
Predicting Safety Misbehaviours in Autonomous
Driving Systems using Uncertainty Quantification

Ruben Grewal
Technical University of Munich

Munich, Germany
ruben.grewal@tum.de

Paolo Tonella
Software Institute - USI
Lugano, Switzerland
paolo.tonella@usi.ch

Andrea Stocco
Technical University of Munich, Fortiss GmbH

Munich, Germany
andrea.stocco@tum.de, stocco@fortiss.org

Abstract—The automated real-time recognition of unexpected
situations plays a crucial role in the safety of autonomous
vehicles, especially in unsupported and unpredictable scenarios.
This paper evaluates different Bayesian uncertainty quantifica-
tion methods from the deep learning domain for the anticipa-
tory testing of safety-critical misbehaviours during system-level
simulation-based testing. Specifically, we compute uncertainty
scores as the vehicle executes, following the intuition that high
uncertainty scores are indicative of unsupported runtime condi-
tions that can be used to distinguish safe from failure-inducing
driving behaviors. In our study, we conducted an evaluation
of the effectiveness and computational overhead associated with
two Bayesian uncertainty quantification methods, namely MC-
Dropout and Deep Ensembles, for misbehaviour avoidance. Over-
all, for three benchmarks from the Udacity simulator comprising
both out-of-distribution and unsafe conditions introduced via
mutation testing, both methods successfully detected a high
number of out-of-bounds episodes providing early warnings
several seconds in advance, outperforming two state-of-the-art
misbehaviour prediction methods based on autoencoders and
attention maps in terms of effectiveness and efficiency. Notably,
Deep Ensembles detected most misbehaviours without any false
alarms and did so even when employing a relatively small number
of models, making them computationally feasible for real-time
detection. Our findings suggest that incorporating uncertainty
quantification methods is a viable approach for building fail-safe
mechanisms in deep neural network-based autonomous vehicles.

Index Terms—autonomous vehicles testing, uncertainty quan-
tification, self-driving cars, failure prediction.

I. INTRODUCTION

Autonomous driving systems (ADS) are vehicles equipped
with sensors, cameras, radar, and artificial intelligence, used
to let them travel between destinations without human inter-
vention. For a vehicle to be qualified as fully autonomous,
it must possess the capability to autonomously navigate to a
predefined destination on roads that have not been specifically
adapted for its use [1]. The U.S. Department of Transportation,
National Highway Traffic Safety Administration (NHTSA),
has defined five standardized levels of autonomy, from driver
assistance (with the driver being responsible for safe driv-
ing) to full automation (where no human driver is required
to operate the vehicle). Several companies, such as Audi,
BMW, Ford, Google, General Motors, Tesla, Volkswagen,

and Volvo, are actively engaged in the development and
testing of autonomous vehicles. In recent years, we witnessed
advancements such as people hailing self-driving taxis or fleets
of fully automated cars with no accompanying safety drivers.
Deep neural networks (DNNs) are the driving force behind
self-driving car systems. To create autonomous vehicles, devel-
opers rely on extensive datasets harnessed in the field to train
large DNNs. This data includes images captured by cameras
on actual vehicles and other sensors, enabling the DNNs to
learn to identify road elements, traffic lights, pedestrians, and
other elements within diverse driving environments [2].

Safety assessment of ADS is a hard endeavor and exten-
sive testing is required before deployment on public roads.
To validate the safety of ADS, companies adopt a multi-
pillar approach that encompasses simulation-based testing,
test track, and real-world testing [3], [4]. Researchers have
focused primarily on the first pillar, proposing automated
testing techniques that try to expose failing conditions and
corner cases [5]–[9]. However, despite these efforts, public
acceptance of autonomous driving software in the real world
would consider the capabilities of the ADS to operate safely in
partially unknown and uncertain environments, therefore ex-
hibiting a high level of robustness also for sensor inaccuracies
and environmental uncertainties [10].

DNNs are known for their tendency to produce unexpect-
edly incorrect yet overly confident predictions, particularly in
complex environments like autonomous driving. This poses
significant safety concerns for ADS, which should possess
situational awareness capabilities to discern challenging sce-
narios, such as adverse weather conditions, which are likely
to induce errors and then prompt timely warnings to the driver
or trigger fail-safe mechanisms [11], [12].

Previous research has introduced techniques to build safety
in-service monitoring [13]–[19]. Frameworks such as SelfOr-
acle [18], DeepRoad [16], DeepGuard [20] require a data-
box access [21] and they are capable of analyzing real-
world driving data and assess whether the ADS is safe.
However, these approaches work in a black-box manner (i.e.,
they analyze the input/output data and identify anomalous
instances, without considering the internal processing by the
DNN model), which makes them less sensitive to bugs at the
model level [22] and prone to false positives/negatives, given
their external perspective on the system being tested. A recent978-1-5386-5541-2/ 20/$31.00 ©2024 IEEE
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white-box solution uses attention maps as a proxy of the DNN
uncertainty to enhance the accuracy of failure prediction [23],
but it comes with higher costs and therefore is less suitable
for resource-constrained environments.

This paper investigates the problem of building a white-
box ADS failure predictor rooted in the uncertainty quan-
tification (UQ) methods available in the deep learning do-
main. Uncertainty quantification consists of approaches that
compute the confidence, or lack thereof, of deep learning
models in response to certain inputs [11]. UQ is widely used
for the analysis, testing, comprehension, and debugging of
DNNs [11], [12]. In this work, we evaluate two UQ methods
for failure prediction to keep the reliability of the ADS within
safety bounds. Our approach leverages uncertainty scores as
a transparent confidence estimator for the system. Online
monitoring is performed during ADS driving; the uncertainty
scores synthesized from the internals of the DNN under test are
used to automatically identify conditions in which the system
is not confident. In this paper, we show that uncertainty scores
represent important clues about the reliability of the ADS and
can be used as failure predictors. Our technique works unsu-
pervisedly as failure prediction is performed by establishing a
threshold over the uncertainty scores during nominal operating
conditions. Hence, anomalous driving conditions are detected
when the uncertainty scores increase above such threshold
within a specific detection window preceding the failure.

We have evaluated the effectiveness of uncertainty quan-
tification methods on the Udacity simulator for self-driving
cars [24], using ADS available from the literature and a diverse
set of failures induced by adverse operational scenes and
mutation testing-simulated malfunctions. More specifically, we
evaluated two uncertainty quantification methods (i.e., Monte
Carlo Dropout and Deep Ensembles) and their effectiveness
when varying their hyperparameters (e.g., number of models
or samples used for uncertainty estimation) at different confi-
dence levels. In our experiments using an existing dataset of
+70 simulations accounting for more than 250 failures [23],
UQ methods demonstrated remarkable predictive capabilities,
forecasting most failures several seconds in advance, a 6-
15% increase in failures detected compared to SelfOracle [18]
and ThirdEye [23], two state-of-the-art strategies from the
literature based on autoencoders and attention maps. Notably,
our most successful UQ method strikes a superior balance
between identifying misbehaviors and minimizing false alarms
(94% F3 score) for a relatively constrained configuration,
ensuring computational feasibility for real-time detection.

Our paper makes the following contributions:
Technique. A monitoring technique for ADS failure predic-

tion based on uncertainty quantification methods. Our
approach is publicly available as a tool [25].

Evaluation. An empirical study showing that the uncertainty
scores are a promising white-box confidence metric for
failure prediction, outperforming the black-box approach
of SelfOracle [18] and the XAI-based approach by Third-
Eye [23]. Our study also discusses the performance of our
methods for real-time prediction.

II. BACKGROUND

A. Lane-keeping ADS

ADS rely on sensor data, cameras, and GPS to perceive their
surroundings and use different processing methods to enable
predictive decisions regarding vehicle controls [1].

From an architectural point of view, ADS can be mainly di-
vided into two categories: end-to-end ADS driving models and
multi-module ADS. The former ones are based on advanced
DNNs that are trained on massive datasets of driving scenes.
The latter ones are organized into four modules: perception,
prediction, planning, and control [1]. The perception module
receives as input various sources of sensor data, such as images
of the front camera, and proximity sensor, to detect objects
in the neighborhood of the vehicle. The prediction module
predicts the trajectories of these objects, which are used by the
planning module to decide a safe route. The control module
translates the route into actual vehicle commands, e.g., a
sequence of steering angles. As of now, the two approaches
coexist [1] and it is not clear if an approach will prevail.

In this paper, we consider testing end-to-end ADS, while
we leave the investigation of multi-module ADS for future
work. Particularly, we focus on ADS that implement the
“behavioral cloning” task through imitation learning. In this
task, the vehicle learns the function of lane-keeping in an end-
to-end manner, from human-labeled driving samples in which
actuators’ values reflect the driving decisions of an expert
human driver operating a real physical vehicle, or a simulated
vehicle within a driving simulator [24]. Once trained, models
like NVIDIA’s DAVE-2 [26] are capable of predicting the
vehicle’s controls (i.e., steer, brake, acceleration).

The ability to keep the vehicle within a lane is a fundamental
component of the safe deployment of DNN-based ADS. No-
tably, the NHTSA has reported that off-road failures are not
only frequent but also come at a significant cost, exceeding
15 billion USD [27].

B. Failure Conditions for Lane-keeping ADS

In the context of NHTSA Level 4 (High Automation), a
system monitor plays a critical role in identifying emerging
functional insufficiencies. Its primary objective is to maintain a
high level of functional quality, even in extreme situations [13],
[16], [17]. When the monitor deems the current condition as
unsafe, the ADS should be designed to disengage, requesting
human intervention to take control of the vehicle, or activating
alternative fail-safe mechanisms [12].

Among the underlying causes of ADS failures, such as
instances of off-road driving, SOTIF [28] highlights the role of
both external unknown and internal uncertain conditions [28].
External unknown conditions encompass “abnormal” inputs
that represent rare, unexpected, and potentially unsupported
environmental events. These conditions typically involve sce-
narios where the ADS was not trained due to the absence of
prior knowledge (i.e., epistemic uncertainty), such as specific
road types or particular weather and lighting conditions. The
DNNs utilized within ADS may not be resilient to such
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Fig. 1: Examples of operational conditions [23]. Left: nominal
(sunny). Center: OOD (night+snow). Right: OOD (snow).

significant changes in data distribution and they are said to be
out-of-distribution (OOD, see Figure 1), potentially resulting
in system-level failures such as the ADS driving off-road.
Conversely, internal uncertain conditions pertain to misbe-
haviors within the decision component of the ADS. These
misbehaviors are often attributed to inherent bugs in the DNN
model, which may be introduced during its development phase.
Common instances of such bugs include inadequate training
data and sub-optimal choices regarding the model architecture
or training hyperparameters [22]. In the rest of the paper, we
shall use the terms failures/misbehaviours interchangeably.

C. Existing Unsupervised Failure Predictions Methods

Researchers have proposed ADS failure prediction models
that can be trained with no supervision (i.e., no knowledge
of the anomalies). Certain propositions are based on a data-
box access [21]1 to the main system [13], [18]–[20], whereas
other solutions require internal information of the systems and
therefore are considered white-box [23], [29], [30].

In this work, we chose two representative propositions from
both domains, namely SelfOracle [18] and ThirdEye [23]. We
selected these approaches as baselines because they represent
two competitive approaches, one black-box, and one white-
box, that are designed for the task of failure prediction of ADS
and use an unsupervised failure predictor to analyze inputs and
assign a suspiciousness score to them, which should be low
(below a threshold) if the inputs are supported, or high (above
a threshold) otherwise.

These approaches were developed, integrated, and exper-
imented on the Udacity simulator [24]. In this paper, we
evaluate our failure predictors in the same experimental set-
ting as previous work to mitigate the threats to the internal
validity that are possible when experimenting with tools in a
simulation environment different from the one in which they
were originally implemented. In the following of this section,
we provide further details on the two baseline approaches.

SelfOracle [18] is a black-box technique that estimates
the system confidence by analyzing the front-facing camera
images used by the ADS. SelfOracle uses an autoencoder to
reconstruct driving images and the reconstruction loss as a
measure of confidence. The autoencoder is trained to minimize
the distance between the original data and its low-dimensional
reconstruction with metrics such as the Mean Squared Error

1In the original papers, these solutions are described as black-box methods,
despite their reliance on access to the training set of the ADS. Therefore, it
would be more accurate to consider them as data-box techniques. However,
for the sake of simplicity, this paper employs the term black-box to refer to
the existing data-box techniques that are applied in a black-box manner.

(MSE). A low MSE indicates that the input has characteristics
similar to those of the training set, whereas a high MSE
indicates potentially an unsupported sample. While effective,
the main criticism of SelfOracle is that it is not informed by the
internal functioning of the DNNs responsible for controlling
the ADS, as its only connection with such DNNs is the
common training set (i.e., the same inputs are used to train
DNNs and autoencoder, which makes these or similar inputs
relatively familiar and easy to handle/reconstruct for both
DNNs/autoencoder).

To address this, ThirdEye [23] was proposed as a white-
box alternative based on the attention maps produced by
explainable artificial intelligence techniques (XAI). ThirdEye
synthesizes suspiciousness scores using different strategies
(i.e., pixel-level average, or autoencoder-based reconstruction
loss). While proved promising, such confidence scores are only
a proxy of the true uncertainty. Second, computing heatmaps
at runtime requires a non-negligible computational overhead,
which makes their application as a runtime monitoring predic-
tion system a careful, if at all possible, choice.

In this paper, we aim to ground the benefits of UQ for
misbehaviour prediction and compare them with such existing
approaches. While uncertainty quantifiers are expected to be
informative as they are based on full access to the DNN’s
internals, they are also known to be computationally expensive.
To the best of our knowledge, no empirical comparison has
been conducted concerning their effectiveness and efficiency,
which represent the core objectives of this work.

III. DEEP NEURAL NETWORKS UNCERTAINTY
QUANTIFICATION METHODS

Uncertainty quantification has gained an increasingly pivotal
role in ensuring the reliability and robustness of DNNs, espe-
cially those tasked with making critical decisions. Uncertainty
can be classified into two main types: aleatoric uncertainty
and epistemic uncertainty [31]. Aleatoric uncertainty arises
because of the random nature of the system under study,
while epistemic uncertainty stems from the lack of knowledge
of the system. Aleatoric uncertainty cannot be reduced but
can be identified and quantified. Conversely, epistemic un-
certainty can be reduced through methods such as sensitivity
analysis [32], re-training, and fine-tuning. The total predictive
uncertainty can be regarded as the sum of aleatoric and
epistemic uncertainty [11].

In the following, we summarize two popular UQ methods
proposed in the literature, namely Monte Carlo dropout and
Deep Ensembles, and their significance in supervising regres-
sion DNNs, such as the ones employed for ADS [12], [33]

A. Monte Carlo Dropout

The first considered UQ method is Monte Carlo Dropout
(MC-Dropout or MDC for short) [34]. In DNNs, dropout
layers are used at training time as a regularization method
to avoid overfitting. At testing time they are usually disabled
for efficiency reasons, and the final DNN prediction would
be deterministic. However, uncertainty-aware DNNs based on
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Fig. 2: Distribution approximated through MC-Dropout.

MCD can be enabled based on the principle of Markov Chain
Monte Carlo. When estimating predictive uncertainty with
MC-Dropout, the dropout layers of the DNN are enabled
also at inference time. Hence, predictions are no longer deter-
ministic, being dependent on which nodes/links are randomly
chosen by the network (see Figure 2). Therefore, given the
same test data point (X in the figure), the model will predict
slightly different values every time the point is processed by
the DNN, by “dropping” a selection of neurons across layers,
except for the output layer.

This method can be regarded as an approximate Bayesian
Neural Network (BNN) approach to uncertainty modeling.
The Bayesian approach defines the model’s likelihood, where
Gaussian likelihood is often assumed for regression, with ω
being the model parameters, x the input and y the output [35]:

p(y|x, ω) = N (avg(fω(x)), var(fω(x)))

MCD is used to generate samples interpreted as a prob-
ability distribution through Bayesian interpretation [34]: the
value predicted by the DNN will be the mean (avg, or µ
in Figure 2) of such probability distribution. Moreover, by
collecting multiple predictions for input, each with a different
realization of weights due to dropout layers, it is possible to
account for model uncertainty as the variance (var, or σ in
Figure 2) of the observed probability distribution.

The rationale for using MC-Dropout is that supported inputs
are expected to be characterized by low DNN uncertainties,
whereas unsupported inputs are expected to increase it [36].

While being simple to implement, MC-Dropout is an in-
trusive approach, as it requires access to the existing DNN
architectures, for which dropout layers need to be enabled also
at testing time, or added if not already present [11].

Two hyperparameters influence the behaviour of MCD:
(i) the number of stochastic forward passes and (ii) the dropout
rate. While empirical guidelines exist [34], in this paper we
aim to assess the effectiveness of MCD as a failure predictor
for ADS testing under a large combination of these parameters.

x x x

y1 y2 yN

μ

σ

… …

Model 1 Model 2 Model N

Fig. 3: Distribution approximated through Deep Ensembles.

B. Deep Ensembles

The second considered UQ method involves another
Bayesian method called Deep Ensembles [37] (DE). DE
requires training multiple instances of the same model ar-
chitecture on the same dataset while varying other factors
to introduce randomicity. The ensemble predictions constitute
an output distribution in which the variance of the ensemble
characterizes the uncertainty (i.e., a larger variance implies
larger uncertainty). Among the strategies to build DE, we re-
call bootstrapping, using different DNN architectures in terms
of a number of layers and type of activation functions, random
initialization of parameters along with a random shuffle of
the datasets, and hyper-ensembles, in which ensembles with
different hyperparameters are combined [11].

In this paper, we rely on random initialization of deep en-
sembles, which has shown promising results for many practical
problems [11], [38]. Figure 3 provides a visual representation
of this method. DE is a mixture model:

p(y|x) = 1

N

N∑
n=1

p∗n(y|x, ωn)

where the predictions are combined into one output µ (inter-
preted as a mixture of Gaussian distributions) and the variance
of the outputs (σ in Figure 2) measures the uncertainty.

Deep Ensembles provide a robust measure of uncertainty
that is able to account for multiple sources of model and
data uncertainty [11]. For DE, the main hyperparameter is
the number of models (N ). For large values of N , DE
provides a precise implementation of the BNN approach,
a theoretically grounded approach that provides the best
uncertainty quantification while, however, being associated
with a high computational cost. Thus, the trade-off between
the precision of the BNN approximation and computational
cost must be assessed in each application domain, such as
ADS. An advantage of DE is that it is widely applicable, as
it does not require any modification of any existing DNN.
However, the computational overhead associated with training
multiple models and loading them simultaneously in memory
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during inference might be unacceptable for a large number
of models. In this paper, we aim to assess the effectiveness
and performance of DE as a failure predictor for ADS testing
under a large number of ensemble sizes.

C. Implementation

We implemented our codebase in Python and made it
publicly available [25]. We support ADS models written
in Tensorflow/Keras integrated in the Udacity simulator for
self-driving cars [24]. Both UQ methods (MC-Dropout and
Deep Ensembles) were tested on instances of NVIDIA’s
DAVE-2 [26] models. For MC-Dropout, a dropout layer was
added between each layer of the original model.

IV. EMPIRICAL EVALUATION

A. Research Questions

We consider the following research questions:
RQ1 (effectiveness): How effective is UQ at predicting fail-
ures of ADS? What is the best configuration in terms of
dropout rate and number of samples (for MCD) or number
of models (for DE)? How does the effectiveness vary when
considering different confidence levels?
RQ2 (prediction over time): How does the prediction power
of UQ change when considering different detection periods?
RQ3 (comparison): How does UQ compare with SelfOra-
cle [18] and ThirdEye [23] in terms of effectiveness?
RQ4 (performance): What is the performance of running UQ
in terms of time overhead in making predictions? How do the
UQ methods compare with SelfOracle and ThirdEye?

The first research question (RQ1) aims to assess whether
our approach is able to attain a high failure prediction rate and
which method (i.e., MC-Dropout, Deep Ensembles, and their
parameters) yields the best prediction score. Failure prediction
is only useful if it helps to anticipate a failure, which is
studied in the second research question (RQ2). To assess the
usefulness of UQ methods over existing solutions, the third
research question (RQ3) compares UQ with two state-of-the-
art failure predictors for ADS [18], [23]. The last research
question (RQ4) evaluates the runtime cost of each technique,
to assess efficiency in conjunction with effectiveness.

B. Experimental Setup

In this paper, we follow the same experimental setting of
the original papers we compare against [18], [23], in terms of
simulation platform, objects of study, and metrics. We briefly
summarize the experimental setup next.

1) ADS Under Test: To implement DNN-based ADS, we
use NVIDIA’s DAVE-2 model [26], a reference model widely
used as the object of study in prior related work [16], [18],
[21], [39]–[43]. DAVE-2 consists of three 5x5 convolutional
layers with stride 2 plus two 3x3 convolutional layers (no
stride applied), followed by five fully-connected layers with
a dropout rate of 0.05 and ReLu activation function. For the
experiments with SelfOracle and ThirdEye, we obtained the
trained DAVE-2 models from the replication package of our
baselines [18], [23], to make sure to test the same ADS used

in the previous work. For UQ, we had no choice but to retrain
DAVE-2 (details available in Section IV-B6).

2) Driving Simulator: We tested UQ through simulation-
based testing, which is the standard practice for testing ADS
and their behaviour prior to real-world deployment [44]–
[47]. We simulate the ADS testing practices customary of
industry, where testers use a closed-loop track in a virtual
environment, prior to on-road testing on public roads [3], [4],
[48], [49]. While our approach is independent from the chosen
simulation platform, in our study to test the lane-keeping ADS
we used the Udacity simulator for self-driving cars [24], a
cross-platform driving simulator developed with Unity3D [50],
used in the ADS testing literature [18], [19], [21], [41], [51],
including our baselines [18], [23]. The simulator supports
various closed-loop tracks for testing behavioural cloning
ADS models, as well as the ability to generate changeable
environmental perturbations (e.g., weather effects), which is
useful to test an ADS on both nominal and unseen conditions.
We chose the default sunny weather condition as the reference
nominal scenario.

3) Benchmark: Concerning our evaluation set, we consider
three existing datasets of simulations from previous work [23].
The first two datasets deal with failures induced by out-of-
distribution conditions (OOD). An ADS that has been trained
on some given nominal conditions and environment can fail
in different instances of that environment. The first OOD
benchmark (OODextreme) is characterized by severe illumina-
tion/weather conditions with respect to the nominal sunny
scenario (see Figure 1). These conditions are available from
the replication package of the SelfOracle paper [18] and
account for 7 simulations with different degrees of extreme
OOD conditions: day/night, rain, snow, fog, day/night +
rain, day/night + snow, day/night + fog. The second OOD
benchmark (OODmoderate) consists of milder weather condi-
tions without the strong luminosity changes present in the
OODextreme benchmark. Overall, concerning the OOD bench-
marks, a total of 51 OOD one-lap simulations were collected:
21 for OODextreme and 30 for OODmoderate (10 × rain, 10 × fog,
10 × snow). The third benchmark (Mutants) consists of faulty
ADS models produced by mutation testing [42]. In this case,
the ADS drives under nominal (sunny) conditions, but it can
occasionally fail due to inadequate training, a frequent scenario
during the development process of an ADS model (i.e., data
collection, training, and testing is an iterative process [21]).
Overall, the evaluation set comprises 265 failures that our
approach is expected to detect timely. Both scenarios are of
interest to our work, as a failure predictor should be agnostic
about the conditions that cause the failures (i.e., unknown in-
puts or DNN model bugs). Moreover, to estimate the threshold
used by UQ methods, the evaluation set includes simulations
under nominal sunny weather conditions (one for each of three
benchmarks OODextreme, OODmoderate, and Mutants) using the
robust, unmutated, DAVE-2 model.

4) Detection Windows in Evaluation Set: The Udacity
simulator automatically labels individual failing frames as
either nominal or failing, according to whether the ADS was
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on track or off-track, respectively. We focus on the part of
the simulation preceding each failure, whereas the frames
labeled as failing are not considered. When a simulation
exhibits multiple failures, we assess each failure individu-
ally. Differently from the compared papers [18], [23], for
all benchmarks, we calculate the actual frame rate of each
simulation, instead of using a fixed window size of 15 frames.
This choice was motivated by the fact the three benchmarks
were captured on different machines and hardware, at different
frame rates. Consequently, using a fixed window size would
fail to uniformly represent simulation time across all datasets,
making it challenging to fairly evaluate the performance of
our predictors.

5) Baselines: As described in Section II-C, we use two
baselines for UQ. Concerning SelfOracle we consider the best
configuration presented in the original paper, which uses a
variational autoencoder [52] (VAE) with a latent size of 2,
trained to minimize the MSE (see Section II-C) between the
original and reconstructed nominal images (sunny). Regarding
ThirdEye, we assessed the best configuration that includes
heatmap derivative as a summarization method.

6) Configurations: For both UQ methods, we trained lane-
stable DAVE-2 models using an existing dataset [18] with
more than 32k images on nominal sunny conditions follow-
ing two different track orientations (normal, reverse), and
additional data for recovery. Each image is labeled with the
human expert-provided ground truth steering angle value for
that driving image. The maximum driving speed of the driving
model was 30 mph during data generation, the default value
in the Udacity simulator.

For MC-Dropout, we trained several DAVE-2
models varying two parameters. The first parameter
is the dropout rate, which we vary in the range
[0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35]. Models with a
dropout rate higher than 0.40 were disregarded for not
being able to complete a lap in the simulator. The
second parameter is the number of samples, which we
vary in the range [2, 3, 4, 5, 10, 20, 32, 64, 128]. For Deep
Ensembles, we trained several DAVE-2 models varying the
number of models in the ensemble, considering the range
[2, 3, 4, 5, 6, 7, 10, 30, 50, 70, 90, 100, 120].

The number of epochs was set to 50, with a batch size
of 128 and a learning rate of 0.0001. We used early stopping
with a patience of 10 and a minimum loss change of 0.0005 on
the validation set. The network uses the Adam optimizer [53]
to minimize the MSE between the predicted steering angles
and the ground truth value. We used data augmentation to
mitigate the lack of image diversity in the training data.
Specifically, 60% of the data was augmented through different
image transformation techniques (e.g., flipping, translation,
shadowing, brightness). We cropped the images to 80x160
and converted them from RGB to YUV color space. We only
retained solid models for testing, i.e., models able to drive
multiple laps in each track under nominal conditions without
showing any misbehavior in terms of crashes or out-of-track
events. This should also provide more guarantees about the

quality of the uncertainty score estimations obtained from
white box access to the models.

Overall, our experiment includes 232 models under test. For
MC-Dropout, we trained 63 final models (7 dropout rates × 9
number of samples) for parameter optimization and did further
testing on the best dropout rates to study the distribution.
For Deep Ensembles, we trained 138 different models and
built 30 different ensembles. For smaller-sized ensembles [2-
5] we tested various combinations of models to study their
effectiveness. As our evaluation set comprises 380,717 images,
overall we computed 15,723,347 uncertainty scores in our
experiments (11.5 days computing time).

7) Metrics used for Analysis: To answer RQ1, RQ2, and
RQ3, we apply a window function on non-overlapping, fixed
length, sequences of scores, returning the maximum score
within a window. In previous work [23], the arithmetic mean
of the scores within a window was also used, with less
promising results. Therefore, in this paper, we limit our
investigation to the maximum window function. The sets of
(windowed) uncertainty confidence scores represent a model of
normality collected in nominal driving conditions using differ-
ent methods for computing the uncertainty profiles. Following
existing literature [18], [23], we use probability distribution
fitting to obtain a statistical model of the uncertainty scores.
We set a threshold γ for the expected false alarm rate in
nominal conditions and estimate the shape κ and scale θ of a
fitted Gamma distribution of the uncertainty scores to ensure
the expected false alarm rate is below the chosen threshold
γ [18]. In this study, we experiment with different thresholds,
varying γ in the range [0.95, 0.99, 0.999, 0.9999, 0.99999],
hence expanding substantially the γ threshold ranges consid-
ered previously (ThirdEye was only evaluated for γ = 0.95,
whereas SelfOracle was evaluated for γ = 0.95 and γ = 0.99).

We compute the true positives as the number of correct
failure predictions within a detection window and the false
negatives as the number of missed failure predictions when
our framework does not trigger an alarm in a detection
window. The false positives and true negatives are measured
using nominal simulations to which analogous windowing
is applied. Our primary goal is to achieve a high Recall
(Re), or true positive rate, defined as Re=TP/(TP+FN)). Recall
measures the fraction of safety-critical failures detected by a
technique. It is also important to achieve high precision (Pr),
defined as Pr=TP/(TP+FP). Precision measures the fraction
of correct warnings reported by a technique. Consistent with
previous work [23], we consider the Fbeta score [54], with
β = 3.0, as a weighted balance between precision and recall
(F3 = 10·Precision×Recall

9·Precision+Recall ), staying consistent with previous work.
We are interested in an F-measure that weights recall higher
compared to precision because the cost associated with false
negatives is very high in the safety-critical domain [54] as it
means a missed failure detection. In contrast, in our setting, the
cost associated with false positives (false alarms) is relatively
lower compared to false negatives. We also compute the
threshold-independent metric AUC-ROC (area under the curve
of the Receiver Operating Characteristics), which we use to
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TABLE I: RQ1-2-3: Results for the best failure predictors. Bold = average F3 scores; grey = best F3 scores.

MCD5 S32 MCD5 S64 MCD5 S128 DE5 DE10 DE50 SelfOracle ThirdEye
conf = 0.99 conf = 0.99 conf = 0.99 conf = 0.999 conf = 0.999 conf = 0.999 conf = 0.99 conf = 0.95

TTF (s) Pr Re F3 Pr Re F3 Pr Re F3 Pr Re F3 Pr Re F3 Pr Re F3 Pr Re F3 Pr Re F3

OODextreme

1 22 93 69 19 100 69 22 93 69 42 100 87 42 100 87 100 100 100 73 100 96 19 93 65
2 23 100 73 19 95 66 20 88 65 42 100 87 42 100 87 100 100 100 73 96 93 19 95 66
3 23 96 71 17 82 59 22 89 67 43 100 87 43 100 87 100 100 100 70 89 86 19 93 66

avg 22 96 71 18 92 65 21 90 67 42 100 87 42 100 87 100 100 100 72 95 92 19 94 66

OODmoderate

1 31 100 80 30 98 79 30 98 79 100 100 100 100 100 100 100 100 100 51 98 89 13 87 54
2 27 86 69 26 83 67 25 81 65 100 97 97 100 98 98 100 100 100 47 91 83 11 75 47
3 21 63 51 21 63 51 20 63 51 72 70 70 89 79 79 72 70 70 33 62 57 10 62 40

avg 26 83 67 26 81 66 25 81 65 91 89 89 96 92 93 91 90 90 44 84 76 12 75 47

Mutants

1 65 100 94 65 99 94 65 100 94 100 100 100 100 100 100 100 100 100 77 82 81 44 99 87
2 65 98 93 64 97 92 64 97 92 100 96 96 100 97 97 100 97 97 61 49 50 44 97 86
3 60 88 84 59 85 81 59 87 83 100 81 82 100 87 87 94 81 82 56 41 41 41 91 80

avg 63 95 90 63 94 89 63 95 90 100 92 93 100 95 95 98 93 93 65 57 57 43 95 84

Average (All)

1 39 98 81 38 99 81 39 97 81 81 100 96 81 100 96 100 100 100 67 94 89 25 93 69
2 38 95 79 36 92 75 37 89 74 81 97 93 81 98 94 100 99 99 60 79 75 25 89 66
3 34 83 69 32 77 64 34 80 67 71 84 80 77 88 85 89 84 84 53 64 61 24 82 62

avg 37 92 76 36 89 73 36 88 74 78 94 90 79 96 92 96 94 94 60 79 75 24 88 66

choose the top three models as presenting the results for all
models would be infeasible. For RQ2, for each failure, we
adopt a detection window granularity equal to one second of
simulation in the Udacity simulator and we consider window
sizes from 1 to 3 seconds prior to the failures (time to failure,
TTF for short). Previous studies in the Udacity simulator [36]
indicate a TTF of 3 seconds as sufficient to avoid failures at
30 mph, which is the constant cruising speed of the ADS in
the simulator.

To answer RQ4, we compute the execution time (in millisec-
onds ms) and RAM usage during inference using the Python
tool mprofile [55] on a machine featuring an AMD Ryzen
7 3800XT 8-Core (16 Threads) Processor, 32GB system RAM
and a NVIDIA 3070 GPU with 8GB of VRAM. All models
were evaluated using two laps under normal conditions for a
total evaluation set consisting of 11,031 images. All inferences
were computed using the CPU only with all 16 (virtual) cores
enabled. For Deep Ensembles, all models of an ensemble were
loaded into memory and performed the inference concurrently.
For MC-Dropout, the model was loaded into memory and
performed the inference concurrently, running the inference
process multiple times as multiple parallel threads. For SelfOr-
acle and ThirdEye, the cache was cleared, forcing the models
to compute the heatmaps during inference instead of relying
on pre-computed values.

C. Results

1) Effectiveness (RQ1): For MCD, the top three configu-
rations from our experiments are MCD models with dropout
rate=0.05 and number of samples 32, 64, and 128. In the rest of
the paper, we refer to them as MCD-5 S32, MCD-5 S64, and
MCD-5 S128, respectively. For DE, the top three configura-
tions from our experiments are DE with 5, 10, and 128 models,
referred to as DE5, DE10, and DE50 next. Figure 4 reports
the three models for each UQ method and the two baselines at
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Fig. 4: RQ1: F3 scores for the best failure predictors across
all confidence levels.

different confidence values. Deep Ensembles models perform
well across all confidence levels. MC-Dropout models perform
well at confidence levels γ = 0.95 and γ = 0.99 and worse
with higher confidence levels. Consequently, in the rest of
the paper, we report detailed results considering the optimal
confidence threshold for each model.

Table I presents the effectiveness results for the top three
configurations of UQ (MC-Dropout, Deep Ensembles), Self-
Oracle, and ThirdEye. Results are averaged across conditions,
split between external unknown conditions (OODextreme and
OODmoderate) and internal uncertain conditions (Mutants). For
each condition, we evaluate failure detection with a detection
window of 1-3 seconds and also report the average of these
scores. The effectiveness metrics consider the optimal confi-
dence threshold for each model (Figure 4). Precision (Pr) is
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measured in anomalous conditions, which explains why it is
lower than the expected value associated with the confidence
threshold in most cases. Due to space constraints, in this
section, we only comment on the average F3 scores over all
benchmarks. On average, UQ with MC-Dropout reaches a F3

score of 73−76c. UQ with Deep Ensembles, on the other hand,
performs better with F3 scores of 90 − 94. For the MCD-5
model, increasing the sample size does not improve the effec-
tiveness but rather causes a slight drop in the F3 score. The
precision for MCD-5 remains relatively low across all sample
sizes larger than 32, indicating that the false positive rate
does not improve with a higher number of samples. For Deep
Ensembles, the theoretical best performance is DE50 (i.e., an
ensemble of 50 models) with an F3 of 94, outperforming any
other configuration. In practice, though, a DE of 50 models
might be computationally expensive, therefore DE5 or DE10
are more likely to be used. All Deep Ensembles models have
a high recall and a low false positive rate (i.e., high precision).

RQ1: UQ with Deep Ensembles (5/50 models) is the
best-performing failure predictor for ADS, achieving
the highest failure prediction rates across all condi-
tions (F3 = 90-94%).

2) Prediction Over Time (RQ2): Table I reports the effec-
tiveness considering different time to failure (TTF, Column 2).
In principle, failure prediction should get more challenging as
we move farther from the failure. This is confirmed for all
configurations of UQ (considering the average scores) with
the prediction power dropping (F3) slightly when we move
from a 1-second detection window to a 2-second window and
a larger drop when considering a 3-second window. The best
MC-Dropout model performance drops by -3.5% and -14.8%
at 2 and 3 seconds TTF respectively, compared to 1 second
TTF. The best Deep Ensembles model performance drops by
-1% and -16% respectively. When we look at the OODextreme
benchmark, we observe that Deep Ensembles of all sizes do
not drop any predictive power up to 3 seconds TTF, with DE50
predicting all failures.

RQ2: On average, the effectiveness of the best con-
figurations of UQ drops by 16% average F3 up to 3
seconds before the failures. The effectiveness of UQ
with Deep Ensembles remains high under OODextreme

conditions (no decrease in F3) up to 3 seconds before
the failure.

3) Comparison (RQ3): Considering the average F3 scores
across benchmarks from Table I, the best configurations of
both UQ methods are superior to SelfOracle and ThirdEye at
predicting misbehaviours. MC-Dropout with a 5% dropout rate
and 32 sample size is comparable to SelfOracle with a +1%
improvement in F3 score. Compared to ThirdEye, MCD5-
S32 is +15% better at predicting misbehaviour (F3). Deep
Ensembles 50 outperforms both SelfOracle and ThirdEye, with

an improvement of +25% and +42% in average F3 scores, re-
spectively. On the OODextreme benchmark, UQ scores a +8.7%
and +51% increase in F3 w.r.t. SelfOracle and ThirdEye. For
OODmoderate conditions, average F3 scores raise up to 93, for
DE10, whereas the best F3 from our baseline (SelfOracle) is
76%. For Mutants, our results show a remarkable difference in
effectiveness between UQ over SelfOracle and ThirdEye. Both
MC-Dropout and Deep Ensembles score higher with average
F3 scores in the range of 89-95, a +66.7% w.r.t. SelfOracle in
F3 and 13% w.r.t. ThirdEye.

Overall, average results for F3 show significant improve-
ments of UQ over previous experiments. For Deep Ensembles,
this finding holds independent of the configuration being used
and the reaction period considered.

We assessed the statistical significance of these differences
using the non-parametric Mann-Whitney U test [56] (with
α = 0.05) and the magnitude of the differences using the
Cohen’s d effect size [57]. The difference in F3 score between
Deep Ensembles and SelfOracle and ThirdEye were found to
be statistically significant (p-value < 0.05) with medium and
large effect sizes. As expected by looking at the average F3

scores of Table I, there is no statistically significant difference
between MCD and SelfOracle (p-value ≥ 0.05), whereas
the difference with ThirdEye is statistically significant with
medium effect size.

RQ3: UQ with Deep Ensembles outperforms SelfOr-
acle and ThirdEye in terms of failure prediction under
all conditions, with statistical significance.

4) Performance (RQ4): Figure 5 shows the results of the
different models in ms per iteration/image. Deep Ensembles
performed best with the DE5 employing 2.5 ms/image and
the DE50 employing 17.7 ms/image. SelfOracle has a similar
performance to larger deep ensembles with 12.8 ms/image.
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Fig. 5: RQ4: Computational overhead (ms/iteration).
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MC-Dropout performs worse than deep ensembles and Self-
Oracle. MCD-5 S32 took 13.6 ms/image and 46.9 ms/image
for MCD-5 S128. Both UQ methods, as expected, decrease
in performance when either the number of models or the
sample size increases. ThirdEye, as seen in Figure 5, takes
significantly longer than any other method to process an image,
being 105× slower than Deep Ensembles. This performance
is expected, as ThirdEye needs to compute the heatmap for
each image, which is a computationally expensive process.

Concerning the memory usage of the different models,
we do not report extensive results, but we discuss a few
interesting insights. MC-Dropout used the least amount of
memory considering its best configuration (635 MB). Deep
Ensembles 50 used a larger amount of memory, requiring
loading all models into memory simultaneously (1.37 GB).
The size of each model itself (used in MC-Dropout or the
Deep Ensembles) is approximately 4.7 MB. SelfOracle and
ThirdEye used the most amount of memory, requiring 27.6
GB and 7.3 GB of memory respectively.

RQ4: Small Deep Ensembles are the most computa-
tionally efficient outperforming ThirdEye and SelfOr-
acle. Particularly, DE5 and DE10 employ on average
less than 5 ms/image.

D. Threats to Validity

1) Internal validity: All variants of UQ, SelfOracle, and
ThirdEye were compared under identical experimental settings
and on the same evaluation set. Thus, the main threat to
internal validity concerns our implementation of the testing
scripts to evaluate the failure prediction scores, which we
tested thoroughly. Concerning the training of the ADS model,
we used artifacts publicly available in the replication packages
of the SelfOracle [18] and ThirdEye [23] papers. Regarding
the simulation platform, to allow a fair comparison, we used
the Udacity simulator adopted in analogous failure prediction
studies [18], [23]. However, it is important to note our ap-
proach is independent of the chosen simulation platform. Other
open-source propositions are available, such as CARLA [58],
LGSVL [59], and BeamNG [60]. CARLA and LGSVL mostly
deal with urban environments with static and dynamic obsta-
cles, whereas BeamNG is conceptually similar to Udacity as it
was used in similar lane-keeping testing studies [5], [9], [61].
We discard commercial close-source solutions such as Siemens
PreScan [62], ESI Pro-SiVIC [63], and PTV VISSIM [64] as
they do not allow full replicability of our results and also focus
on urban scenarios or other ADS tasks such as automated valet
parking or breaking assistance.

2) External validity: The limited number of self-driving
systems in our evaluation constitutes a threat to the gen-
eralizability of our results to other ADS. Moreover, results
may not generalize, or generalize differently, when considering
other simulation platforms than Udacity. For the uncertainty
scores, we considered two quantification methods, and the
effectiveness of our tool may change when considering dif-

ferent strategies. To mitigate this issues, we selected the most
popular techniques for computing uncertainties in regression
deep neural networks, as outlined in Weiss and Tonella [12].

3) Reproducibility: All our results, the source code, and the
simulator are accessible and can be reproduced [25].

V. DISCUSSION

A. UQ for Failure Prediction

Our research emphasizes the intricate nature and diverse
range of failure scenarios that runtime monitoring techniques
must address. Uncertainty scores, usually employed quanti-
tatively by humans to understand deep neural network mis-
predictions, were used in this study as a cumulative error
scoring function over time. This approach assumes that these
scores contain valuable information for assessing the behavior
of DNNs and, by extension, of the autonomous driving systems
that rely on them.

Our approach relies on the efficacy of uncertainty scores
as a technique for assessing the nominal driving behavior of
ADS. A well-trained DNN would excel in capturing relevant
structures in an image, such as road lanes, resulting in more
precise uncertainty scores compared to inadequately trained
DNNs. Furthermore, methods for quantifying uncertainty pro-
vide a more transparent and efficient means of evaluating
ADS behavior than opaque data- or black-box techniques.
Our findings confirm that UQ methods outperform existing
techniques in both out-of-distribution and mutation testing
scenarios.

B. Discussing UQ Configurations

In our benchmarks, UQ using MC-Dropout exhibited supe-
rior performance on the Mutants dataset compared to both
OODmoderate and OODextreme. It demonstrated the capability
to predict 95% failures with an acceptable precision, up
to 3 seconds in advance. This observation underscores the
effectiveness of MC-Dropout as a reliable metric for un-
derstanding internal model uncertainty. Conversely, UQ with
Deep Ensembles consistently delivered remarkable prediction
results across all benchmarks. Even for different confidence
levels (Figure 4), Deep Ensembles consistently outperformed
alternative methods. Our findings confirm that Deep Ensem-
bles excel at capturing uncertainty from diverse sources and
outshines MC-Dropout [11].

While the theoretical best ensemble with 50 models may
not be practical for real-world applications in ADS, our
Deep Ensembles with only 5 models outperformed all other
techniques and exhibited robust uncertainty estimates, with
performance similar to DE50. Taking into account computa-
tional runtime, we found that smaller Deep Ensembles were
more efficient than MC-Dropout. This advantage stems from
the ability to load and run multiple models concurrently,
provided the hardware can support the model sizes. In contrast,
MC-Dropout requires less memory but still needs to run the
inference multiple times (32-128), making it less competitive
than DE5 or DE10. Furthermore, implementing MC-Dropout
necessitates modifications to the ADS model. Considering all
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these factors, our comprehensive evaluation identifies UQ with
Deep Ensembles as the optimal configuration, delivering the
best results in our study.

C. Comparison with Other Approaches

As a baseline for our experiment, we used SelfOracle and
ThirdEye from previous literature. In contrast to the previous
experiment, we modified the evaluation as described in Sec-
tion IV-B4 by implementing a dynamic window calculation
for the OODextreme benchmark. This allowed us to compare
the benchmark scores more objectively. However, this caused
the magnitude of the results for SelfOracle and ThirdEye
to change [18], [23]. UQ with Deep Ensembles is a clear
improvement over the baselines in terms of effectiveness and
computation time. While each of the two baselines performed
well in a specific benchmark (SelfOracle in OODextreme and
ThirdEye in Mutants), UQ with Deep Ensembles performs
well across all benchmarks. Notably, even hybrid approaches
with MCD + SelfOracle or MCD + ThirdEye are not expected
to achieve higher scores than DE as they require more com-
putational resources than Deep Ensembles.

VI. RELATED WORK

generate tests for CPS that optimize along three directions,
namely requirements coverage, test case similarity, and test
execution time.

A. Anomaly Detection in Autonomous Driving

We already discussed SelfOracle [18] and ThirdEye [23],
for which we performed an explicit empirical comparison in
this work. Similarly to SelfOracle, DeepGuard [20] uses the
reconstruction error by VAEs to prevent collisions of vehicles
with the roadside. DeepRoad [16] uses embeddings created
from features extracted by VGGNet [65] to validate driving
images based on the distance to the training set. In other
works [36], [51], continual learning is used to minimize the
false positives of a black-box failure predictor. Hell et al. [19]
evaluate VAEs, Likelihood Regret, and the generative mod-
elling SSD, for ADS testing on OOD detection in the CARLA
simulator. Michelmore et al. [29], [30] use Bayesian inference
methods for probabilistic safety estimation. Henriksson et
al. [13] use the negative of the log-likelihood as a black-box
anomaly score. Borg et al. [66] propose to pair OOD detection
with VAEs with object detection for an automated emergency
braking system. Strickland et al. [67] use an LSTM solution
with multiple metrics to predict collisions with vehicles at
crossroads. Ayerdi et al. [68] propose the use of metamorphic
oracles to supervise a DNN-based ADS.

Our approach reports extensive simulation-based testing
results for both the effectiveness and efficiency of uncertainty
quantification methods. For a broad overview of anomaly
detection techniques in autonomous driving, we refer the
reader to the survey by Bogdoll et. al [69].

B. Uses of Uncertainty in Software Engineering

Uncertainty quantification is also popular in software engi-
neering, especially in the context of cyber-physical systems.
Hu et al. [70] used uncertainty quantification to improve the
performance of transfer learning for evolving digital twins of
industrial elevators. Similarly, the PPT method [71] proposes
uncertainty-aware transfer learning for digital twins. PPT is
evaluated on cyber-physical systems and ADS, with positive
results in terms of the effectiveness of uncertainty quantifica-
tion for reducing the Huber loss in both case studies.

Weiss et al. [12] report an empirical study of uncertainty
quantification methods that are used to implement supervisors
for DNNs. The evaluation is done at the model-level, for
four classification classification datasets. Results show that
the uncertainty monitors were able to increase the accuracy
of the DNNs when supervised. Differently, in this paper, we
use uncertainty quantification to inform a system-level failure
predictor for ADS.

C. Generic OOD Detectors

Generic detectors of out-of-distribution samples have
been proposed, which we describe for completeness. Auto-
Trainer [72] analyzes the training process of a DNN to auto-
matically repair when metrics such as accuracy used during
training degrade. In contrast, UQ operates at testing time, not
at training time, to recognize uncertain execution conditions
of an ADS, whereas AutoTrainer operates at training time.

Zhang et al. [73] propose an algorithm for the automatic
detection of OOD inputs based on the notion of relative
activation and deactivation states of a DNN. The use of this
technique raises some challenges, such as which and how
many layers should be selected, and how the different layers
should be aggregated. SelfChecker [15] helps answer these
questions, but the evaluation of the DNN prediction is per-
formed for individual samples. UQ works with normal feed-
forward passes, making them computationally more efficient
and easier to integrate into the ADS development process.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we describe and evaluate white-box failure
predictors based on uncertainty quantification methods. We
use them to estimate the confidence of a DNN-based ADS in
response to unseen execution contexts. Our results show that
UQ methods can anticipate many potentially safety-critical
failures by several seconds, with a low or zero false alarm rate
in anomalous conditions, and a fixed negligible expected false
alarm rate in nominal conditions, outperforming two existing
solutions from the literature.

Future work includes extending the comparison to other
benchmarks, multi-module ADS, simulators, and ADS case
studies such as urban driving for which revisions of the
existing methods would be necessary, or alternative confidence
score synthesis methods. Furthermore, we intend to broaden
our scope by enhancing the detection of more subtle forms of
driving quality degradation, such as erratic driving behavior.
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Additionally, we will explore the implementation of self-
healing mechanisms within the simulator and extend our
evaluation on physical driving testbeds.
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