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ABSTRACT

Visual surveillance in wide areas (e.g. airports) relies on cam-
eras that observe non-overlapping scenes. Multi-person track-
ing requires re-identification of a person when he/she leaves
one field of view, and later appears at another. For this, we use
appearance cues. Under the assumption that all observations
of a single person are Gaussian distributed, the observation
model in our approach consists of a Mixture of Gaussians. In
this paper we propose a distributed approach for learning this
MoG, where every camera learns from both its own observa-
tions and communication with other cameras. We present the
Multi-Observations Newscast EM algorithm for this, which is
an adjusted version of the recently developed Newscast EM.
The presented algorithm is tested on artificial generated data
and on a collection of real-world observations gathered by a
system of cameras in an office building.

Index Terms— Wide-area video surveillance, Data as-
sociation, Mixture of Gaussian, EM algorithm, Distributed
Computing

1. INTRODUCTION

With the increasing use of camera surveillance in public ar-
eas, the need for automated surveillance solutions is rising. A
particular problem is camera surveillance in wide areas, such
as airports, shopping centres etc. Such areas typically can-
not be fully covered by a single camera, and surveillance of
such places relies on a network of sparsely distributed cam-
eras. Every camera observes a scene which is (partly) disjoint
from the scenes observed by other cameras, as indicated in
figure (1).

In this particular setting the problem of tracking persons
across all cameras is difficult. Someone is first observed by
one camera, then he is out of sight of any camera, and later
on he reappears at another camera. We would like to know
whether the two observed persons are in fact the same indi-
vidual.

The work described in this paper was conducted within the EU Inte-
grated Project COGNIRON (”The Cognitive Robot Companion”) and was
funded by the European Commission Division FP6-IST Future and Emerg-
ing Technologies under Contract FP6-002020.

Fig. 1. A map of sparsely distributed cameras in a wide area video
tracking setting

In current systems, a single computer collects all observa-
tions from all cameras and learns a model which describes the
correspondence between observations and persons. Problems
with such a central system include: privacy issues, because all
observations are sent over a network and are centrally stored;
network bottleneck, because all observations are sent to the
same node; and the sheer risk of having one central system.

In this paper we present an alternative approach: a dis-
tributed system. In this approach there is no central pro-
cessing unit nor a central repository and there is no all-to-all
broadcasting communication. Each camera is a standalone
tracking unit, which stores its own observations and exchanges
only limited data with other cameras.

The local observations in combination with the exchanged
data allow each camera to learn its own local model. In this
paper we show that these local models converge quickly to
the global model. Motivations for such a distributed system
include, (i) it could use information sources that are spatially
distributed more efficiently, (ii) it is more secure, because ob-
servations are never sent over the network and (iii) it could
enhance the performance of computational efficiency, band-
width usage and/or reliability [1, 2].

Similar to other approaches [3] we use appearance cues
such as average colour, or length to find the correspondence
between observations and persons. Since the same person will
appear differently each time he is observed (because of illu-
mination and pose) we model the observations as a stochastic
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variable. We assume that the observations are samples drawn
from a Gaussian distribution with person specific parameters,
which are constant over time. In a system where p-persons
are monitored, observations of all persons are generated by a
Mixture of Gaussians (MoG) with p-kernels.

This distribution can be considered as the observation model
which, together with the transition model, is needed to find
the most likely tracks given a sequence of observations. In
this paper we only consider the learning of the parameters of
the MoG with the Expectation-Maximization (EM) algorithm
[4]. Given the learned MoG we assign the most likely person
to each observation. A track is the collection of all observa-
tions assigned to a person.

The use of the MoG model, allows us to exploit recently
developed algorithms for distributed learning of the parame-
ters of an MoG [5, 6]. The EM algorithm for MoG relies on
a model’s sufficient statistics (mean and covariance) over the
observations. Interestingly, these sufficient statistics can be
computed efficiently by a distributed system without the need
to gather all observations in a central repository.

The research described in this paper is limited to appear-
ance cues only. Spatial and temporal constraints (e.g. mini-
mum travel time between two cameras) are neglected for clar-
ity of presentation. Nevertheless the key ideas presented in
this paper are verified with real-world data and can be ex-
tended to handle spatial/temporal constraints.

In the following section we first provide some background
about learning parameters of an MoG with EM and introduce
the approaches for learning an MoG in distributed systems.
In our system we use Multi-Observations Newscast EM, pre-
sented in section 3, which is an extension of the gossip-based
Newscast EM algorithm from [5]. In section 4 we present
experimental results on both artificial and real data.

2. EM FOR MIXTURE MODELLING

When a person is passing through the field of view of a cam-
era, the camera typically records several images of the per-
son. In our approach we assume that passing through a field
of view of a camera results in a single observation that en-
codes the appearance description of the person and the cam-
era identifier. The exact appearance features will be defined
in Section 4, for the moment we just will assume existence
of some high-dimensional features describing the appearance
of a person. When multiple persons are observed by multiple
cameras the data consists of a sequence of observations.

In this paper we assume that the number of persons (p)
and number of cameras (c) are known in advance. In contrast
to [3], our system uses only appearance based features and
we do not use a motion model. Each person is modelled as a
single Gaussian function, with parameters θs = {πs, µs,Σs},
where πs is the mixing weight, µs the mean and Σs the co-
variance matrix for person s. The mixture of Gaussians is
given by X = {θs}p

s=1.

X̄

· · · Ok−1 Ok · · ·

· · · Lk−1 Lk · · ·

· · · Ck−1 Ck · · ·

Fig. 2. Graphical Model of Appearance Based Tracking.

The model above assumes that most of variations in ap-
pearance features due to changing poses can be captured by a
Gaussian pdf. In order to remove artefacts due to varying il-
lumination at different cameras the appearance features have
to be preprocessed [3].

In this section we first describe the generative model for
these data. Secondly we describe how parameters of this
model are learnt in the central case, where all data are avail-
able. Thirdly we present two different approaches for dis-
tributed EM.

2.1. Generative Model

A Bayesian Network is a convenient way to express the prob-
abilistic relations between different variables in a system. The
generative model, which is used by the central and distributed
implementation of our Appearance Based Tracking system is
shown in figure 2. In the model, X represents the Mixture
of Gaussians, O the appearance part of an observation, L the
label which uniquely identifies a person and C a camera iden-
tifier which is also part of an observation.

In the model Lk denotes the hidden variable which identi-
fies the person appearing at the k’s observation. This observa-
tion yk of a person s consist of two parts, yk = {ok, ck}. The
first part ok represents the appearance features of the person.
The probability of these features given the model (X) and
the label (Lk) is p(ok|X, Lk) = N (ok|µLk

; ΣLk
). The sec-

ond part (ck) is the camera location where the person is seen,
which is assumed to be noise free. Because we ignore cam-
era specific variations, there are no links between the camera
identifier C and any other nodes.

2.2. Learning the Parameters

A traditional (centralized) approach for learning the param-
eters of a MoG from the observations is the EM algorithm.
The EM algorithm is an iterative procedure where for a num-
ber of iterations, first the responsibility qk,s for each obser-
vation and each kernel is calculated. This is the E-step (1),



and it uses the current parameters {πs, µs,Σs}. Secondly for
each kernel the parameters are optimized based on the current
responsibilities, the M-step (2-4).

qk,s =
πs N (ok|µs; Σs)∑p

r=1 πr N (ok|µr; Σr)
(1)

πs =
∑n

k=1 qk,s

n
(2)

µs =
∑n

k=1 qk,s ok

nπs
(3)

Σs =
∑n

k=1 qk,s okoT
k

nπs
− µsµ

T
s (4)

For the first iteration of the EM algorithm, the parameters
have to be initialised. This can be done randomly by setting
qk,s to some random positive value and then normalize it so
that

∑p
s=1 qk,s = 1. The parameters could also be initialised

with the K-Means algorithm [7]. There are many EM imple-
mentation for systems with all observations available [7, 8].

2.3. Distributed EM

The previous section described a method for learning the pa-
rameters of an MoG if all data are available. In the distributed
setting, the data are distributed over a number of nodes. In
our situation, a node corresponds to a camera in the system.

There are two kinds of solutions for distributed EM, the
first relies on a fixed routing scheme along all nodes, the other
on gossip-based randomized communication.

In both approaches the E-step of the EM algorithm is com-
puted locally. However for the M-step statistics from all nodes
are necessary to create a global model. During the M-step, the
parameters have to be updated using all observations, accord-
ing to functions (2-4). It is important to note that all these
functions are averages.

Using a fixed routing scheme along all nodes [6, 9] the
complete statistics of all observations are gathered and sent
over the network. Once all nodes have received the com-
plete statistics they are able to update the parameters cor-
rectly. There are some variations which are less restrictive
in their communication routing. However these may be con-
verge to suboptimal maxima more often than standard EM
[6].

Gossip based methods are fundamentally different. They
do not rely on a fixed routing scheme, but on randomization.
A gossip-based protocol could be used to calculate the mean
value of a distributed dataset [5, 10].

Each node estimates its own mean, based on the data avail-
able at its node. Using a randomized communication pro-
tocol each node polls the estimates of several other nodes.
With those gathered estimates the node can re-estimate its
own mean. Each node’s estimate of the mean will converge
very fast to the correct mean. This class is robust and simple
to implement.

One of the advantages of the gossip-based approach is that
all nodes are running the same protocol in parallel, whereas
in the other approach only one node at a time is carrying out
computations.

3. MULTI-OBSERVATIONS NEWSCAST EM

In this section we present Multi-Observations Newscast EM,
which is a generalisation of the Newscast EM [5]. Multi-
Observations Newscast EM is a gossip-based distributed al-
gorithm for learning the parameters of a mixture of Gaussians.

The distributed tracking system is seen as a network of
nodes, each with a number of observations. In this network
arbitrary point-to-point communication is possible between
all nodes. The Newscast EM algorithm assumes that each
node holds exactly one observation. Our Multi-Observations
Newscast EM algorithm allows each node to have any number
of observations.

Next, we introduce Multi-Observations Newscast Averag-
ing which is the underlying principle for Multi-Observations
Newscast EM. Thereafter we will describe the algorithm it-
self.

3.1. Multi-Observations Newscast Averaging

The Newscast Averaging algorithm [11] can be used for com-
puting the mean of a set of observations that are distributed
over a network. We present Multi-Observations Newscast Av-
eraging, which can handle any number of observations at a
node.

Suppose that observations o1, . . . , on are arbitrarily dis-
tributed over a network of cameras c1, . . . , cc. Each camera
i in the network stores a number of observations ni. The ob-
servations at node i are oi,1, . . . , oi,ni . The original Newscast
EM assumes ni = 1, for every node i.

The mean of all observations is given by:

µ =
1
n

n∑
k=1

ok =
1∑c

i=1 ni

c∑
i=1

ni∑
k=1

oi,k

To compute this mean distributively each node i sets µ̂i =
1
ni

∑ni

k=1 oi,k as its local estimate of µ, and it sets wi = ni as
its local estimate of n/c. Then it runs the following steps for
a number of cycles:

1. Contact node j, which is chosen uniformly at random
from 1, . . . , c.

2. Update nodes i and j mean estimates as follows

w′
i = w′

j =
w′

i + w′
j

2

µ̂′i = µ̂′j =
µ̂iwi + µ̂jwj

wi + wi



With this protocol each node’s estimate rapidly converges to
the correct mean. Important is the fact that the weighed mean
of the local estimates is always the correct mean µ:

µ =
1∑c

i=1 wi

c∑
i=1

wiµ̂i

It has been shown that the variance of the local estimates
in Newscast Averaging, decreases at an exponential rate. Af-
ter t cycles of Newscast the initial variance φ0 of the local
estimates is reduced on average to φt ≤ φ0

(2
√

e)t . The same
bound of variance reduction can be proven for the proposed
Multi-Observations Newscast Averaging algorithm. With the
variance reduction we can derive the maximum number of cy-
cles needed in order to guarantee, with high probability, that
all nodes know the correct answer with a specific accuracy.

3.2. The Multi-Observations Newscast EM algorithm

Multi-Observations Newscast EM (MON-EM) is a distributed
implementation of the EM algorithm for Gaussian Mixture
learning. It uses the previously described gossip-based av-
eraging algorithm for estimating the parameters of a Mix-
ture. Multi-Observations Newscast EM is almost identical to
a standard EM algorithm. The main difference is the M-step
which is implemented as a sequence of gossip-based cycles.

Assume there is a set of observations {o1, . . . , on}, dis-
tributed over some nodes {c1, . . . , cc}. The observations are
assumed to be a set of independent samples from a common
p-component mixture of Gaussian with the unknown parame-
ters θ = {πs, µs,Σs}p

s=1. The task is to learn the parameters
in a decentralized manner. All learning steps should be per-
formed locally at the nodes, and these steps should involve as
little communication as possible.

The E-step of our algorithm is identical to the E-step of
standard EM, it can be performed locally and in parallel at
all nodes. Each node i computes the new responsibilities
qi,k,s(oi,k) (1) for every local observation oi,k.

The M-step is implemented as a sequence of gossip-based
cycles. Each node i starts with a local estimate θ̂i of the cor-
rect parameter vector θ. Then in every cycle, each node con-
tacts at random another node. Both nodes replace their esti-
mates with the weighed average of both. After some cycles
each local estimate θ̂i has converged to the correct parameter
θ.

The EM algorithm for node i, which runs identically and
in parallel for each node is as follows:

1. Initialisation set the responsibilities qi,k,s(oi,k) ran-
domly or with K-Means

2. M-Step initialise the local parameter estimates for each

component s as follows:

wi = ni,

π̂i,s =
1
ni

ni∑
k=1

qi,k(s),

µ̂i,s =
1

π̂i,s

ni∑
k=1

qi,k(s) oi,k,

Ĉi,s =
1

π̂i,s

ni∑
k=1

qi,k(s) oi,k oT
i,k.

Then repeat for t cycles

(a) Contact a node j, randomly chosen from 1, . . . , c.

(b) Update the estimates of node i and j for each
component s as follows:

w′
i = w′

j =
w′

i + w′
j

2

π̂′i,s = π̂′j,s =
π̂i,swi + π̂j,swj

wi + wi

µ̂′i,s = µ̂′j,s =
π̂i,sµ̂i,swi + π̂j,sµ̂j,swj

π̂i,swi + π̂j,swj

Ĉ ′
i,s = Ĉ ′

j,s =
π̂i,sĈi,swi + π̂j,sĈj,swj

π̂i,swi + π̂j,swj

3. E-Step Compute for each component s the new respon-
sibilities qi,k,s(oi,s), using the M-step estimates πi,s,
µi,s, Σi,s = Ci,s − µi,s µT

i,s.

4. Loop repeat the M-step and E-step until a stopping cri-
terion is satisfied.

Important is the fact that, the weighed averages of the lo-
cal estimates are always the EM-correct estimates. For the
mean this is shown in equation (5), but it holds for all param-
eters in θ. So in each communication cycle the parameters
converge at an exponential rate to the correct values (as is
proven in [5]).

µs =
∑c

i=1 wiπi,sµi,s∑c
i=1 wiπi,s

(5)

In Multi-Observations Newscast EM, the initialisation of
the M-step and the E-step are completely local to each node.
Also a stopping criterion, based on the parameters, could be
implemented locally. This will require that each node knows
its parameter estimate of the previous EM-iteration. Only the
M-step update requires communication between the nodes.



3.3. Initialisation

The original Newscast EM algorithm uses parameters which
are initialised at random [5]. However, randomly initialised
EM’s more often yield suboptimal solutions than K-Means
initialised EM’s. Therefore we propose to initialise Newscast
EM with Newscast K-Means, a distributed gossip based im-
plementation of the K-Means algorithm.

K-Means is an iterative clustering procedure, which suc-
cessively assigns each observation to the closest cluster mean
and updates the cluster means according to the assigned ob-
servations. These steps are analogous to the E-step and M-
step of EM, only they use different parameters and update
functions.

In the E-step, for each observation k, assign rk,s = 1 for
the closest cluster s. In the M-step, for each cluster s, the
cluster mean is set to:

µs =
1∑n

k=0 rk,s

n∑
k=0

okrk,s

Because the cluster mean is calculated as an average over all
observations, given the responsibilities, this can be computed
with the Newscast Averaging algorithm. Several experimen-
tal results have shown us that Newscast K-Means performs
identically to a central K-Means implementation.

4. EXPERIMENTS

We have performed a series of tests with the presented Multi-
Observations Newscast EM algorithm. The performance of
the algorithm will be compared with a standard EM imple-
mentation. We evaluate the algorithms on both artificially
generated and real data.

Setup The artificial data is generated randomly accord-
ing to the model shown in figure 2. A set of 100 observa-
tions from 5 persons, which are distributed over 25 cameras
is used as a standard set. Every observation yk = {ok, ck},
consists of a 9-dimensional appearance vector ok and a cam-
era identifier ck. The observations are randomly distributed
over the cameras according to a uniform pdf. The difficulty
of the generated data is measured by the c-separation and ec-
centricity values[12]. An increasingly difficult recognition
problem is indicated by increasing eccentricity or decreasing
c-separation values. The dataset has a c-separation of 1 and a
eccentricity of 10.

Several datasets are generated to investigate the perfor-
mance of the algorithm by variations in the number of per-
sons, the number of cameras, and the distribution of the ob-
servations over the cameras.

The real data is collected from seven disjoint locations at
the university building as in figure 1. In total we gathered 70
observations of 5 persons, with an equal number of observa-
tions per person. For this set the data association is manually

resolved to have a ground truth. This data set is also used in
[3].

The assumptions of Gaussian distributed noise in appear-
ance features (due to illumination and pose) most likely will
not hold without suitable preprocessing of the images. To
minimize effects of variable illumination at different cameras
(intensity and colour) we use a, so called, channel-normalized
colour space [13]. To minimize non-Gaussian noise due pose
we use a geometric colour mean [3], which is the mean colour
of three separate regions of the person. This results in a 9-
dimensional appearance vector. Instead of these colour fea-
tures also other appearance characteristics, like texture fea-
tures, could be used.

Evaluation The evaluation criteria should reflect two
aspects of proper clustering. It is desirable that (i) all ob-
servations within a single reconstructed cluster belong to a
single person, and (ii) all observations of a single person are
grouped together in a single reconstructed cluster. These cri-
teria are analogous to the precision and recall criteria often
used in Information Retrieval settings. In order to evaluate
both systems on one parameter we use the F1-measure.

Because the considered clustering problem is unsupervised,
the true and proposed clusters are arbitrarily ordered. There-
fore we define the precision (6) and recall (7) for a proposed
cluster over the best match with a real cluster. Importantly
precision and recall have to be considered jointly, because it
is trivial to gain a recall of 1. This is done by clustering all ob-
servations into one cluster. However, this will result in a very
low precision. The F1-measure (8) is the harmonic mean of
precision and recall and will penalize for such cases.

Pr =
1
p

p∑
s=1

maxi |Ĉs ∩ Ci|
|Ĉs|

(6)

Rc =
1
p

p∑
i=1

maxs |Ĉs ∩ Ci|
|Ci|

(7)

F1 =
2 ∗ Pr ∗Rc

Pr + Rc
(8)

4.1. Results on Artificial Data

In this article we have proposed to initialise Multi-Observations
Newscast EM (MON-EM) with a distributed implementation
of the K-Means algorithm. In table 1 we show the perfor-
mance of randomly initialised and K-Means initialised MON-
EM and standard EM using the standard set. The results show
that the performance of MON-EM and standard EM are al-
most equal, both on the F1 measure as on the number of EM
iterations. They also show an enormous increase of the F1-
measure when the K-Means initialisation is used. The num-
ber of EM-iterations is also lower, but the iterations of the
K-Means algorithm itself are not taken into account.

In Figure 3 we show the results of MON-EM when the
number of cameras increases. The observations are randomly



Table 1. Initialisation. The performance of Newscast EM and
standard EM on the standard set are shown. Both algorithms are
initialised at random and with K-Means.

standard EM MON-EM
F1-Measure

Random .70 ± .07 .73 ± .07
K-Means .89 ± .05 .87 ± .05

EM-iterations
Random 33 ± 11 34 ± 12
K-Means 11 ± 6 13 ± 9

distributed over the cameras according to a uniform distribu-
tion. The performance is compared with standard EM, but for
this algorithm nothing changes. The number of observations
was fixed at 100. The figure shows that the performance of
MON-EM is independent of the number of cameras.

Fig. 3. Number of cameras. Left the performance and right the
number of EM-iterations of the systems with a different number of
cameras are shown

In figure 4 we show the results of MON-EM and stan-
dard EM when more persons are monitored by the system.
The total number of observations is 10 times the number of
persons tracked by the system. Even though the number of
observations per person is not fixed, but random according to
a uniform distribution. The performance of both algorithms
on F1-measure and EM-iterations are comparable.

Fig. 4. Number of persons. Left the performance and right the
number of EM-iterations of the systems with a different number of
persons monitored are shown. The total number of observations is
ten times the number of persons.

We would like to know if MON-EM is vulnerable when
the distribution of the observations over the cameras is either

rare or bad. Therefore we set up an experiment with the stan-
dard dataset, but with different distributions of the observa-
tions over the cameras. The distribution of the observations
over the cameras is influenced by a distribution value. The
higher the distribution value, the more the distribution is like
a random uniform distribution. With a very low distribution
value, the distribution is peaky. By the lowest distribution
value used in the experiment, all cameras, except one, have
only one single observation. All the remaining observations
are at that one camera.

Figure 5 shows the performance of MON-EM and stan-
dard EM for different distribution values. The data distribu-
tion does not have an influence on the standard EM algorithm,
because all data is gathered at a central site. The MON-EM
algorithm performs comparable to the standard EM algorithm
for any distribution value. Also the number of EM-iterations
is not influenced significantly. Therefore we can conclude
that Multi-Observations Newscast EM is not vulnerable for a
rare or bad distribution of the observations over the cameras.

Fig. 5. Data distribution. The figure shows (left) the performance
and (right) the EM-iterations of the system with different data distri-
butions over the cameras.

4.2. Results on Real data

The result of the experiment with real data collected from 7
locations at the university building are shown in table 2. The
results indicate that the MON-EM and standard EM perform
equally on the real data.

Table 2. Performance on real data
standard EM MON-EM

F1-Measure .63 ± .04 .64 ± .04
EM-iterations 9 ± 3 9 ± 3

In figure 6 the results of a typical clustering of the real
data is shown. Each row represents a proposed cluster of the
MON-EM algorithm. Especially the clusters from row 2, 4
and 5 score reasonably well. In these clusters many images
of the same person are gathered together, even when the ap-
pearances do not correspond that much. For example in row
5, where the second and sixth observation are from the same
person.



Fig. 6. Typical Clustering result. This figure shows the results of
clustering the Real Dataset. Each row is a proposed cluster.

4.3. Discussion

The results of MON-EM and standard EM on artificial data
shows that both algorithms perform equally well. Even in dif-
ferent settings, with a different number of cameras or number
of persons; or a rare distribution of the observations over the
cameras, Multi-Observations Newscast EM performs equally
well to Central EM. The performance is comparable for both
the F1-measurement as well as the number of EM iterations
needed to achieve convergence. Also in many other test set-
tings we have run, both algorithms perform quite the same.

The results on real data also show that Multi-Observations
Newscast EM and standard EM perform almost equally. The
c-separation and eccentricity values of the real data differs
from the artificial data, which explains why the F1-measure
is lower than on the standard set of the artificially generated
data.

5. CONCLUSION

In this paper we have described an approach for multi-camera
appearance based tracking, in a distributed system. We have
presented the Multi-Observations Newscast EM (MON-EM)
algorithm, which is a generalisation of the gossip-based News-
cast EM algorithm, to learn the parameters of a Mixture of
Gaussians. The experiments reveal that on both artificially
generated data and on real data MON-EM performs equal to
a standard EM implementation.

Although in real-world applications the simple Gaussian
noise model may have to be replaced with a more complex
model, the general idea of solving distributed tracking by dis-
tributed probabilistic learning remains valid. The Multi-
Observation Newscast Averaging algorithm is able to com-
pute almost any kind of statistics over a set of observations
distributed over some nodes.

The presented system does not take into account tempo-
ral and spatial constraints on tracks (e.g. minimum travel
time between cameras). The probabilistic model could be en-
hanced with a transition model, using discrete features, like

camera index and wall clock time. We have planned to in-
corporate such a transition model into the algorithm along the
ideas presented in [3, 14].

The presented system assumes that the number of persons
are known in advance. In [3] a more elaborate model was
used, in which the most likely number of persons could be
inferred from the data. In our approach we did not use this
elaborate model, but restricted ourself to a simple model to
show the distributed learning algorithm. In a future study we
plan to use our Multi-Observation Newscast EM in the set-
ting of this elaborative model. Another extension could be,
to change Multi-Observation Newscast EM into a greedy EM
algorithm, which gradually yields more kernels. This could
be done according to ideas presented in [8, 15].
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