenance is driven by replication analysis, which
characterizes the failure and recovery of data in distributed
systems and quantifies the effects on the availability of data.
These include birth/death models [11, 29], replica turnover
or “churn” [27], and the lifetime of data [22]. The Far-
site file system uses a peer-to-peer replica exchange al-
gorithm in order to balance the availability of all replicas
in a serverless file system [2, 9]. Lots of Copies Keep
Stuff Safe (LOCKSS) [5, 20] employs reputation protocols,
called opinion polls, to identify and repair damaged repli-
cas. Opinion polls compare the contents of multiple replicas
against each other and, thus, cannot be used to determine
that replicas are unique and differentiable.

File Checking. Our work on checking replicas extends the
PDP [4] protocol for data checking. We select PDP because
of its security and performance parameters. Recently, re-
mote file checking has received much attention.

Juels and Kaliski [17] describe Proofs of Retrievability
(PoR) for checking that a remote server can produce a file
that was previously stored. PoR is based on encrypting a file
and inserting random sentinel blocks–that the server cannot
differentiate from encrypted blocks—within the file. PoR
supports only a finite number of challenges, because each
challenge consumes sentinel blocks.

Shah et al. [24] describe a data checking scheme based
on data commitment, storing an encrypted file and a one-
way function of the encryption key, and checking the com-

9

mitted version against pre-computed challenges. Because
challenges are pre-computed, the scheme also supports only
a finite number of challenges and requires metadata linear
in the number of challenges.

Deswarte et al. [13] and Filho et al. [14] provide tech-
niques to verify that a remote server stores a file using RSA-
based hash functions. The limitation of these algorithms lies
in the computational complexity at the server, which must
exponentiate the entire file, accessing all of the file’s blocks.

Schwarz and Miller [23] present a data checking scheme
for distributed erasure-coded data that realizes availability
benefits of replication. They use xor-based, parity erasure
codes to create n shares of a file that they store at mul-
tiple sites. The technique cross compares the contents of
the shares using algebraic signatures, which have the prop-
erty that the signature of the parity block equals the par-
ity of the signatures of the data blocks. The limitations of
the Schwarz and Miller scheme lie in the underlying data
checking protocol. The file access and computation com-
plexity at the server and the communication complexity are
all linear in the total number of file blocks per challenge.

Acknowledgments. We thank Breno de Medeiros and
Samuel Wagstaff, Jr. for their insightful comments.

References

[1] A. Rowstron and P. Druschel. Storage Management and
Caching in PAST, A Large-scale, Persistent Peer-to-peer
Storage Utility. In Proc. of SOSP ’01, 2001.

[2] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak,
J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Watten-
hofer. Farsite: Federated, available, and reliable storage for
an incompletely trusted environment. In Proc. of OSDI ’03,
2003.

[3] Amazon Simple Storage Service (Amazon S3). aws.
amazon.com/s3.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,
Z. Peterson, and D. Song. Provable data possession at un-
trusted stores. In Proc. of ACM CCS ’07. Full version: Cryp-
tology ePrint Archive. Report 2007/202, 2007.

[5] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos,
P. Maniatis, T. Giuli, and P. Bungale. A fresh look at the
reliability of long-term digital storage. In Proc. of EuroSys,
2006.

[6] M. Bellare and P. Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proc. of ACM
CCS ’93, 1993.

[7] M. Bellare and P. Rogaway. The exact security of digital
signatures - How to sign with RSA and Rabin. In Proc. of
EUROCRYPT, 1996.

[8] M. Bellare and P. Rogaway. PSS: Provably secure encoding
method for digital signatures. IEEE P1363a: Provably secure
signatures, 1998.

[9] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer.
Feasability of a serverless distributed file system deployed
on an existing set of desktop PCs. In Proc. of ACM SIG-
METRICS, 2000.

[10] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weather-
spoon, M. F. Kaashoek, J. Kubiatowicz, and R. Morris. Effi-
cient replica maintenance for distributed storage systems. In
Proc. of NSDI ’06, 2006.

[11] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Proc. of
SOSP ’01, 2001.

[12] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and
R. Morris. Designing a DHT for low latency and high
throughput. In Proc. of NSDI ’04, 2004.

[13] Y. Deswarte, J.-J. Quisquater, and A. Saidane. Remote in-
tegrity checking. In Proc. of Conference on Integrity and
Internal Control in Information Systems (IICIS’03), 2003.

[14] D. L. G. Filho and P. S. L. M. Baretto. Demonstrating data
possession and uncheatable data transfer. Cryptology ePrint
Archive, 2006. Report 2006/150.

[15] P. Golle, S. Jarecki, and I. Mironov. Cryptographic primi-
tives enforcing communication and storage complexity. In
Proc. of Financial Cryptography, 2002.

[16] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated
failures. In Proc. of NSDI ’05, 2005.

[17] A. Juels and B. S. Kaliski. PORs: Proofs of retrievability for
large files. In Proc. of ACM CCS, October 2007.

[18] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure un-
trusted data repository (SUNDR). In Proc. of OSDI 2004.

[19] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A cooperative internet backup scheme. In Proc.
of USENIX Technical Conference, 2003.

[20] P. Maniatis, M. Roussopoulos, T. Giuli, D. Rosenthal,
M. Baker, and Y. Muliadi. The LOCKSS peer-to-peer dig-
ital preservation system. ACM Transactions on Computing
Systems, 23(1):2–50, 2005.

[21] A. A. Muthitacharoen, R. Morris., T. M. Gil, and B. Chen.
Ivy: A read/write peer-to-peer file system. In Proc. of OSDI
’02, 2002.

[22] S. Ramabhadran and J. Pasquale. Analysis of long-running
replicated systems. In Proc. of INFOCOM, 2006.

[23] T. S. J. Schwarz and E. L. Miller. Store, forget, and check:
Using algebraic signatures to check remotely administered
storage. In Proc. of ICDCS, 2006.

[24] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan.
Auditing to keep online storage services honest. In Hot Top-
ics in Operating Systems (HotOS), 2007.

[25] V. Shoup. A proposal for an ISO standard for public key
encryption (v. 2.1). IBM Zurich Research Lab Technical Re-
port, December 2001.

[26] SRB—Storage Resource Broker. http://www.sdsc.
edu/srb/index.php/Main_Page.

[27] K. Tati and G. Voelker. On object maintenance in peer-to-
peer systems. In International Workshop on Peer-to-Peer
Systems, 2006.

[28] M. Waldman and D. Mazières. Tangler: a censorship-
resistant publishing system based on document entangle-
ments. In Proc. of ACM CCS, 2001.

[29] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding
vs. replication: A quantitative comparison. In International
Workshop on Peer-to-Peer Systems, 2002.

10

