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Abstract—The reliability of traction power supply systems 

(TPSSs) is an important consideration in railway electrification 

and development of high-speed rail. The state analysis of the 

whole system and individual components often involves the 

construction of an appropriate system model. The Markov 

chain has been widely used to evaluate random processes 

quantitatively and is suitable for the reliability analysis of 

complex systems with multiple failure modes. A challenge with 

the Markov chain approach is the curse of dimensionality and 

its computational complexity increases exponentially with the 

number of system components. This paper proposes to use a 

three-state model and system regionalization based on the 

specific structural features of the TPSS. The failure probability 

of TPSS over time is analyzed and a new simplified method to 

compute the average system availability index is developed to 

evaluate system reliability. Simulation studies confirm that the 

proposed approach can derive a rich set of reliability indexes, 

and the reliability of TPSSs can be effectively evaluated. 

Keywords—Markov chain, reliability analysis, TPSS 

availability index, average availability. 

I. INTRODUCTION 

With the rapid development of transportation 
electrification around the world to tackle the climate change 
challenge, how to ensure safe and reliable operation of 
traction power supply systems has become an increasingly 
important research topic [1]. For the electrified railway, a 
widely used public transportation means, to guarantee the 
operation reliability of its traction power supply system 
(TPSS) is at the heart of the railway system management and 
maintenance routines. The TPSS failures could delay the 
train or paralyze the entire line, causing significant economic 
losses and passenger dissatisfaction [2]. However, the 
railway TPSS has a complex structure with numerous 
subsystems. To ensure its safe operation, reliability analysis 
is vital for the follow-on planning of system maintenance and 
safe and reliable train operation. 

The reliability analysis methods based on the Markov 
chain can be grouped to two modes in the time domain: 
namely discrete and continuous, and reliability analysis can 
be conducted through the system state transition diagram in 
these two modes [3-5]. In addition, Markov chain can be 
combined with Monte Carlo simulation for system reliability 
analysis in different traffic scenarios [6,7]. Markov chain 
modelling can not only be used for complex railway systems, 
including traction power supply systems and catenary 
systems, but also in aerospace, and other fields, thus 
possessing huge development potentials. 

In practical applications, the increasing number of system 
components may lead to overly complex Markov chain 

configuration and consequent huge calculation burdens. The 
simple two state Markov chain structure may no longer meet 
the requirements of system reliability analysis, while the 
multi-state Markov chain has overly complex matrix 
equations incurring huge number of calculations. The 
complexity of the Markov chain model increases 
exponentially with the number of components as well as the 
number of states. Therefore, how to effectively use the 
random model features of the Markov chains for complex 
system reliability analysis with simplified computational 
framework is a hot research topic. To address the 
aforementioned challenges, this paper proposes a reliability 
analysis method for complex systems based on a three state 
Markov chain. Through the derivation of system availability 
index and the regionalization of complex systems, the 
problem-solving procedure can be efficiently performed, and 
fairly satisfactory system reliability analysis results can also 
be obtained. 

The remainder of this paper is organized as follows. 
Section II introduces the configuration of a simple two state 
Markov chain followed by the proposed three state Markov 
chain, and the procedures for calculating the system 
reliability index are also presented. In section III, the 
implementation of the proposed method for the reliability 
analysis of complex systems are described in detail. Section 
IV presents a case study by using the proposed method to 
analyze the reliability of a railway TPSS and section V 
concludes the paper. 

II. THE PROPOSED METHOD 

The Markov process is used to model a stochastic process 
with random state variables X(tn) at time tn. The state 
variables X(tn) at time tn are only related to the previous 
states X(ti) (i<<n) of a finite number of time steps and are 
independent on states X(tn-1), X(tn-2),…, X(tn-i) (i<<n). Hence, 
as a "no memory process", previous state of the Markov 
process does not affect the current one. The Markov process 
has been widely used to model stochastic processes, and it 
can quantitatively analyze the numerical, non-numerical, 
continuous and discrete states of complex systems, based on 
which the system reliability can be analyzed. The essence 
here for reliability study is that the Markov process can be 
used to derive the probability value of each working state, 
the failure state, and the time required for the system to reach 
a steady state. 

To apply the Markov processes for system reliability 
analysis, the following assumptions are often required. 

• The system should be repairable. 



• The life span and maintenance time of the system 
units obey an exponential distribution. 

• Unit states are independent of each other and have no 
influence between them. 

The common steps for system reliability analysis are as 
follows: 

• Build the system state transition diagram: define the 
system states and draw the system transition diagram 
based on the failure and repair process. 

• Formulate the system state transition equation: define 
the Markov chain and formulate its state transition 
equations. 

• Compute the system reliability index: based on the 
state transition equation and system initial states, use 
Laplace and its inverse transformation to solve the 
state transition equations to obtain the reliability 
indices. 

A. Two State Markov Chain Process 

Taking the simple two state repairable system as an 
example, the operating states of the system are normal 
working state and faulty working state. As shown in Fig.1, 
state '0' is usually used to indicate that the system is working 
normally, and the state '1' is used to indicate the system is 
under faulty working state. The state of the system at time t 
can then be represented by X(t). 
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Fig. 1. A two-state system transition diagram 

In Fig. 1, λ is the failure rate of the system, and µ is the 

repair rate of the system, ∆t represents a very short time 
interval. 

Taking a two state system in Fig.1 as an example, for this 
repairable system, the system state function is given as 
follows. 

    

0,     normal work state
( )

1,    faulty  work state
X t


= 


 

Suppose P0 is the probability of the system in normal 
working state, and P1 is the system in abnormal working 
state. According to the state transition diagram, the state 
transition function at the time instant [t, t+Δt] is given as 
follows. 
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Markov Chain, denoted as P(∆t), which represents the 
instantaneous transition probabilities from one state to 
another. The availability A(t) of the system can be derived 
below. 
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When t tends to positive infinity, the steady-state 
availability of the system becomes below. 

 ( )A t
µ

λ µ
=

+
 (3) 

B. Three-State Markov Chain Process 

As the number of system components increases, the 
complexity of the overall system states also increases, and 
the simple two-state repairable system model can no longer 
meet the requirements for reliability analysis. Therefore, a 
three-state Markov chain model which can represent 
different system areas is used to evaluate the reliability of a 
complex system, and a new time-based system average 
availability index is introduced to analyze and evaluate the 
overall system reliability. 

The new three state Markov chain of system state 
transition diagram is built shown in the Fig.2. State ‘0’ 
represents the normal working state, and states ‘1’ and ‘2’ 
respectively represent abnormal working state under 
different subsystem failure states. 
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Fig. 2. Three state system transition diagram 

Based on Fig.2, the system state transition equation in 

time [t, t+∆t] can be derived. While P0 is the system normal 

work state, and P1 and P2 are the probabilities of two 

different system abnormal work states. The instantaneous 

availability of the system is given below. 
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As the time tends to positive infinity, the steady-state 

probability of all states can be expressed as follows. 
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The above equations can be derived as follows.  

According to the system state transition map, the state 

transition equations can be obtained. 
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By taking the limit, the differential equation of the 

system can be derived as (8). 
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Taking the Laplace transform, the following can be 

derived. 
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Assuming (SI-A)P(s)=P(0), Eq. (10) and (11) can be 

obtained. 
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where P(s)=[P0(s), P1(s), P2(s)]T, P(0)=[1, 0, 0]T. 
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The inversion of (SI-A) is required to obtain P(s), hence 
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Based on the assumption that failure rates of 

components are independent of each other, hence λ1λ2 =0. 

Applying the partial fraction method and adverse Laplace 

method to solve (13), yielding. 
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where a, b, c is the constant numbers, and their values are 

calculated based on (16). 
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It can be verified that 
0
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i
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=∑ , where n is the totally 

number of the system states [4]. Further, when the time t 

tends to 0, P0 tends to 1, and P1 and P2 tend to 0. On the 

other hand, when time t approaches the positive infinity, the 

probability of the system under normal working state Ps and 

abnormal working state PF are given as: 
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Hence, the system average availability indicator Am are 

given in (19) and (20). 
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C. Reliability analysis based on three state Markov chain 

process 

Compared with the two state Markov chain which is 
suitable for reliability analysis of a simple repairable system, 
the proposed three state Markov chain can use the series-
parallel relationship of the components in the system to 
simplify the calculation process. It can not only achieve the 
quantitative calculation of the reliability index of the 
complex system, but also greatly reduce the computational 
complexity.  

The reliability analysis procedure is illustrated in Fig.3. 
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Fig. 3. Complex system reliability analysis process based on Markov 

chain 

For a complex system containing multiple components or 
subsystems, the steps to quantitatively calculate the 
reliability indices of the Markov chains are shown as follows. 

1) Build the system configuration diagram, divide the 

system into two parts according to their system 

functionailities, and then define normal and abnormal 

working states of different parts. 

2) Define a homogeneous Markov chain X(t), formualte 

the transition matrix P(∆t), and the instantaneous, steady 

state and average availability indices of the system. 

3) Calculate the instantaneous, steady state and average 

availability index of the system using the formulas derived 

in step 2 and output the system reliability analysis results 

with those indices values. 

III. CASE STUDY 

To verify the effectiveness of the proposed approach for 
the reliability analysis of the railway TPSS, the proposed 
three state Markov Chain method is applied to a typical 
TPSS as a case study. Fig. 4 illustrates the typical system 
topology of a railway substation system including bus line, 
transformers, rectifiers, circuit breakers, and isolating 
switches. 
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Fig. 4. The diagram of a typical railway traction power supply system 

In most reliability studies, the railway TPSS default 
equipment failure and repair function obey the exponential 
distribution [8]. The reference data of the key equipment of 
the traction substation can be referred to [9], and the specific 
values are listed in Table I, the unit is per hour. This case 
assumes that the same type of equipment has the same 
probability of failure in the same traction substation. 

TABLE I.  FAILURE RATE AND REPAIR RATE OF MAIN EQUIPMENT OF 

RAILWAY TPSS  

Equipment Failure rate λ Repair rate µ 

Breaker 2.5114×10-6 1/4 

Isolating switch 1.7837×10-6 1/4 

Transformer 1.83×10-4 1/24 

Rectifier  9.134×10-6 1/24 

33 kV bus 2.354×10-8 1/4 

1500 V bus 1.354×10-8 1/24 

 

The system configuration can be divided into two parts, 
namely part A, and part B as shown in Fig.4. Then, the 
failure rate and repair rate of each part can be calculated 
according to its series-parallel relationship and these values 
are fed to the equations for formulating the reliability index. 



TABLE II.  RELIABILITY INDEX UNDER DIFFERENT SYSTEM STATES 
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(A) RELIABILITY INDEX OF SYSTEM  

Index  Part A 

Probability  
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(B) RELIABILITY INDEX OF SYSTEM PART A 

Index  Part B 

Probability  

(steady-state) 
1.50974×10-5 

Probability  

(instantaneous) 
5 5 0.24104

2 ( ) 1.50974 10 1.50979 10 t
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(C) RELIABILITY INDEX OF SYSTEM PART B 

According to the proposed three state Markov chain 
method, the system reliability indicators calculated are listed 
in Tables II. Table II (A), (B), (C) quantitatively represent 
the instantaneous and steady state values of part A, part B 
and the whole railway traction power supply system in terms 
of availability and failure probability. 

Functions in the Table II are the stable and instantaneous 
availability indices of the system and the failure probability 
of part A and part B. It can be easily inferred that the steady-
state availability of parts A and B tends to be 99.9978% and 
99.9985% respectively. Furthermore, as shown in Figure 5, 
the system average availability and the probability of part A 
and B vary with time. During the first 600 hours of operation, 
system availability decreases over time, and finally 
approaches to a steady state value. The availability of whole 
system reaches 0.999963 which implies that the system 
operation can still keep reliable operations, and the failure 

probability of part A and part B reaches 2.14212×10-5 and 

1.50974×10-5 respectively. 

Compared with two state Markov Chain method, the 
proposed method leads to rich set of reliability indices, such 
as probability of different system regions, which cannot be 
derived by two state Markov Chain method. However, 
adopting more system states must lead to extra and 
unacceptable computational burdens. 

 

(A) AVERAGE AVAILABILITY OF SYSTEM  

 

(B) PROBABILITY OF SYSTEM PART A 

 

(C) PROBABILITY OF SYSTEM PART B 

Fig. 5. System average availability and probability of part A and B 

For example, defining system as four and more state 
Markov chain model with a higher-dimensional matrix 
structure leads to huge computational burden for Laplace and 
adverse transformation, hence it becomes less attractive to 
conduct the reliability calculation for complex systems. On 
the other hand, lower-order Markov chain cannot offer a 
desirable suite of reliability indexes to evaluate complex 
system. Therefore, three state Markov chain is good trade-off 
method for analyzing complex system reliability. 

IV. CONCLUSION 

Quantitative evaluation of reliability for TPSS is vital for 
safe and reliable operation of railway systems, and it is an 
important prerequisite for system maintenances plans. This 
paper has proposed a complex reliability analysis method 
based on three state Markov Chain by dividing the complex 
system into two regions. Based on the three state Markov 
Chain, the typical railway TPSS state transition diagram is 
established, and Laplace transformation is used to calculate 
the system stable, instantaneous, and average availability 
index for reliability analysis. Through the improved model 
and the derived indexes, the system reliability can be better 
analyzed. A case study to analyze the reliability of a typical 
TPSS shows that this method can not only greatly reduce the 
complexity of calculation, but also can obtain the whole 
system availability and the fault probability of the different 
system parts. This allows a better maintenance planning of 
complex railway systems. 
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