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SegMatch: Segment Based Place Recognition in 3D Point Clouds

Renaud Dubé Daniel Dugas Elena Stumm Juan Nieto Roland Siegwart Cesar Cadena∗

Abstract— Place recognition in 3D data is a challenging
task that has been commonly approached by adapting image-
based solutions. Methods based on local features suffer from
ambiguity and from robustness to environment changes while
methods based on global features are viewpoint dependent.
We propose SegMatch, a reliable place recognition algorithm
based on the matching of 3D segments. Segments provide
a good compromise between local and global descriptions,
incorporating their strengths while reducing their individual
drawbacks. SegMatch does not rely on assumptions of ‘perfect
segmentation’, or on the existence of ‘objects’ in the envi-
ronment, which allows for reliable execution on large scale,
unstructured environments. We quantitatively demonstrate that
SegMatch can achieve accurate localization at a frequency of
1Hz on the largest sequence of the KITTI odometry dataset. We
furthermore show how this algorithm can reliably detect and
close loops in real-time, during online operation. In addition,
the source code for the SegMatch algorithm is made publicly
available1.

I. INTRODUCTION

Place recognition represents one of the key challenges of
accurate Simultaneous Localization and Mapping (SLAM).
As drift is inevitable when performing state estimation
without global positioning information, reliable loop-closure
detection is a crucial capability for many robotic platforms
[1]. Many successful strategies for performing place recog-
nition using images are proposed in the literature. However,
image-based place recognition can become unreliable when
strong changes in illumination occur, and in the presence
of strong viewpoint variations [2]. Lidar-based localization,
on the other hand, does not suffer from changes in external
illumination, and since it captures geometry in a very fine
resolution, does not suffer as much as vision when changes
in viewpoint are present. This paper therefore considers
3D laser range-finders for their potential to provide robust
localization in outdoor environments.

Current strategies for recognizing places in 3D laser data
are primarily based on keypoint detection and matching [3].
In the context of performing place recognition on images,
Lowry et al. [2] state that using descriptors at the level of
segments or objects could provide the benefits of both local
and global feature approaches. Object or segment maps also
offer several advantages over their metric and topological
counterparts. Among others, these maps better represent
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Fig. 1: An illustration of the presented place recognition framework. The
reference point cloud is shown below (in white), and the local point cloud
is aligned above. Colours are used to show the point cloud segmentation,
and segment matches are indicated with green lines.

situations where static objects can become dynamic, and
are more closely related to the way humans perceive the
environment [1].

While working at the level of objects would be ideal, it
also has a twofold assumption. First, that we have access to a
perfect object segmentation technique, and second, that there
are actual ‘objects’ in the environment, under the definition
of [4]. These assumptions do not hold in general because
of imperfect segmentation and because of common real-
world scenarios with no distinguishable objects. This work
therefore introduces SegMatch, a segment-based approach
which takes advantage of more descriptive shapes than
keypoint-based features without the aforementioned strong
assumptions of object-based approaches. In other words, we
recognize places by matching segments that belong to partial
or full objects, or to parts of larger structures (windows, arcs,
façades). Examples of such segments can be seen in Fig. 1
for data collected in an urban scenario.

Our system presents a modular design. It first extracts and
describes segments from a 3D point cloud, matches them to
segments from already visited places and uses a geometric-
verification step to propose place recognition candidates. One
advantage of this segment-based technique is its ability to
considerably compress the point cloud into a set of distinct
and discriminative elements for place recognition. We show
that this does not only reduce the time needed for matching,
but also decreases the likelihood of obtaining false matches.

When it comes to segment description, although numer-
ous 3D point cloud descriptors exist [5–7], there is no
clear evidence of relative performance among them, such
as power of generalization or robustness against symmetry
in geometry for instances. Therefore, we have opted for a
machine learning approach to match a variety of standard
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descriptors computed over the segments. Nonetheless, due
to the modular nature of the presented framework, future
advances in 3D segmentation, recognition, and description
can be used by replacing the respective components in our
pipeline.

To the best of our knowledge, this is the first paper to
present a real-time algorithm for performing loop-closure
detection and localization in 3D laser data on the basis of
segments. More specifically, this paper presents the following
contributions:

• SegMatch, a segment based algorithm to perform place
recognition in 3D point clouds.

• An open source implementation of SegMatch for online,
real-time loop-closure detection and localization.

• A thorough evaluation of the algorithm performances in
real-world applications.

The paper is structured as follows: Section II provides an
overview of the related work in the field of place recognition
in 3D point clouds. The proposed algorithm is then described
in Section III and evaluated in Section IV. Section V finally
concludes with a short discussion.

II. RELATED WORK
Detecting loop-closures from 3D data is still an open

problem in robot localization. The problem has been tackled
with different approaches. We have identified three main
trends: (i) approaches based on local features, (ii) global
descriptors and (iii) based on planes or objects.

The works presented in [3, 8–11] propose to extract local
features from keypoints and perform matching on the basis of
these features. Bosse and Zlot [3] extract keypoints directly
from the point clouds and describe them with a 3D Gestalt
descriptor. Keypoints then vote for their nearest neighbors
in a vote matrix which is finally thresholded for recognizing
places. A similar approach has been used in [11]. Apart from
such Gestalt descriptors, a number of alternative local feature
descriptors exist which can be used in similar frameworks.
This includes features such as Fast Point Feature Histogram
(FPFH) [7] which will also be employed later in this work.
Alternatively, Zhuang et al. [8] transform the local scans
into bearing-angle images and extract Speeded Up Robust
Features (SURFs) from these images. A strategy based on
3D spatial information is employed to order the scenes before
matching the descriptors. A similar technique by Steder et al.
[9] first transforms the local scans into a range image. Local
features are extracted and compared to the ones stored in
a database, employing the Euclidean distance for matching
keypoints. This work is extended in [10] by using Normal-
Aligned Radial Features (NARF) descriptors and a bag of
words approach for matching. Zhang and Singh [12] are able
to estimate odometry in real-time using range data. Loop-
closures are mentioned but rely on an offline algorithm.

Using global descriptors of the local point cloud for
place recognition is also proposed [13–15]. Rohling et al.
[13] propose to describe each local point cloud with a 1D
histogram of point heights, assuming that the sensor keeps
a constant height above the ground. The histograms are

then compared using the Wasserstein metric for recognizing
places. Granström et al. [14] describe point clouds with
rotation invariant features such as volume, nominal range,
and range histogram. Distances are computed for scalar
features and cross-correlation for histogram features, and
an AdaBoost classifier is trained to match places. Finally,
Iterative Closest Point (ICP) is used for computing the
relative pose between point clouds. In another approach,
Magnusson et al. [15] split the cloud into overlapping grids
and compute shape properties (spherical, linear, and several
type of planar) of each cell and combine them into a matrix
of surface shape histograms. Similar to other works, these
descriptors are compared for recognizing places.

While local keypoint features often lack descriptive power,
global descriptors can struggle with invariance. Therefore
other works have also proposed to use 3D shapes or objects
for the place recognition task. Fernandez-Moral et al. [16],
for example, propose to perform place recognition by detect-
ing planes in 3D environments. The planes are accumulated
in a graph and an interpretation tree is used to match sub-
graphs. A final geometric consistency test is conducted over
the planes in the matched sub-graphs. The work is extended
in [17] to use the covariance of the plane parameters instead
of the number of points in planes for matching. This strategy
is only applied to small, indoor environments and assumes a
plane model which is no longer valid in unstructured environ-
ment. A somewhat analogous, seminal work on object-based
loop-closure detection in indoor environments using RGB-
D cameras is presented by Finman et al. [18]. Although
presenting interesting ideas, their work can only handle
a small number of well segmented objects in small scale
environments.

We therefore aim for an approach which does not rely
on assumptions about the environment being composed of
simplistic geometric primitives such as planes, or a rich
library of objects. This allows for a more general, scalable
solution. Inspiration is taken from Douillard et al. [19] and
Nieto et al. [20] which proposed different SLAM techniques
based on segments. A strategy for aligning Velodyne scans
based on segments is proposed in [19] where the Symmetric
Shape Distance is used to compare and match segments as
defined in [21]. Analogously, [20] proposed an Extended
Kalman Filter solution which uses segments as landmarks,
rather than point features.

III. SegMatch ALGORITHM

In this section we describe our approach for place recog-
nition in 3D point clouds. The proposed system is depicted
in Fig. 2 and is composed of four different modules: point
cloud segmentation, feature extraction, segment matching,
and geometric verification. Modularity has been a driving
factor during the design phase. In the following, we propose
an example implementation for every module of the system
which can easily be adjusted for operating in different types
of environment.



Fig. 2: Block diagram of SegMatch, a modular place recognition algorithm. The target map can either be loaded from disk (for localization) or computed
online (for loop-closure).

A. Segmentation

The first building block of SegMatch segments point
clouds into distinct elements for matching. For each incom-
ing point cloud P given in a global reference frame, we
first extract a local point cloud by defining a cylindrical
neighbourhood of radius R, centred around the current robot
location. A voxel grid is then applied to the resulting source
cloud in order to filter-out noise in voxels where there is not
enough evidence for occupancy. The filtered point cloud is
finally segmented into a set of point clusters Ci using the
"Cluster-All Method" of [22]. This segmentation requires
the ground plane to be previously removed, which can be
achieved by clustering adjacent voxels based on vertical
means and variances [22]. Once the ground plane is removed,
Euclidean clustering is used for growing segments. For each
cluster Ci the centroid ci is computed as the average of all
its points.

B. Feature extraction

Once we have segmented the point-cloud, we extract
features for each segment. This feature extraction step is used
for compressing the raw data and builds segment signatures
suitable for recognition and classification. As there is no clear
gold-standard descriptor for 3D data, we use several different
descriptors.

Given a cluster Ci, descriptors are computed resulting
in feature vector fi =

[
f1
i f2

i . . . fm
i

]
. Whereas this

feature vector could be extended to include a large quantity
of descriptors, two descriptors which produced interesting
results are here presented.

f1 Eigenvalue based: In this descriptor, the eigenvalues of
the segment’s point cloud are computed and combined in a
feature vector of dimension 1x7. We compute the linearity,
planarity, scattering, omnivariance, anisotropy, eigenentropy
and change of curvature measures as proposed in [23].

f2 Ensemble of shape histograms: This feature of dimen-
sion 1x640 is made of 10 histograms which encode the
shape functions D2, D3 and A3 as described in [6]. The
D2 shape function is a histogram of the distances between
randomly selected point pairs while D3 encodes the area
between randomly selected point triplets. The A3 shape
function describes the angles between two lines which are
obtained from these triplets.

C. Segment matching

Using these features, we wish to identify matches between
segments from the source and target clouds. For this opera-
tion we opted for a learning approach, as it is often difficult
to select the appropriate distance metric and thresholds, espe-
cially when multiple feature types are involved. A classifier is
therefore used to make the final decision about whether two
segments represent the same object or object parts. In order
to maintain efficiency, we first retrieve candidate matches by
performing a k-d tree search in the feature space, which are
then fed to the classifier.

Specifically, we employ a random forest for its classifica-
tion and timing performances. The idea behind this classifier
is to construct a multitude of distinct decision trees and to
have them vote for the winning class. During the learning
phase, each tree is trained using a bootstrapped subset
of the training data set and a random subset of features.
Random forests offer classification performance similar to
the AdaBoost algorithm but are less sensitive to noise in the
output label (such as a mis-labeled candidates) since they do
not concentrate their efforts on misclassified candidates [24].
Random forests can also provide information regarding the
feature’s relative importance for the classification task.

For the random forest classifier to determine whether
clusters Ci and Cj represent the same object, we compute
the absolute difference between the eigenvalue based feature
vectors: ∆f1 =

∣∣f1
i − f1

j

∣∣. The feature vectors f1
i and f1

j are
also fed to the classifier for a total eigenvalue based feature
dimension of 1x21. For the ten histograms of the ensemble
of shape features, the histogram intersection is computed,
resulting in a feature of dimension 1x10. Given this set of
features, the random forest classifier assigns a classification
score w of being a match. A threshold on w is applied for
building the final list of candidate matches passed to the next
module. This threshold value is dependent on the subset of
features used for matching and is defined in Table I.

D. Geometric verification

The candidate matches are fed to a geometric-verification
test using random sample consensus (RANSAC) [25]. Trans-
formations are evaluated using the segment centroids. A
geometrically-consistent cluster of segments is finally ac-
cepted based on a minimum number of segments in it,



resulting in a 6DOF transformation and a list of matching
segments which represent a place recognition candidate.

IV. EXPERIMENTS

The proposed segment based algorithm is evaluated using
the KITTI odometry dataset [26]. We first illustrate how this
dataset can be processed for generating segment matching
samples for training and testing the classifiers (Sections IV-
A and IV-B). This leads to an analysis of the performances
of different classifiers’ parametrization (Section IV-C). The
segment based localization strategies are then compared to a
keypoint approach as a baseline (Section IV-D). We then
show how the segment based loop detection framework
can be used for online place recognition applications and
how it can successfully operate in different environments
(Sections IV-E and IV-F).

A. Dataset

The following three analyses are performed using se-
quences 00, 05 and 06 of the KITTI dataset. Sequence 06
lasts 1.2 km (114 seconds) and is only used for training the
classifiers. Sequence 00 lasts 3.7 km (470 seconds) and is
particularly interesting as it contains one large loop where
the vehicle revisits the same environment for a stretch of 500
meters. This section with multiple traversals will therefore
be used in the localization experiment. Sequence 05 lasts
2.2 km (287 seconds) and is used for presenting the online
operation of the framework.

As previously described, the input of our segment based
place recognition algorithm is a point cloud in a global
reference frame. For generating a point cloud in real-time
from the large quantity of measurements provided by a
Velodyne sensor, a uniform rate sub-sampling filter is first
applied for removing half of the scan’s points. These scans
are added to the point cloud every time the robot drove a
minimum distance of 1 meter. As the sensor configuration
on-board the car is known (e.g. height of the sensor), ground
plane extraction is performed by directly filtering the input
scan by minimum height. This simple assumption is efficient
and works very well for this driving dataset.

For extracting the source point cloud, the radius of the
cylindrical neighbourhood R is set to 60 meters. The voxel
grid leaf size is set to 0.1 meters, and a minimum of two
points within a voxel is required to consider it as occupied.
For segmentation, the maximum Euclidean distance between
two occupied voxels such that they are considered to belong
to the same cluster is set to 0.2 meters. We choose to consider
only segments which contain a minimum of 100 points and
a maximum of 15000 points.

B. Training and testing setup

The following procedure is performed for generating both
training and testing data. During the first section of a
given sequence, a target map is generated and processed
by extracting and describing segments. When the vehicle
revisits the same section of the environment, the ground
truth information is used for storing pairs of corresponding

TABLE I: Parameters of three segment matching strategies.

Parameter L2 rf_eigen rf_full+shapes

Number of neighbors 200
k-NN Feature space Eigenvalue based
Hard threshold value 0.0024 N/A N/A

Number of trees N/A 25 25
Threshold on probability N/A 0.81 0.72

Minimum cluster size 4
RANSAC resolution 0.4 meter

and differing segments from the source and target clouds.
For each segment in the local cloud, we perform k-Nearest
Neighbors (k-NN) retrieval in feature space and identify the
200 nearest neighbors in the target map. These candidates are
saved as true matches for the corresponding segments and
false matches for differing segments. Using this procedure
on sequence 06 of the KITTI dataset, we generate 2000
true and 800000 false segment matches. For training the
random forests, we adopt a 1:50 ratio between the number
of positive and negative samples which results in a training
set of 102000 samples.

C. Segment matching performance

The goal of this first experiment is to evaluate the
performances of three segment matching techniques. The
first strategy titled L2 applies a threshold on the Euclidean
distance between two segment’s features vectors. The second
strategy, RF_eigen, is based on a random forest which relies
only on the eigenvalue based features. The last strategy,
RF_eigen+shapes, uses the full set of features described in
Section III-B. The parameters used for each classifier are
summarized in Table I.

Fig. 3 shows the receiver operating characteristic (ROC)
curves of the three methods when testing on data extracted
from sequence 00. The random forest classifiers offer an im-
provement in performance when compared to their L2 norm
counterpart. Examples of corresponding segments correctly
identified by the RF_eigen+shapes strategy are illustrated in
Fig. 4.

In the experiments of the following section, we illustrate
how these classifiers perform during real-time localization.
We define a false positive rate (FPR) of 0.2 to be the
operating point of all classifiers in order to limit false
segment matches and avoid false place recognitions. This
parameter and the other ones summarized in Table I are
used for the localization and loop-closure experiments of
Sections IV-D and IV-E.

D. Localization performance

This section evaluates the performance of the SegMatch
algorithm for localizing in a target segment map. The section
of interest in sequence 00 (as described in Section IV-
A) is used for creating the target map, and localization is
performed when this section is revisited. The three segment
based strategies described in section IV-C are compared to
a keypoint based place recognition technique.
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Fig. 3: ROC curves for segment matching performance using a hard thresh-
old on the distance between segment features (L2) compared to using ran-
dom forests on two different feature sets (RF_eigen and RF_eigen+shapes).
The operating points of FPR = 0.2 are indicated.

1) Keypoint baseline: For the keypoint localization
method, normals are first computed for every point of the
filtered cloud using a radius of 0.3 meters. Keypoints are
selected in the target and source clouds using the Harris 3D
keypoint extractor of the PCL library [27]. These keypoints
are filtered to have a minimum distance of 0.5 meters
between each keypoint. This ensures that the same regions
are not described twice, which in turn reduces ambiguity
during the later geometrical verification step. Each keypoint
is described using the Fast Point Feature Histogram (FPFH)
with a radius of 0.4 meters [7]. The source keypoints are
matched to their 75 closest neighbors in the target cloud and
the geometric verification algorithm described in Section III-
D is used to filter this list of keypoint matches and to output
localizations. Parameters were chosen in an attempt to get
the best performance we could find.

2) Results: In order to show the reproducibility of the
results and because the computer load affects the locations
at which localization is performed in each run, we perform
90 runs for each strategy and present the average results.
The distance travelled between each localization is recorded
and evaluated in a similar manner to [28]. Fig. 5 shows the
probability of travelling a given distance without successful
localization in the target map. Specifically, this metric is
computed as follows.

P (x) =

Sum of distance travelled without
localization for greater or equal to x meters

Total distance travelled
(1)

Although RF_eigen+shapes is the most complex and
computationally demanding strategy (see Table II), it never
required more than 55 meters before successful localization,
as compared to 67 and 88 meters for L2 and RF_eigen
respectively. On the other hand, while L2 is the quickest
strategy, it also made 14 false localizations, which could
motivate further reduction of the operating point of 0.2 FPR.

TABLE II: Timing of each of the localization modules (in ms).

Module L2 RF_eigen RF_eigen+shapes

Segmentation 428.80 ± 5.83 428.78 ± 6.28 435.56 ± 7.34
Description 1.37 ± 0.03 1.37 ± 0.03 103.84 ± 2.41
Matching 244.52 ± 9.76 289.75 ± 10.56 563.23 ± 11.96

Geometric verification 67.43 ± 2.77 76.00 ± 2.75 85.57 ± 3.16

Total 742.12 795.91 1188.20

For the two random forest based strategies, the vehicle can
successfully localize within 35 meters 95% of the time.

Finally, all segment matching methods clearly outperform
the keypoint baseline which necessitated much more work to
deliver positive results. Based on keypoint matching, we were
not able to obtain an interesting number of true positives
without allowing for some false positives. That is, on average
over a one minute localization run, the baseline detected 5.23
true positive and 3.25 false positive localizations.

The computational requirements of this algorithm on an
Intel i7-4900MQ CPU @ 2.80GHz are depicted in Table II
Note that all operations including ensemble of shape feature
extraction, histogram intersection, and random forest classi-
fication could benefit of parallelization.

E. Loop-closure performance

We now show how our segment based loop detection
algorithm can be used online and how it can easily be
integrated with a pose-graph trajectory estimation system. In
this scenario, the target map is built online by accumulating
segments extracted from the source clouds, as opposed to
being loaded before the experiment as performed in Sec-
tion IV-D. Special care is taken to avoid cluttering the target
map with ‘duplicate segments’, i.e. segments resulting from
the same object part, but segmented at different times and
overlapping in the target map.

The results of applying this strategy on sequence 05 of
the KITTI dataset is illustrated in Fig. 6. For this sequence,
the global map is created using ICP for adding constraints
between Velodyne scans. This introduces a drift over time,
as expected in GPS-free state estimation solutions. On this
sequence, our real-time algorithm successfully detected 12
true positive and no false positive loop-closures. Once loops
are detected, they are fed in a pose-graph optimization
system similar to the one described in [29]2. The result
of this optimization is used to update the target segment
positions and remove duplicate segments from the target map
as aforementioned.

F. Demonstration with more complex data

To conclude the experiment section, we briefly show that
the proposed place recognition algorithm can be applied to
other environments and sensor modalities by simply replac-
ing sub-modules of the pipeline. As an example, in situations
where the segmentation algorithm described in Section III-
B cannot be applied, this module can be replaced by a
different algorithm. Fig. 7 shows an example of a correct loop
detection by matching segments obtained from segmenting

2This separate contribution is available at https://github.com/
ethz-asl/laser_slam.
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Fig. 4: Corresponding segments successfully detected by the SegMatch algorithm. The top and bottom rows illustrate segments from the target and the
source clouds respectively.
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Fig. 5: Probability of travelling a given distance before localizing in the
target segment map. Data is obtained from 90 localization runs for each
strategy on drive 00 of the KITTI dataset. Over these 90 runs, the keypoint
and L2 strategies respectively detected 292 and 14 false localizations while
RF_eigen and RF_eigen+shapes made no false detections.

the point cloud based on region growing with smoothness
constraints [30]. Although these types of segments may
appear to be less meaningful for humans, they provide
discriminative features for the loop-closure algorithm, as
illustrated by the matches shown in Fig. 7.

V. CONCLUSION

This paper presented SegMatch, an algorithm for perform-
ing place recognition in 3D laser data based on the concept
of segment matching. Compared to a keypoint approach,
acting at the level of segments offers several advantages
without making any assumptions about perfect segmentation
or on the presence of ‘objects’ in the environment. Our
modular approach first extracts segments from a source point
cloud, which are then described and matched to previously
mapped target segments. A geometric-verification step is
finally applied to turn these candidate matches into place
recognition candidates.

This framework has been exhaustively evaluated on the
KITTI dataset. We first analysed the impact of using a
random forest classifier to learn an adequate feature distance
metric for the purpose of matching segments. We have then
shown that the algorithm is able to accurately localize at
a frequency higher than 1Hz in the largest map of the
KITTI dataset. We also demonstrated how it is possible to
robustly detect loops in an online fashion, and how these

can be fed to a pose-graph trajectory estimator. Thanks to
the framework’s modular approach, we have furthermore
illustrated that it can easily be applied to different scenarios
by simply changing building blocks of the algorithm. The
source code for the entire framework is available online,
offering real-time segmentation and loop-closure detection
for streams of 3D point clouds.

Based on this segment matching technique, we foresee
several possible advantages in systems which do more than
mapping - using segments for both matching and describing
the environment. We will pursue supervised learning tech-
niques to interpret these segment-based maps into structural
and object semantic classes.
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