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Abstract— Reliable detection of sleep positions is essential for 

the development of technical aids for patients with position-

dependent sleep-related breathing disorders. We compare 

personalized and generalizable sleeping position classifiers using 

unobtrusive eight-channel pressure-sensing mats. Data of six 

male patients with confirmed position-dependent sleep apnea was 

recorded during three subsequent nights. Personalized position 

classifiers trained using leave-one-night-out cross-validation on 

average reached an F1-score of 61.3% for supine/non-supine and 

an F1-score of 46.2% for supine/lateral-left/lateral-right 

classification. The generalizable classifiers reached average F1-

scores of 62.1% and 49.1% for supine/non-supine and 

supine/lateral-left/lateral-right classification, respectively. In-bed 

presence (“bed occupancy”) could be detected with an average 

F1-score of 98.1%. This work shows that personalized sleep-

position classifiers trained with data from two nights have 

comparable performance to classifiers trained with large inter-

patient datasets. Simple eight-channel sensor mattresses can be 

used to accurately detect in-bed presence required for closed-loop 

systems but their use to classify sleep-positions is limited. 

I. INTRODUCTION 

With a prevalence of up to 8% in men and 1 to 5% in 
women, sleep apnea accompanied with daytime sleepiness is 
one of the most common sleep-related breathing disorders in 
adults [1]–[4]. Occurrence and severity of apneic events are 
position dependent in approximately 56% to 75% of all patients 
with obstructive sleep apnea [5]. In position-dependent sleep 
apnea, more than 50% of all apneic events occur when the 
patient is lying in supine position [6]. Avoiding supine position 
by means of positional therapy can significantly reduce the 
occurrence and severity of sleep apnea in this sub-group of 
patients. Currently, most devices that assess the body position 
of the users use accelerometers. These sensors need to be 
physically attached to the user which may induce discomfort 
and therefore limits acceptability. Moreover, bodyworn sensors 
cannot be used to detect bed occupancy which would be 
required for closed-loop therapeutical interventions. As an 
alternative, automated video-based position scoring systems 
have been reported to provide robust estimations of the sleeping 

position [7]. However, space requirements and privacy issues 
limit the usability of such systems in private home 
environments. 

Elastic force-sensitive resistors placed underneath the posts 
of the bed [8] or underneath the mattress [9], pose an interesting 
alternative to classify body positions. These sensors can be 
used in the context of ballistocardiography (BCG), a non-
invasive sensing method to measure forces generated by 
thoracic movements (e.g. respiration) and cardiac ejection of 
blood [10]. BCG has also been used as a non-invasive system 
to alert users of apneic events by turning on lights or through 
vibration [11]. In general, pressure-based position sensing 
systems can be divided in systems that apply algorithms for 
image processing and setups which use less sophisticated 
processing techniques. Systems relying on image processing 
techniques require high-density arrays consisting of 60 to more 
than 8000 sensors while low-complexity systems usually work 
with 1 to 100 sensors (see Table I).   

Previously presented classifiers and feature extraction 
methods for position detection required a high number of 
sensors and are based on computing the earth mover's distance 
[12], gradients in the pressure images [13], or posture signature 
extraction [14]. Other approaches used with high-density 
pressure sensor arrays consider to cluster regions of interest 
[15] such as limbs [16], hip, and shoulder [17] and compare 
size, location, and distances between those regions. In addition, 
the curvature of the resulting pressure image has been 
suggested as a feature for classification [18]. These systems 
discriminate between up to nine different body positions. 

TABLE I.  COMPARISON OF HIGH-DENSITY AND LOW-COMPLEXITY 

SYSTEMS FOR POSITION CLASSIFICATION FOUND IN LITERATURE 

 Reference Sensors Postures Accuracy 

H
ig

h
-d

en
si

ty
 

sy
st

em
s 

Huang et al. [18] 60 9 46.86%a 

Pouyan et al. [14] 2048 8 71.1% 

Xu et al. [12] 8192 6 90.78% 

Sun et al. [16] 6144 6 97.8% 

Matar et al. [13] 1728 4 97.9% 

Ostadabbas et al.  [20] 1728 3 98.4% 

Liu et al. 2014 [17], [21] 8192 6 83.0% c  

Mineharu et. al [15] 1768 9 77.1% 

L
o

w
-c

o
m

p
le

xi
ty

 
sy

st
em

s 

Foubert et al. [9] 132 2 100% 

Adami et al. [8] 4 4 63.3% b 

Wei al. [20] 56 6 94% 

Liu et al. 2019 [19] 1 4 92.3% b 

Crivello et al. [22] 32 4 95% 

Hsia et al. [23] 16 3 81.43% 

a. only force-sensing resistor pressure sensor mapping, b. for supine only, c. Recall 
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In this paper, we present personalized position classifiers 
that use simple 8 × 1 force sensor arrays to classify between 
supine and non-supine as well as between supine, lateral left, 
and lateral right. We compare these results to an approach in 
which the classifier was trained based on five participants and 
tested on a sixth participant in a leave-one-participant-out 
manner. In addition, we present a rule-based approach to detect 
bed occupancy for uncalibrated force sensors.  

II. MATERIALS AND STUDY DESIGN 

A. Measurement Set-up and Ground Truth 

All measurements were carried out in the context of a study 
that investigated the effects of controlled positional therapy on 
positional obstructive sleep apnea patients using ISABel I, a 90 
× 200 cm single bed able of raising the backrest from 0° to 50°, 
and ISABel II, a 160 × 200 cm double bed capable of turning 
both bed halves from 0° to 30° (Figure 1).  

   

Figure 1.  The intervention beds ISABel I (left) and ISABel II (right) used 
for positional therapy. ISABel I can raise the backrest up to 50° and ISABel 

II can induce rotations about the longitudinal axes up to 30°. 

Both beds were placed at ETH Zurich and were equipped 
with custom-made sensor mattresses (sensomative, 
Switzerland), each 80 × 20 cm in size. For the larger bed, two 
eight-channel sensor mats were put next to each other to cover 
the entire width of the mattress (Figure 4). For the smaller bed, 
a single eight-channel sensor mat was sufficient to cover the 
width of the entire bed (Figure 3). Eight of the 16 sensor 
elements of the larger bed were selected based on the estimated 
location of the user such that the same features could be 
calculated. Each sensor mat contains eight individual sensors, 
each 9 × 20 cm in size, and was calibrated by the manufacturer 
using an inflatable balloon inside a testbench with varying 
preset pressures (Figure 2). Data from each 8 × 1 sensor mat 
was sampled using an eight-channel, 24-bit ADC (AD-7771 
manufactured by Analog Devices, USA) at a nominal sampling 
rate of 1 kHz and recorded on a Raspberry Pi 4. In case of 
transmission errors from the ADC to the Raspberry Pi 4, NULL 
Byte placeholders were stored instead. 

 

Figure 2.  Calibration curve of one of the eight-channel sensor mattresses. 

Ground truth positions were collected using the 
polysomnography system Nox A1 (Nox Medical Global, 
Iceland) and were manually validated by a clinical expert based 
on recorded video. The collected dataset (Table II) is highly 
imbalanced. Ground truth of the bed occupancy was extracted 
from the recorded video. 

 

Figure 3.  ISABel I, a standard bed with a single eight-channel force sensor. 

 

Figure 4.  ISABel II, a 160 × 200 cm double bed with two sensor mattresses 

giving a total lateral resolution of 16 × 1 sensor elements. Only the eight 
sensor elements in contact with the participant are used for the position 

classification. 

TABLE II.  RELATIVE DISTRIBUTION OF THE CLASSES IN THE DATASET, 
M… MOVEMENT, U… UPRIGHT, S… SUPINE, LL… LATERAL LEFT, LR… 

LATERAL RIGHT, P… PRONE, O… OTHER 

 M U S LL LR P O 

P1 0.34 0.04 0.24 0.07 0.24 0 0.07 

P2 0.03 0.03 0.15 0.39 0.37 0 0.03 

P3 0.05 0.01 0.42 0.35 0.14 0.02 0.01 

P4 0.07 0.01 0.25 0.27 0.24 0.02 0.14 

P5 0.11 0.02 0.43 0.14 0.23 0 0.07 

P6 0.08 0 0.36 0.29 0.24 0 0.03 

Mean 0.11 0.02 0.31 0.25 0.24 0.01 0.06 

B. Participants 

The experimental procedure was approved by Swissmedic 
(10000733) and the Cantonal Ethics Committee (KEK-ZRH:  
2020-01505) and was registered on clinicaltrials.gov 
(NCT04713267). Written informed consent was obtained from 
all participants. Ten participants were recruited by the Sleep 
Disorders Centre of the Department of Pulmonology of the 
University Hospital Zurich. Inclusion criteria were an apnea-
hypopnea index (AHI) of at least ten events per hour, combined 
with a documented supine positional obstructive sleep apnea 
(AHI in supine position at least twice the AHI in non-supine 
position). Exclusion criteria were age below 18 or above 80 
years, co-morbidities, and inability to follow the procedures of 
the study. In addition, investigators, their family members, 

0.0

50.0

100.0

150.0

200.0

0 10 20 30 40

R
es

is
ta

n
ce

 (
k Ω

)

Pressure (kPa)

S1

S2

S3

S4

S5

S6

S7

S8

978-1-6654-8829-7/22/$31.00 ©2022 IEEE 2

Authorized licensed use limited to: University of Groningen. Downloaded on January 03,2023 at 13:51:05 UTC from IEEE Xplore.  Restrictions apply. 



  

employees, and other dependent persons were excluded. Three 
participants withdrew and one did not meet the inclusion 
criteria during the assessment. Demographics of the data sets 
of the remaining six patients used for training and testing of the 
algorithms are depicted in Table III. The AHI was calculated 
based on the expert scoring of the polygraphy data recorded 
during the baseline night. Daytime sleepiness was assessed 
using the standardized Epworth Sleepiness Scale (ESS) 
questionnaire which results in a score between 0 and 24. An 
ESS of more than 10 indicates increased daytime sleepiness 
[24]. 

TABLE III.  DEMOGRAPHICS OF THE STUDY POPULATION (N=6) 

 Mean (SD) 

Age (years) 57.8 (6.7) 

Height (m) 1.8 (0.1) 

Weight (kg) 87.8 (13.0) 

Body Mass Index (kg / m²) 28.2 (3.3) 

Neck circumference (cm) 43.5 (4.7) 

Apnea Hypopnea Index (/h) 30.4 (12.5) 

Each participant visited the study facilities for three nights 
within two weeks. The baseline night was measured in the 
sidewards-turning bed ISABel II using the two 8 × 1 sensor 
mats next to each other. For the two intervention nights, each 
participant once slept in the sidewards-turning double bed 
ISABel II and once in the single bed ISABel I with the actuated 
backrest. Both beds provided postural interventions triggered 
by the clinician.  

C. Evaluation Metrics and Validation 

Sensitivity (Recall) is defined as the fraction of true values 
that were correctly identified by the classifier. Precision is 
defined as the fraction of true positive values among all positive 
predictions. The F1-score presents the harmonic mean of the 
precision and recall. Evaluation metrics were calculated using 
the sklearn.metrics package. Due to the large class imbalance 
(c.f. Table II), the weighted averages of these values are 
reported in this paper. Furthermore, we calculated the area 
under the receiver operating characteristic curve (AUC-ROC) 
to understand how well our model can distinguish between the 
two classes. The personalized algorithms were validated using 
leave-one-night-out cross validation where all possible intra-
patient permutations of two nights of training and one test night 
were considered.  After this process, the means of all evaluation 
metrics were calculated for all patients. To get an estimation for 
the inter-patient performance, we trained a second classifier for 
both the supine and non-supine classification and the multi-
class classification. This classifier was trained on five 
participants and tested on the sixth participant in a leave-one-
participant out cross validation.   

III. DETECTION ALGORITHM 

A. Time Synchronization and Drift Correction 

As both the polysomnography device and the Raspberry 

Pi 4 have individual system clocks, time synchronization is 

required. To find the delay between these two devices, a 

random synchronization pulse captured by both systems is 

used. Using cross-correlation (eq. 1) between the two signals 

{X} and {Y}, we determine the lag with the highest correlation 

and time-shift one of the signals by this amount.  

 �̂�𝑖,𝑗 =
Σ𝑡=1

𝑁 (𝑋𝑡−�̅�𝑡)(𝑌𝑡−�̅�𝑡)

√Σ𝑡=1
𝑁 (𝑋𝑡−�̅�𝑡)2Σ𝑡=1

𝑁 (𝑌𝑡−�̅�𝑡)2
  () 

Drift compensation is required whenever the nominal 
frequency does not match the desired frequency. For the ADC 
of the sensor mattress, the nominal frequency of 1 kHz was 
above the actual frequency of approximately 999.998 Hz. A 
zero-order hold was therefore used to up-sample the actual 
signal. 

Correctness of the time synchronization and drift correction 
was ensured by visual inspection of the resulting 
synchronization pulses between the Raspberry Pi 4 and the 
polysomnography for each night. 

B. Preprocessing and Filtering 

Data was cut in 10-second windows with 50% overlap. 

Missing values caused by transmission errors of the ADC (i.e. 

NULL Bytes) were replaced with the median of the respective 

channel. For the larger bed, the eight sensors of interest were 

identified using the variance of the de-trended sensor signals. 

De-trending was performed by log-scaling with a subsequent 

mean subtraction. All sensors then received a ranking value 

according to the variance. The window with the eight 

neighboring sensors for which the sum of the variance ranking 

scores was the highest, was used for the classification. The 

other eight sensors were ignored. This was necessary to be able 

to compare the results from one bed to the other.  

Windows with the label "Unknown", “Movement”, 

“Upright”, “Prone” or without a position label were removed 

from the dataset before training.  

TABLE IV.  FEATURES USED IN OTHER LOW-COMPLEXITY SYSTEMS. 
FEATURES WITH NUMBERS ARE USED IN THIS WORK  

Feature Name No. Ref. Feature Name No. Ref. 

Sum of sensor 

values 
1 [9] 

Variance of 
different areas 

15-19 [20] 

Number of active 

sensors 
2 [9] 

Root mean square 
of different areas 

20-24 [20] 

Weighted sum of 

sensor values 
n.a. [9] 

Mean of raw 
pressure values 

25-32 
[20], 
[22] 

Weighted number 

of active sensors 
n.a. [9] 

Relative amplitude 
H -J 

n.a. [19] 

Longitudinal center 

of pressure 
n.a. [9] 

Relative amplitude 
I -J 

n.a. [19] 

Lateral center of 
pressure 

3 [9] 
Relative amplitude 

K -J 
n.a. [19] 

Longitudinal 
variance 

n.a. [9] 
Relative amplitude 

L -J 
n.a. [19] 

Lateral variance 4 [9] 
Four dimensional 

distribution vector 
n.a. [8] 

Eigenvectors n.a. [20] Kurtosis 33 [23] 
Mean of different 

areas 
5 -9 [20] Skewness 34 [23] 

Standard 
Deviation of 

different areas 

10-14 [20]    
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Movements were removed as they can occur in each 

position and most windows that were labeled with this label 

did not contain information on the current body position. Since 

most nights did not contain prone position, this class also had 

to be removed. This left three classes for the classification 

problem: supine, lateral left, and lateral right. 

C.  Feature Extraction 

Since the mats only contain eight sensors, we implemented 

the features which have been reported in literature describing 

low-complexity systems (Table IV). Features that require two-

dimensional arrays and heart rate features were not 

implemented and marked with n.a. in Table IV.  All features 

were extracted using Python 3.10. Our first feature is the sum 

of sensor values 𝑆𝑆𝑉(𝑡) = Σ𝑖=1
8 𝑥𝑖(𝑡) where 𝑥𝑖(𝑡) is the sensor 

value of the i’th sensor element at time t [9]. The second 

feature is the number of active sensors. Active sensors were 

defined as sensors with a high standard deviation. To be able 

to compare between sensors with different sensitivity, we 

transferred the standard deviations into z-scores. Sensors with 

an absolute z-score above 0.8 were defined as active sensors. 

Lateral center of pressure [9] was calculated by a weighted 
sum across all sensor elements followed by dividing through 
the sum of sensor values over the same time period. 

Variance, mean, standard deviation, and root square values 
were calculated using the Python package NumPy (version 
1.22.1). To get an impression of the pressure distribution on the 
mattress, sensors were grouped into areas. Area 1 was defined 
as the first two sensors from the right. Area 2 contained the last 
two sensors on the left. The four sensors in the middle were 
grouped into Area 3. To obtain more insight, the middle area 
was further divided into two sub-areas each of which consists 
of two sensors. That resulted in 5 areas over which basic 
statistic features were calculated. Skewness and kurtosis were 
calculated using the scipy.stats package (version 1.7.3).  

In addition to the features used in other low-complexity 
systems (c.f. Table IV), we also included the average 
amplitude, the difference between the areas under the curve for 
all possible sensor pairs, as well as the area under the curve for 
every sensor element. These features were used to be able to 
compare the behavior of sensors with an offset that was not 
stable between different nights. 

E.  Sleep-Position Detection 

We used XGBoost for the classification. Personalized 
binary (supine / non-supine) and multiclass (supine, lateral left, 
lateral right) classifiers were trained separately for all patients 
(intra-patient) using two nights as training and one night as test 
data. In addition, a single binary and multiclass classifier was 
trained using training data from all patients (inter-patient) and 
was validated using leave-one-patient-out.  

The personalized binary classification was performed with 
logistic regression with a random forest tree size of 500, a 
maximum tree depth of 8, a subsample ratio of 1, and a learning 
rate of 0.05. The inter-patient binary classification was 
performed with a random forest tree size of 100, a maximum 

tree depth of 10, a subsample ratio of 0.8, and a learning rate of 
0.3. 

The personalized multiclass classification was performed 
using the Softmax objective, a random forest tree size of 500, a 
maximum depth of 8, a subsample ratio of 1, and a learning rate 
of 0.05. Inter-patient multiclass classification was also 
performed using the Softmax objective, a random forest tree 
size of 500, a maximum depth of 8, a subsample ratio of 0.8, 
and a learning rate of 0.1 

F.  Bed Occupancy Detection 

The presence of the user on the bed can be used as input in 
closed-loop applications to start interventions or ensure the 
safety of the setup by preventing interventions while the user is 
not lying on the mattress. A simple decision rule to detect the 
presence of a user on the bed can be formulated as: 

 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑡(𝑡) = {
1, 𝑆𝑀𝐴(𝑡) ≤ 𝑡ℎ𝑟𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑡

0, 𝑒𝑙𝑠𝑒  
 () 

where 𝑆𝑀𝐴(𝑡) denotes the simple moving average over a 

window of the past ten seconds up to timepoint 𝑡 of the 

samples from the respective sensor mattress and 𝑡ℎ𝑟𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑡  

some global threshold. The 𝑆𝑀𝐴 must be smaller than the 

threshold as the measured values are inversely proportional to 

the pressure applied to the sensor elements. Setting a window 

length to 10 seconds ensures robustness towards false 

negatives that could else occur while the user is moving or 

briefly sitting up in the bed. The threshold is then defined for 

each night 𝑖 as: 𝑡ℎ𝑟𝑖,𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑡 = �̄�𝑖,𝐺𝑇 −  𝑤𝜎𝑖,𝐺𝑇
2  (3) 

where �̄�𝑖,𝐺𝑇 is the 10% trimmed mean and 𝜎𝑖,𝐺𝑇
2  the variance of 

the ground truth data (i.e. the periods in the nights where the 

patients were not lying in the beds) of night 𝑖, and 𝑤 a scalar 

weight parameter. The global threshold 𝑡ℎ𝑟𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑎𝑡  is then 

calculated by taking the mean of the thresholds of each night. 

Adjusting the threshold by a weighted variance of the data 

allows to better control the ratio of the sensitivity and 

specificity. For the computation of the global threshold, only 

the nights of the first five patients were used due to a partial 

loss of video data from patient 6. The global threshold was set 

to 3877158.3 AU.  

IV. RESULTS 

A. Single-Class Position Classification 

Each participant underwent three nights of data collection. 
We first report the inter-patient performance where two nights 
are used for training and the third night as test input. All 
evaluation metrics are reported as averaged means of the class 
performance to prevent overestimation of the classifier 
performance due to the highly unbalanced dataset. To see 
whether an algorithm would generalize to a person that was not 
contained in the training data, we trained and validated 
classifiers with the leave-one-participant out method (inter-
patient). The results of can be found in Table V and VI.  
Personalized classifiers were able to distinguish between 
supine and non-supine positions with a mean F1-score of 0.61 
and between supine and two lateral positions with a mean F1-
score of 0.46. 
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TABLE V.  SINGLE- AND MULTI-CLASS INTER-PATIENT PERFORMANCE 

IN %. FIFTEEN NIGHTS WERE USED AS INPUT FOR TRAINING, THE REMAINING 

3 NIGHTS FOR EVALUATION. 

P 
Single-Class Multi-Class 

Precision Recall F1-Score Precision Recall F1-Score 

1 64.4 64.0 61.8 53.3 51.5 51.6 

2 80.5 59.8 64.8 62.0 38.4 40.0 

3 65.6 65.6 65.6 64.3 62.6 62.8 

4 65.4 60.8 61.9 49.8 50.7 47.8 

5 66.7 66.7 66.7 49.9 52.7 47.8 

6 59.0 52.5 51.5 58.2 49.2 44.3 

Mean 66.9 61.6 62.1 56.3 50.9 49.1 

 
TABLE VI.  SINGLE-CLASS INTRA-PATIENT PERFORMANCE IN % USING 

RANDOM AND SMOTE OVERSAMPLING. THE PERSONALIZED PATIENT-
SPECIFIC CLASSIFIERS WERE TRAINED WITH TWO NIGHTS OF TRAINING DATA 

EACH AND VALIDATED ON THE REMAINING NIGHT. P… PATIENT ID, BED… 

ISABEL I AND ISABEL II, MVMT… BED MOVEMENT DURING THE NIGHT 

P Bed Mvmt 
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Oversampling 

Smote Oversampling 

(2nd row including 

own features) 
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1 

II  78.1 76.6 76.5 
71.1 

78.9 

71.1 

79.1 

70.9 

79.1 

I x 15.3 39.0 22.0 
65.9 
66.5 

43.7 
44.1 

32.9 
33.5 

II x 67.7 63.8 64.1 
69.0 

70.1 

64.6 

66.0 

64.8 

66.2 

2 

II  80.0 69.7 74.1 
81.2 

81.1 

72.8 

73.3 

76.4 

76.7 

I x 59.2 72.2 61.8 
71.0 
69.6 

73.9 
73.1 

65.6 
62.0 

II x 75.9 75.8 75.8 
75.0 

76.3 

66.9 

74.2 

70.6 

75.2 

3 

II  74.7 75.4 75.1 
77.9 
79.7 

77.6 
79.1 

77.7 
79.4 

I x 65.8 61.2 62.8 
72.4 

58.2 

71.2 

60.9 

71.7 

59.4 

II x 65.4 34.7 28.5 
60.5 
70.7 

33.6 
35.6 

28.0 
28.9 

4 

II  60.5 55.2 56.6 
61.8 
62.9 

50.7 
58.1 

51.7 
59.5 

II x 63.6 60.8 61.5 
59.2 

64.4 

53.3 

61.8 

53.7 

62.4 

I x 8.4 29.1 13.1 
8.5 
8.4 

29.1 
29.1 

13.1 
13.1 

5 

II  55.1 55.5 55.3 
57.8 

56.0 

58.5 

56.5 

58.1

56.2 

II x 74.8 66.1 66.5 
66.2 

73.3 

64.3 

65.4 

64.9 

66.0 

I x 97.0 95.4 96.1 
98.4 

98.4 

98.4 

98.5 

98.1 

98.4 

6 

II  64.8 50.0 45.1 
64.8 

64.3 

44.5 

45.7 

44.1 

46.0 

II x 43.8 50.0 45.1 
48.0 
44.9 

54.9 
50.7 

47.7 
46.0 

I x 67.4 53.3 52.5 
70.2 

65.7 

53.2 

49.5 

51.6 

47.7 

Mean 62.1 60.2 57.4 
65.5 

66.1 

60.1 

61.2 

60.5 

61.3 

 
Figure 5.  Obtained ROC Curve for the binary classification  when trained 

on inter-patient data and validated using leave-one-participant out. 

Multi-Class Position Classification 

Results for the patient-specific (Table VII) and the inter-
patient (Table VI) multi-class (supine, lateral left, lateral right) 
classifiers are reported. Classes are highly imbalanced, c.f. 
Table II. Windows labelled "Unknown", “Movement”, or 
“Upright” were removed from the dataset prior to training. 
Since several participants did not sleep in prone position during 
the majority of nights, this class was removed. Classifiers that 
were trained on data from different patients, showed a mean 
F1-score of 0.62 and 0.49 for binary and multi-class 
classification, respectively. 

TABLE VII.  MULTI-CLASS INTRA-PATIENT PERFORMANCE IN %. THE 

PATIENT-SPECIFIC CLASSIFIERS WERE TRAINED WITH TWO NIGHTS OF 

TRAINING DATA EACH AND WERE VALIDATED ON THE THIRD NIGHT. 

P Bed Mvmt 

Features from 

Literature 

Features from 

Literature + own 

Features 
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1 

II  65.4 65.4 64.3 67.4 71.2 68.6 

I x 17.1 34.1 20.5 14.6 36.2 20.8 

II x 60.4 63.0 59.9 55.4 55.9 52.3 

2 

II  51.8 48.7 42.1 37.3 45.3 35.1 

I x 12.2 35.0 18.2 39.4 36.4 21.0 

II x 57.5 50.5 53.2 52.2 47.6 49.3 

3 

II  75.9 75.8 75.8 80.9 78.8 79.5 

I x 48.9 40.0 37.8 31.1 36.7 22.1 

II x 75.3 35.8 26.1 77.4 34.1 20.9 

4 

II  41.4 34.3 30.5 36.4 32.2 26.5 

II x 40.3 40.9 37.3 42.0 44.1 40.4 

I x 9.7 28.4 13.1 8.4 29.1 13.1 

5 

II  52.0 41.0 41.0 56.0 43.9 44.5 

II x 61.1 50.5 48.2 64.5 50.7 47.6 

I x 94.9 97.2 96.0 96.7 97.2 96.9 

6 

II  51.9 41.0 41.0 57.6 42.3 39.5 

II x 61.1 50.5 48.2 44.7 52.0 45.6 

I x 94.9 97.2 96.0 13.2 29.5 18.0 

Mean 54.0 51.6 46.2 48.6 48.0 42.6 

False Positive Rate 

P1 AUC: 0.68 

P2 AUC: 0.73 

P3 AUC: 0.68 

P4 AUC: 0.66 

P5 AUC: 0.73 

P6 AUC: 0.58 
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D.  Bed-Occupancy Detection 

Mean (SD) Sensitivity, Specificity, and F1-score were 
0.963 (0.051), 0.995 (0.007), and 0.981 (0.028), respectively. 
All metrics are defined on ten-second windows and the weight 
parameter is set to one. Due to a loss of video data in the 
recording of the last patient, scores only represent patients 1-5. 

V. DISCUSSION 

Our work showed that sleep-position classifiers trained 
with data from two nights have comparable performance to 
classifiers trained with large inter-patient datasets. The scores 
are comparable to other low-complexity systems found in the 
literature [8]. In contrast to other studies, we used two different 
beds, mattresses, and sensor setups. Thereby, we were able to 
demonstrate transferability of the algorithms. Using only an 8-
channel sensor mattress, we could show that a simple decision 
rule is sufficient to distinguish between in- and out-bed 
presence, which is required when performing closed-loop 
positional therapy. As sleep-related breathing disorders mainly 
occur in supine position, reliable detection of supine position is 
key. The precision, recall, and F1-score of 66.9%, 61.6%, and 
62.1%, respectively, show that our model sometimes 
misclassified supine and non-supine. In a closed-loop setup 
used to treat sleep-related breathing disorders, this would result 
in both undertreatment and superfluous interventions. To 
determine whether a higher spatial resolution of the sensor 
mattress could improve classification accuracy, a re-run of the 
experiments using the same algorithms on a higher-resolution 
mattress would be required. 

VI. CONCLUSIONS 

In this work, we presented a custom-made low-resolution 
pressure sensor setup to detect sleep positions and bed 
occupancy. We could show that data from two nights is enough 
to obtain personalized classifiers that have comparable 
performance to classifiers trained with larger inter-patient 
datasets. Also, the classifiers were transferable between the 
different beds and mattresses used in our study, hence 
providing robustness across environments. The performances 
of the proposed binary- and multiclass classifiers indicate 
occasional misclassifications which would lead to 
undertreatments and superfluous interventions when 
transferred to a real-time closed-loop system. Finally, our 
presented rule-based approach can reliably detect the in-bed 
presence, which is an important step towards closed-loop 
systems performing controlled positional therapy for sleep-
related breathing disorders. 
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