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Abstract—Current video text spotting methods can achieve
preferable performance, powered with sufficient labeled training
data. However, labeling data manually is time-consuming and
labor-intensive. To overcome this, using low-cost synthetic data
is a promising alternative. This paper introduces a novel video
text synthesis technique called FlowText, which utilizes optical
flow estimation to synthesize a large amount of text video
data at a low cost for training robust video text spotters.
Unlike existing methods that focus on image-level synthesis,
FlowText concentrates on synthesizing temporal information of
text instances across consecutive frames using optical flow. This
temporal information is crucial for accurately tracking and
spotting text in video sequences, including text movement, distor-
tion, appearance, disappearance, shelter, and blur. Experiments
show that combining general detectors like TransDETR with
the proposed FlowText produces remarkable results on various
datasets, such as ICDAR2015video and ICDAR2013video. Code
is available at https://github.com/callsys/FlowText.

Index Terms—Synthetic data, Video text spotting.

I. INTRODUCTION

Video text spotting is a task that involves detecting, tracking,
and reading text in a video sequence, and has gained popularity
due to its various applications in computer vision, such as
video understanding [1], video retrieval [2], video text trans-
lation, and license plate recognition [3], etc. Current video text
spotters [4], [5] achieve preferable performance, powered with
sufficient labeled training data. However, manually annotating
such data is time-consuming, expensive, and prone to human
errors. According to the annotation report of BOVText [6]
dataset, 2, 021 videos, 7, 292, 261 text instances require the
work of 30 personnel over three months, i.e., 21, 600 man-
hours, which is time-consuming and frustrating. Moreover,
it is also difficult to collect enough data to cover various
applications from traffic sign reading to video retrieval tasks.

To reduce the cost of video text annotation and collection,
an alternative way is to utilize synthetic data, which is largely
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available and the ground truth can be freely generated at a low
cost. Previous image-based synthesis algorithms [7], [8] have
proven they are beneficial and potential for image-level text
tasks. SynthText [8] firstly attempt to propose a synthetic data
engine, which overlays synthetic text in existing background
images, accounting for the local 3D scene geometry. Based
on SynthText, VISD [7] tries to synthesize more verisimilar
image data by using semantic segmentation and visual saliency
to determine the embedding locations. However, the above
synthetic engines only focus on the synthesis quality of image-
level. None of them are dedicated to generating effective and
efficient video-based content, which is particularly challenging
for tasks such as video text spotting. Compared to image-
level synthetic algorithms, video tasks present mainly two
challenges. Firstly, video synthesis requires the generation of
verisimilar spatiotemporal information, including the move-
ment and deformation of text in a video sequence. This
information is vital for spatiotemporal modeling of video text
spotting methods, and cannot be provided by image-based
synthesis. Secondly, text in video sequences generally presents
more complex and challenging cases than static images, due to
issues such as motion blur, out-of-focus, artifacts, and occlu-
sion. To address these challenges, we propose a novel video
synthesis technique that incorporates optical flow estimation,
which we call FlowText.

Our main contributions are summarized as follows:

• We propose a new technique for synthesizing video called
FlowText, which focuses on creating realistic scene text
video, even in complex situations such as motion blur,
occlusion, and being out of focus.

• FlowText covers a wide range of text scenarios in video
sequences, i.e., motion blur, occlusion, out of focus.

• As the first video text synthesis method, FlowText
achieves significant improvement compared with other
synthesis methods on two datasets for multi-stage
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tasks (i.e., video text detection, tracking, and spotting).
Especially, FlowText achieves 60.1% IDF1 for video text
tracking task and 66.5% IDF1 for video text spotting task
on ICDAR2015video [9], with 2.0% and 3.7% improve-
ments than the previous SOTA methods, respectively.

II. RELATED WORK

A. Video Text Spotting

Video scene text spotting [10]–[12] has been studied for
years and it has attracted increasing interest in recent years due
to its numerous applications in computer vision. ICDAR2013
video [13], the first competition for the task, established the
first public dataset to push the field. ICDAR2023 DSText [14]
presents a new challenge for dense and text scenarios of video
text spotting. As for the algorithm, based on Wang et al. [15],
Nguyen et al. [16] firstly try to explore and propose an end-to-
end solution for text recognition in natural images to video,
which trains local character models and explore methods to
capitalize on the temporal redundancy of text. Wang et al. [17]
proposed an multi-frame tracking based video text spotting
method, which firstly detects and recognizes text in each frame
of the input video, then associates texts in the current frame
and several previous frames to obtain the tracking results
by post-processing. Cheng et al. [18] and Cheng et al. [19]
propose a video text spotting framework by only recognizing
the text one-time to replace frame-wisely recognition, which
includes a spatial-temporal detector and text recommender
to detect and recognize text. Wu et al. [6] adopts query
concept in the transformer to model text tracking, then uses
an attention-based recognizer to obtain the recognition results.
TransDETR [4] proposes an end-to-end trainable video text
spotting framework with transformer, which each text query
is responsible to predict the entire track trajectory and the
content of a text in a video sequence.

The methods mentioned above heavily rely on manually
annotated images from real-world datasets such as COCO-
Text [20] and ICDAR2015video [9]. However, these datasets
are expensive to create and still too small to cover the wide
range of text appearances in scenes. And previous works [7],
[8] all have proved the effectiveness and potential of synthetic
data, which is a good way to solve the problem.

B. Synthetic Data

Synthetic data [7], [8], [21]–[25], which is generated at a
lower cost than manual annotations and detailed ground-truth
annotations, has gained increasing attention. In the field of
image-level text synthesis, there are some existing synthetic
datasets that have become standard practices and are used as
pre-trained datasets. The first work for image text synthesis
is SynthText [8], which blended text into existing natural
image scenes using off-the-shelf segmentation and depth es-
timation techniques to align text with the geometry of the
background image and respect scene boundaries. Following
SynthText, VISD [7] proposed three improvements to obtain
more verisimilar synthetic images: semantic coherence, better
embedding locations with visual saliency, and adaptive text

appearance. However, these methods only focus on image-
level synthesis, and there are currently no video-based syn-
thetic engines. There are also challenges in spatiotemporal
information synthesis that need to be addressed.

C. Optical Flow

Optical flow estimation is a fundamental task in computer
vision. Classical approaches, such as [26], typically model
optical flow estimation with brightness constancy and spatial
smoothness. However, these methods often struggle to handle
large displacements and occlusions. In recent years, some
approaches have used the coarse-to-fine approach [27], [28]
and iterative refinements [29] to handle large displacements
incrementally. RAFT [29] represents the iterative refinement
approach and proposes to gradually improve the initial pre-
diction with a large number of iterative refinements, achieving
remarkable performance on standard benchmarks. Regarding
occlusions, existing approaches [30], [31] conduct a forward-
backward consistency check to identify and solve occluded
regions with interpolation. GMA [32] is the first work to
take an implicit approach to the occlusion challenge. It adopts
global motion features to predict flow accurately in occluded
regions. In video data synthesis, optical flow plays a vital role
in ensuring smooth and verisimilar temporal text synthesis.
Compared to large displacements, occlusions pose a more
realistic challenge in video synthesis. Therefore, we adopt
GMA [32] as the base optical flow estimation model for our
FlowText.

III. METHOD

A. Formulation

While generating synthetic video automatically demonstrate
great potential in the field of video text, producing high-
quality synthetic video remains a significant challenge. One
possible solution to this challenge is to generate a single frame
using an image synthesis method, and then iteratively map the
synthetic visual effects of embedding text to adjacent frames
using spatiotemporal relevance information in the video.

We take the pasting process of a single text T as an
example (e.g., “ The” in Fig. 1). Given one video sequence
{Ik}k∈N , Ik ∈ Rh×w, N = {1, 2, . . . , n}, where h, w, and n
are the height, width, and length of the video. As shown in
Fig. 1, we randomly sample the t-th frame It from the video.
Then, the corresponding synthetic image It ∈ Rh×w and
the embedding text map Tt (representing visual text feature
of text T, e.g., font and shape) of the sampled frame can
be obtained with the existing image synthesis method (e.g.,
SynthText [8]). Next, a spatiotemporal propagation function
Ft→k(·) is calculated for mapping the embedding text map
Tt to that of other frames (e.g., Tk). Finally, the whole
synthetic text video {Ik}k∈N is obtained by embedding the
corresponding embedding text maps {Tk}k∈N to the video se-
quence {Ik}k∈N . However, obtaining the propagation function
Ft→k(·) is challenging. To solve this problem, we propose the
Text Flow Propagation (TFP) Algorithm, which uses optical
flow to fit the function.
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Fig. 1 – Pipeline of the proposed FlowText. Upper: For each video, we first randomly sample and render a frame It with an image
synthesis method (e.g., SynthText, VISD). The Text Flow Propagation (TFP) is used to propagate the synthetic visual text effects Tt to
other frames. Down: The detailed architecture of the TFP.

B. Overview of FlowText

In this section, we will provide a comprehensive intro-
duction of the entire FlowText pipeline, which consists of
two main steps: Rendering Sampled Frame and Text Flow
Propagation.

1) Rendering Sampled Frame: as shown in Fig. 1 (upper),
for each video sequence, we firstly randomly select the t-th
frame It as the sampled frame. Then, we adopt the approach
used in SynthText [8] and VISD [7] to overlay the text onto the
image. The location and orientation of the text are determined
by the depth map Dt predicted by Monodepth2 [33] and the
panoptic segmentation map St predicted by Mask2former [34],
respectively. Especially, it can be formulated as:

{It,Tt} = M
Render

(It,T)|St,Dt
, (1)

where It and Tt denote synthetic frame and embedding text
map of text T in the t-th frame. M

Render
(·) refer to SynthText [8]

in this paper.
2) Text Flow Propagation: After obtaining the embedding

text map Tt, we can calculate the Tk with the Text Flow
Propagation algorithm Ft→k(·) as:

Tk = Ft→k(Tt) . (2)

Finally, we produce the whole synthetic text video {Ik}k∈N
via overlapping the embedding text maps {Tk}k∈N to the
video sequence {Ik}k∈N .

C. Text Flow Propagation Algorithm
There are two algorithms for Text Flow Propagation (TFP):

Forward Text Flow Propagation (FTFP, Ft→k, k > t) and
Backward Text Flow Propagation (BTFP, Ft→k, k < t),
depending on whether the estimated frame is located before or
after the sampled frame. Despite the difference in optical flow
direction, both algorithms are quite similar. For convenience,
we take FTFP as the example. FTFP is based on an existing
optical flow estimation model (GMA [32] in this paper), which
can be directly used to map points between frames as:

pk = Ft⇔k(pt) + pt, pt ∈ Tt, pk ∈ Tk, (3)

where pk represents the coordinate of point p at k-th frame.
However, there are main two obvious problems that affect
the performance of the optical flow estimation: (1) Uncon-
strained mapping: Optical flow estimation does not view text
geometry as a whole, and destroy the invariant properties, e.g.,
concurrency, collinearity, order of contact. (2) Error mapping
due to occlusion and noise: Occlusion and outliers will cause
inaccurate mapping and inauthentic synthetic data.

In this paper, we propose to solve the first problem by
Projective Transformation and solve the second problem by
Point Resample.

1) Mapping with Projective Transformation: We view the
mapping function as a multiple view geometry problem, where
text is painted on a planar surface (e.g., wall or sign). The same
text in different frames is observed in different view planes,
as shown in Fig. 2b. And they can be transformed into each
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try transformation via view the embedding text map T as a whole.

other with projective transform [35]. Specially, with a 3 × 3
homography matrix, i.e., Ht,k ∈ R3×3, we can formulate the
mapping function Ft→k as:[

pk
T

1

]
= H−1t,k

[
pt

T

1

]
, pt ∈ Tt,pk ∈ Tk, (4)

where the homography matrix Ht,k transforms the coor-
dinates of the embedding text map Tt to Tk. Compared
with dense optical flow mapping (Fig. 2a), the projective
transform [35] (Fig. 2b) keeps invariant properties of text (i.e.,
concurrency, collinearity, order of contact). And its degree of
freedom (df) is 8 (e.g., rotation, scaling, shearing, translating),
which makes the mapping function stable.

According to the book ‘Multiple View Geometry’ [35], the
exact solution for the matrix Ht,k is possible, if the below
theorem can be ensured.
Theorem 1. The 2D projective transformation: P2 → P2 can
be determined if there exists at lease four correspondences to
calculate a non-singular 3× 3 matrix Ht,k.

To estimate Ht,k, we first identify points inside the text
region in the t-th frame, denoted as St

text = {pt | Tt(pt) >
0, pt ∈ Z2} . Here, pt is a 2D point coordinate and Tt(pt) is
the value of Tt at point pt. Next, we map each point pt to
its corresponding point pk in the k-th frame using Equ. 3. We
then collect the point pairs (pt, pk), where pt ∈ St

text. Finally,
we estimate the projective matrix Ht,k by using the RANdom
SAmple Consensus (RANSAC) algorithm [36] to robustly fit
the point pairs.

2) Point Resample: When occlusion occurs, abnormal sam-
pled coordinate points in St

text can lead to unreasonable
mapping associations and result in unreal text distortion. To
address this issue, we can use optical flow and segmentation
constraints to remove these abnormal points. In dense flow
estimation, some points can be outliers or noise and deviate
from other sampled points. We can use statistics, specifically
the standard deviation (σ) and mean (µ) of the L2 normaliza-
tion of point pairs (||Ft⇔k(pt)||2, pt ∈ St

text), to detect these

(b) Dense Optical Flow

$-th Frame

(c) Projective Transformation

$-th Frame

(a) %-th Synthetic Frame

(e) Error Mapping from Occlusion

$-th Frame

(f) Mapping with Resample

$-th Frame

(d) %-th Synthetic Frame

Fig. 3 – Illustration of the two main points in our TFP. Upper:
Projective transformation presents better performance than dense
optical flow mapping. Down: Resample with two constrains can
refine the error from occlusion.

outliers. We set the lower limit to (µ− σ) and the upper limit
to (µ+σ). Any sample that falls outside this range is detected
as an outlier and removed from the sampled coordinate points
St
text. We can define the resampled point set with optical flow

constraint as follows:

St,k
flow = {pt | µ− σ ≤ ||Ft⇔k(pt)||2 ≤ µ+ σ}. (5)

Occlusion often leads to a breakdown in the semantic
coherence of text within a video sequence. It is essential that
each text is consistently associated with the same semantic
entity in all frames of the video (for example, the word “
The” should always be superimposed on the “ flowerpot” in
Fig. 1). To achieve this consistency, it is necessary to exclude
sampled points that move outside of the semantic entity. We
define the resampled point set that adheres to segmentation
constraints as follows:

St,k
segm = {pt | Si(pi) > 0, i = t, t+ 1, . . . , k}, (6)

where Si denotes the segmentation map of the semantic entity
in the i-th frame. Finally, we define sampling point set as:

St,k = St
text

⋂
St,k
flow

⋂
St,k
segm . (7)

We use the sampling points in St,k to estimate the projective
matrix Ht,k between the t-th frame and the k-th frame.

3) Estimating Motion blur with Optic flow: In order to
simulate the text motion blur, we add motion blur to the
embedding text map {Tk}k∈N according to the direction ~v
and scale ||~v|| of the optical flow predicted by GMA [32]
in the text region. Motion blur is realized by convolving the
embedding text map Tk with a specific convolution kernel.
The convolution kernel apply average pooling for α||~v|| pixels
along the direction of ~v, where α is a hyperparameter that
related to degree of blur.

4) Pseudo Code: We describe the whole process of the For-
ward Text Flow Propagation in Algorithm 1. RANSAC(·) de-
notes the RANdom SAmple Consensus (RANSAC) algorithm
and ProjectiveTransform(·) denotes transforming the image
with the given homography matrix. For the case that Backward



TABLE I – End to End Video Text Spotting performance on ICDAR2015 video [16]. FT denotes finetune with real data. ‘M-Tracked’
and ‘M-Lost’ denote ‘Mostly Tracked’ and ‘Mostly Lost’, respectively.

Data FT Data Size (Image) ICDAR2015 video/%
IDF1↑ MOTA↑ MOTP↑ M-Tracked↑ M-Lost↓

SynthText [8] × 800k(Image) 44.8 16.6 70.3 20.1 57.9
VISD [7] × 10k(Image) 44.9 22.5 70.3 17.9 58.6
FlowText (Ours) × 250k (5k videos) 48.5 25.2 73.1 24.1 49.2
None X 13k(ICDAR 2015 video) 59.3 44.7 74.2 32.2 43.1
SynthText [8] X 800k(Image)+13k(ICDAR 2015 video) 62.8 50.5 74.2 35.3 39.5
VISD [7] X 10k(Image)+13k(ICDAR 2015 video) 60.7 45.8 74.3 33.1 43.2
FlowText (Ours) X 250k (5k videos) + 13k(ICDAR 2015 video) 66.5 52.4 74.4 38.5 35.7

Algorithm 1 Forward Text Flow Propagation
Input:

Tt : the embedding text map of the text in t-th frame.
Ft⇔k : the optic flow between t-th frame and k-th frame.
{Si}i=t,t+1,...,k : the segmentation map of the semantic entity

between t-th frame and k-th frame.
Parameter:

N : The minimum number of sampling points.
Output:

Tk : the embedding text map in the k-th frame.
1: Calculate St

text with Equ. III-C1;
2: Calculate St,k

flow with Equ. 5;
3: Calculate St,k

segm with Equ. 6;
4: St,k ← St,k

text

⋂
St,k
flow

⋂
St,k
segm;

5: if |St,k| ≤ N then
6: Tk = 0h×w;
7: else
8: P ← ∅;
9: for pt ∈ St,k do

10: pk = Ft⇔k(pt) + pt;
11: P = P ∪ (pt, pk);
12: end for
13: Ht,k = RANSAC(P);
14: Tk = ProjectiveTransform(Tt,Ht,k);
15: Tk = Tk · Sk;
16: Tk = MotionBlur(Tk, Ft⇔k);
17: end if
18: return Tk;

Text Flow Propagation (BTFP) is needed, we directly reverse
the optical flow and apply FTFP for calculation.

IV. EXPERIMENTS

A. Settings

Following the setting of previous works [7], [8], we verify
the effectiveness of the proposed FlowText by training video
text spotter on the synthesized images and evaluating them
on real image datasets. In all experiments, we train the model
with 8 Tesla V100 GPUs. The detailed setting of methods all
follows the original paper and official code.

Benchmark Datasets. ICDAR2013video [13] is proposed
in the ICDAR2013 Robust Reading Competition, which con-
tains 13 videos for training and 15 videos for testing. These
videos are harvested from indoors and outdoors scenarios,
and each text is labeled as a quadrangle with 4 vertexes in
word-level. ICDAR2015video [9] is the expanded version of
ICDAR2013 video, which consists of a training set of 25

TABLE II – Text tracking performance on ICDAR2013 video [13]
and ICDAR2015 video [16].

Data FT ICDAR2013 video/% ICDAR2015 video/%
IDF1 MOTA MOTP IDF1 MOTA MOTP

SynthText × 42.9 17.3 69.8 38.2 15.9 70.4
VISD × 44.7 21.4 69.6 38.0 18.0 70.2
FlowText × 47.9 27.4 74.1 41.5 21.1 72.8
None X 58.2 43.6 76.3 56.2 38.7 73.0
SynthText X 60.9 46.2 76.4 58.1 39.2 73.1
VISD X 59.4 44.7 76.4 57.7 39.8 73.1
FlowText X 64.1 48.9 76.5 60.1 42.4 73.5

videos (13,450 frames) and a test set of 24 video (14,374
frames). Similar to ICDAR2013 video, text instances in this
dataset are labeled at the word level. Quadrilateral bounding
boxes and transcriptions are provided.

Text and Video Sources. To better simulate the motion of
text in video, we use Activitynet [37] as the video sources to
build FlowText, which contains plenty of complex movement
scenarios. For videos in Activitynet, we first use the Kuaishou
VideoOCR api [38] to filter videos that do not contain text
as candidate videos. Then, we random extracte candidate
texts from the Newsgroup20 dataset [39] and paint them onto
candidate videos with FlowText.

Video Text Methods. We use TransDETR [4] to evaluate
the performance of different synthetic datasets in this paper,
which is the State-of-the-art method in both video text tracking
and video text spotting domain.

B. Video Text Tracking

As shown in Table II, without real data, FlowText out-
performs the previous SOTA method by 3.3% in IDF1 on
ICDAR2015. When real data is introduced, FlowText outper-
forms the previous SOTA method by 2.0% on ICDAR2015.
This proves that the temporal information simulated by Flow-
Text can effectively improve the tracking performance.

C. End to End Video Text Spotting

As shown in Table I, with real data, FlowText outperforms
the previous SOTA method SynthText by 3.7% in IDF1 on
ICDAR2015. This proves that FlowText can greatly boost the
training of video text spotter.

D. Ablation Study

1) Main components: As shown in line 1 of Table III, the
image render used in FlowText (i.e., SynthText) achieve 36.7%



TABLE III – Ablation experiments on ICDAR2013 video.

Flow Projective Resample Blur ICDAR2013 video/%
IDF1 MOTA MOTP
36.7 19.0 72.0

X 39.1 19.9 71.0
X X 40.9 24.1 73.0
X X X 47.5 27.0 74.0
X X X X 47.9 27.4 74.1

TABLE IV – Ablation of video source. We maintain that we
generate 5k videos and 10 frame per video for the experiment.

Video source ICDAR2013 video/%
IDF1 MOTA MOTP

Youcook2 [40] 37.7 19.6 72.5
GoT10k [41] 36.9 21.0 71.5

Activitynet [37] 44.6 26.1 72.8

IDF1 on ICDAR2013. When we directly use optic flow to
propagate temporal information for text, relative improvement
of 2.4% in IDF1 can be achieved. Then we use projective
transform to replace optic flow wrapping, which brings relative
improvement of 1.8% in IDF1. Finally, we use resample to
remove abnormal sampled points in TFP and apply motion
blur to the text map, which brings relative improvement of
6.6% and 0.4% in IDF1 respectively. The ablation experiment
proves that introducing optical flow information into synthetic
data can improve the performance of video text spotter, and the
proposed TFP algorithm can effectively improve the quality of
the synthesized text.

2) Video sources: As shown in Table IV, we test three
datasets as video sources, and Activitynet [37] get the best
performance. Actvitynet is built for action recognition, which
contains plenty of complex movement scenarios. Synthesis
videos generated based on Activitynet can obtain more spa-
tiotemporal information.

V. CONCLUSION

In this paper, we propose a novel video synthesis technique
called FlowText, which generate fully labeled scene text video
with no annotation cost. As the first video text synthesis
method, FlowText achieves significant improvement compared
with other synthesis methods for multi-stage tasks (i.e., video
text detection, tracking and spotting).
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