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Abstract—In this work, we propose a joint adaptive codebook
construction and feedback generation scheme in frequency divi-
sion duplex (FDD) systems. Both unsupervised and supervised
deep learning techniques are used for this purpose. Based on
a recently discovered equivalence of uplink (UL) and downlink
(DL) channel state information (CSI) in terms of neural network
learning, the codebook and associated deep encoder for feedback
signaling is based on UL data only. Subsequently, the feedback
encoder can be offloaded to the mobile terminals (MTs) to
generate channel feedback there as efficiently as possible, without
any training effort at the terminals or corresponding transfer of
training and codebook data. Numerical simulations demonstrate
the promising performance of the proposed method.

Index Terms—Projected gradient descent, Lloyd-Max quanti-
zation, neural network classification, feedback codebook design,
frequency division duplexing.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technology

is one of the most prominent directions to scale up capac-

ity and throughput in modern communication systems [1].

In particular, the multi-antennas support at the base station

(BS) makes simple techniques such as spatial multiplexing

and beamforming very efficient regarding the spectrum or

the bandwidth utilization. In order to take full advantage of

this technology, the BS must have the best possible channel

estimation. However, considering the typically stringent delay

requirements in wireless mobile communication systems, the

CSI has to be acquired in very short regular time intervals. A

variety of solution approaches developed for this purpose are

based on time division duplex (TDD) mode.

On the other hand, in FDD mode, the BS and the MT

transmit in the same time slot but at different frequencies. This

breaks the reciprocity between UL CSI and DL CSI, unlike in

TDD systems, and makes it difficult for the network operators

with FDD licenses to obtain an accurate DL CSI estimate

for transmit signal processing [2]. An obvious solution to the

problem is to either extrapolate the DL CSI from the estimate

of the UL CSI at the BS, or to transfer the DL CSI estimated

at the MT to the BS directly or in a highly compressed version.

However, the most common solution in practice is to avoid the

direct feedback of the CSI and use only selection indices that

determine an element from a finite set of channel properties
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or from a finite set of predefined beamformer or precoder

configurations. The latter method is also studied in this paper.

In particular, we propose to construct a finite codebook

Q of different precoder configurations at the BS using an

unsupervised learning method. Although the codebook covers

precoding matrices for the DL operation, the construction of

the codebook is solely based on a set of UL channels HUL

which have been collected at the BS. Following the codebook

construction, a deep neural network (DNN) classifier fDNN(·)
is trained at the BS again solely based on the UL samples,

which assigns the index k⋆ of the most appropriate precoding

matrix to a given DL observation. The exclusive use of UL

data for the training of function blocks, which are exclusively

intended for the DL channel, follows the recent results in [3],

[4]. The proposed approach is then to subsequently offload

this deep feedback encoder to each MT in the cell. See Fig. 1

for a sketch of the proposed overall concept.

Thus, the core idea of our scheme is that the neural network

encoder trained on UL data at the BS can be applied to DL

data without any further adaptation from any mobile device

to which the encoder is offloaded. Training on the MT is no

longer necessary at all, making it possible to quickly update

the encoder on the MT at any time and place with an updated

version of the codebook, e.g., when moving from one cell to

another or for different locations of the MT in the cell. Based

on the presented simulation results, we are able to demonstrate

the promising performance of the proposed technique.

MT

HULlearn fDNN(·)

DNN

collect UL data
Q

construct Q
BS

DNN feedback index k⋆

share parameters

observation Y

Fig. 1: Structure of the proposed approach with codebook construction and learning of

the DNN classifier at the BS, which is then subsequently offloaded to the MT.

II. SYSTEM MODEL

The DL received signal of a single user MIMO system can

be expressed as y = Hx+n, where y ∈ CNrx is the receive
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vector, x ∈ CNtx is the transmit vector sent over the MIMO

channel H ∈ C
Nrx×Ntx , and n ∼ NC(0, σ

2
nINrx) denotes

the additive white Gaussian noise (AWGN). In this paper,

we consider system configurations with Nrx < Ntx. If both

the transmitter and receiver know the channel perfectly, and

assuming input data with Gaussian distribution, the capacity

of the MIMO channel is [5], [6]:

C = max
Q�0,trQ≤ρ

log2 det

(

I +
1

σ2
n

HQHH

)

, (1)

where Q ∈ CNtx×Ntx is the transmit covariance matrix. This

assumes a transmit vector given by x = Q1/2s with E[ssH] =
INtx [7]. The capacity-achieving transmit covariance matrix

Q⋆ of the link between the BS and a MT can be found

by decomposing the channel into Nrx parallel streams and

employing water-filling [8].

In FDD systems, channel reciprocity can generally not be

assumed, e.g., [7]. For this reason, only the MT could compute

the optimal transmit covariance matrix Q⋆ if it estimated the

DL CSI. This makes some form of feedback from the MT to

the BS necessary. Ideally, the user would feed the complete

DL CSI back to the BS, which in general is considered to be

infeasible. Instead, a low-rate feedback link is used to transmit

a small number of M bits back to the BS.

Typically, the M feedback bits are used for encoding an

index into a set of covariance matrices. That is, the MT and BS

share a codebook Q = {Q1,Q2, . . . ,QK} of K = 2M pre-

computed transmit covariance matrices, the MT is assumed

to estimate the DL channel H and then uses it to determine

the best codebook entry Qk⋆ in terms of maximum achievable

rate, i.e.,

k⋆ = argmax
k∈{1,...,K}

log2 det

(

I +
1

σ2
n

HQkH
H

)

, (2)

or other practically useful selection criteria. Finally, the feed-

back consists of the index k⋆ encoded by M bits, and the

BS employs the transmit covariance matrix Qk⋆ for data

transmission. Section IV describes an algorithm to obtain a

codebook Q.

III. CHANNEL MODEL AND DATA GENERATION

We consider an FDD system below 6GHz and assume a

frequency gap of 200MHz between UL and DL. Version 2.2 of

the QuaDRiGa channel simulator [9], [10] is used to generate

CSI for the UL and DL scenarios.

We simulate two urban macrocell (UMa) single carrier

scenarios: one with (Ntx, Nrx) = (16, 4) and one with

(Ntx, Nrx) = (32, 16). In both cases, the UL carrier frequency

is 2.53GHz and the DL carrier frequency is 2.73GHz. The

BS is equipped with a uniform linear array (ULA) with “3GPP-

3D” antennas, and the MT consists of a ULA assuming “omni-

directional” antennas. The BS is placed at a height of 25m
and covers a sector of 120°, where the minimum distance of

the MT location to the BS is 35m and the maximum distance

to the BS is 500m. In 80% of the cases, the MT is located

indoors at different floor levels, and in the case of outdoor

locations the MT’s height is 1.5m in accordance with [11].

As outlined in [9], many parameters such as path-loss,

delay, and angular spreads, path-powers for each subpath,

and antenna patterns are different in the UL and DL domain.

However, the following parameters are identical in the UL and

DL domain: BS location and the MT locations, propagation

cluster delays and angles for each multi-path component

(MPC), and the spatial consistency of the large scale fading

parameters. QuaDRiGa models MIMO channels as

H =

L
∑

ℓ=1

Gℓe
−2πjfcτℓ , (3)

where ℓ is the path number, and the number of MPCs L de-

pends on whether there is line of sight (LOS), non-line of sight

(NLOS), or outdoor-to-indoor (O2I) propagation: LLOS = 37,

LNLOS = 61 or LO2I = 37. The carrier frequency is denoted

by fc and the ℓ-th path delay by τℓ. The MIMO coefficient

matrix Gℓ consists of one complex entry for each antenna

pair, which comprises the attenuation of a path, the antenna

radiation pattern weighting, and the polarization [12]. The data

is not post-processed: we work with channels including the

path gain.

We generate datasets with 30 × 103 channels for both

the UL and DL of each scenario. Defining a signal-to-noise

ratio (SNR) as SNR = E[‖Hx‖22]/E[‖n‖22] and assuming

Q = ρ
Ntx

I (i.e., uniform power allocation), it holds: SNR =
ρ/Ntx||H||2F

σ2
nNrx

. In our simulations, we have a noise variance of

σ2
n = −114dBm and a transmit power of ρ = 15dBm. We

then select all DL channels together with the corresponding

UL channels (with the same MT locations) which fall within

the SNR range of [−10dB, 20 dB] to constitute our datasets.

This leads to the following pairs of UL and DL datasets for

the two considered scenarios:

HUL
4×16,H

DL
4×16,H

UL
16×32, and HDL

16×32, (4)

with cardinalities |HUL
4×16| = |H

DL
4×16| = 18773 and |HUL

16×32| =
|HDL

16×32| = 16148.

The UL channels have a dimension of 16 × 4 or 32 × 16,

respectively, depending on the scenario. The sets HUL
4×16 and

HUL
16×32 contain transposed versions of the respective channels,

i.e, with dimensions 4× 16 or 16× 32.

IV. UNSUPERVISED CODEBOOK DESIGN

In this section, we first briefly describe how we can con-

struct a codebook given a set of training channels. Then, we

show that we can learn a codebook for the DL domain by

using a training set solely consisting of UL channel data.

A. Iterative Llyod Clustering Algorithm

Let H = {Hn}
Ttrain
n=1 be a set of collected training channel

matrices. The goal is to obtain a corresponding codebook Q =
{Qk}Kk=1 of K = 2M transmit covariance matrices. To this

end, we employ an iterative Lloyd clustering algorithm which

alternates between two stages until a convergence criterion is



met [13]. We write {Q
(i)
k }

K
k=1 for the codebook in iteration i.

Further, we define the spectral efficiency

r(H ,Q) = log2 det

(

I +
1

σ2
n

HQHH

)

(5)

to be the cost criterion of interest. Then, the two stages of

iteration i are expressed as follows:

1) Divide the training set H into K clusters V
(i)
k :

V
(i)
k = {H ∈ H | r(H ,Q

(i)
k ) ≥ r(H ,Q

(i)
j ), k 6= j}. (6)

2) Find new covariance matrices or update the so called

“cluster centers”:

Q
(i+1)
k = argmax

Q�0

1

|V
(i)
k |

∑

H∈V
(i)
k

r(H ,Q) (7)

subject to trace(Q) ≤ ρ and rankQ ≤ Nrx.

Whereas (6) is easily obtained by computing the spectral

efficiency (5) of each training channel matrix with every

codebook element, we solve the optimization problem (7)

with projected gradient descent (PGD) as it can be found

in [14]. PGD starts from an initialization—in our case it is the

scaled identity matrix—and updates Q using an unconstrained

gradient step:

Q← Q+ αgQ. (8)

The gradient gQ of the objective function in (7) with respect

to Q, namely

gQ =
1

σ2
n ln(2)

∑

H∈V
(i)
k

HH

(

I +
1

σ2
n

HQHH

)−1

H , (9)

leaves the updated Q still positive-semidefinite for arbitrary

step sizes α ≥ 0. The other constraints in (7) are thereafter

enforced via a projection step of Q onto the constraint set. The

projection is done via water-filling. The two stages consisting

of unconstrained gradient update followed by projection are

iterated until convergence. In our simulations, an Armijo rule

controls the step size. More details about this version of PGD

can be found in [14].

B. Codebook Construction—UL versus DL Data

We split the two sets HUL
4×16, HDL

4×16 into a training set with

Ttrain = 104 samples, and the remaining samples constitute

an evaluation set:

HUL,train
4×16 ,HUL,eval

4×16 ,HDL,train
4×16 , and HDL,eval

4×16 . (10)

However, the UL evaluation set HUL,eval
4×16 is not relevant for our

considerations and the following transmit strategies are always

evaluated on HDL,eval
4×16 .

Since the distances of the MT locations to the BS range

from 35m to 500m and since we cover an SNR range of

[−10 dB, 20 dB], the quality of the channels varies greatly.

For this reason, we display the distribution of the spectral

efficiencies of the channels in the set HDL,eval
4×16 for various

transmit strategies via box plots. Every boxplot in Fig. 2
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Fig. 2: Spectral efficiencies corresponding to codebooks of different sizes M , constructed

using either UL or DL training data.

highlights the median, the first, and the third quartile, and

the whiskers represent an interquartile range of 1.5.

i) The boxplot labled “uni pow cov” represents uniform

power allocation where the transmit covariance matrix is sim-

ply given by Q = ρ
Ntx

I. In this case, no channel knowledge

or codebook is used.

ii) As a performance upper bound, Fig. 2 shows the spectral

efficiency distribution obtained using the optimal transmit

strategy, where the capacity-achieving transmit covariance

matrix is computed for every channel via water-filling (“H ,

wf cov”).

iii) Moreover, Fig. 2 depicts the “H , uni pow eigsp”

transmit strategy, where a transmit covariance matrix is cal-

culated by allocating equal power on the eigenvectors of the

channel. That is, the channel is decomposed into Nrx parallel

streams and ρ
Nrx

power is allocated on each stream. Note that

this and the optimal approach are infeasible because the BS

would require full knowledge of the DL channel.

iv) Furthermore, Fig. 2 contains codebook based transmit

strategies with M ∈ {3, 6, 12} bit. Recall, that a feedback

index is selected via (2) using the DL channel. For reasons of

comparability, we use either UL or DL channels as training

data, i.e, eitherHUL,train
4×16 orHDL,train

4×16 , to construct the codebooks

with the procedure described in Section IV-A. Already with

a codebook of M = 3 bits, higher spectral efficiencies can

be achieved as compared to the “uni pow cov” transmit

strategy.

v) With an increasing codebook size, the spectral efficiency

increases and almost reaches the performance of the “all

train data UL” or “all train data DL” transmit

strategies, which constitute a natural upper bound on codebook

based approaches with the respective UL or DL dataset, and

which are computed as follows. For each channel sample

in HUL,train
4×16 or HDL,train

4×16 , the corresponding capacity achieving

transmit covariance matrix is calculated and is used as a

codebook entry. Thus, in this case, we have a huge codebook

with Ttrain = 104 entries.

Remarkably, the considered codebooks show comparable



performance in the two cases where either UL or DL training

data is used for the codebook construction. In particular,

the boxplots in Fig. 2 show very similar distributions of

the spectral efficiencies of the corresponding UL/DL pairs.

Whereas the instantaneous UL and DL channel realizations

may differ, one may now reasonably conjecture that the totality

of the collected UL and DL channels share relevant statistical

properties. This conjecture was in particular investigated in [3],

[4] for a large range of frequency gaps between the UL and

DL domain and corroborated with the help of hypothesis tests.

C. Codebook Performance with Estimated Channels

In this section, we investigate how the distribution of the

spectral efficiencies is affected when a codebook entry is

selected with the help of estimated channels.

In the pilot transmission phase, the DL received signal is:

Y = HP +N ∈ C
Nrx×np , (11)

where np is the number of transmitted pilots, N =
[n1,n2, . . . ,nnp

] ∈ CNrx×np collects noise samples with

np ∼ NC(0, σ
2
nINrx), (12)

p ∈ {1, 2, . . . , np}, and where the pilot matrix P is given by

P =

√

ρ

Nt
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∈ C
Ntx×np , (13)

with Wnp
= ej2π/np . The pilot matrix P is a submatrix of

the discrete Fourier transform (DFT) matrix. If np ≥ Ntx, the

least squares (LS) channel estimate in the pilot transmission

phase can be obtained as HLS = Y P † with the pseudoinverse

P † = PH(PPH)−1.

As an alternative to least squares, it is common to assume

that channels exhibits a certain structure. Using the vectorized

channel h = vec(H), we express this as h ≈ Dt, where

D = Drx⊗Dtx is a dictionary with oversampled DFT matrices

Drx and Dtx (cf., e.g., [15]), because we have ULAs at the

transmitter and receiver side. A compressive sensing algorithm

like orthogonal matching pursuit (OMP) [16] can now be used

to obtain a sparse vector t, and the channel estimate then

computes to vec(HOMP) = Dt. Since the sparsity order is

not known but the algorithm’s performance crucially depends

on it, we use a genie-aided approach to obtain an upper bound

on the performance. To this end, we use the true channel to

choose the optimal sparsity for OMP.

Fig. 3(a) shows the spectral efficiency distributions of the

scenario with Ntx = 16 and Nrx = 4 again. The codebooks

are the same as in the previous section (M = 6)—trained

using either HUL,train
4×16 or HDL,train

4×16 —, and the same evaluation

set HDL,eval
4×16 is used.

i) The boxplots labeled “H , DL cb” or “H , UL cb” select

the feedback index in (2) using the true DL channels H , i.e.,

assuming perfect CSI. Consequently, this is an upper bound

for index selection based on channel estimates.

ii) After receiving np = 16 pilots, the MT estimates the DL
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Fig. 3: Spectral efficiencies of different transmit strategies in two different scenarios.

Codebooks with M = 6 bits are either constructed using UL or DL training data: “UL

cb” or “DL cb”. The LS and OMP channel estimates are HLS and HOMP, and H refers

to the true DL channel. The “wf” labels correspond to transmission with water-filling

covariance matrices where complete channel knowledge would be necessary.

channel and uses this estimated channel to select a codebook

entry via (2). The corresponding boxplots are denoted by

“HLS, DL cb” or “HLS, UL cb” and “HOMP, DL cb” or

“HOMP, UL cb”, respectively, depending on whether LS or

OMP channel estimates are used and whether the codebooks

are constructed with UL or DL data. It can be seen that

irrespective of whether we have constructed the codebook

with DL or UL training data, the distributions of the spectral

efficiencies hardly differ at all. OMP seems to perform slightly

better than LS.

iii) Further, we depict approaches (“HLS, wf cov” and

“HOMP, wf cov”), where we use the estimated channel to

calculate a transmit covariance matrix with water-filling. These

approaches are practically infeasible, since the BS would

require knowledge of the estimated channels. OMP is again

slightly better than LS.

iv) As a performance upper bound, we depict (“H , wf

cov”), where the optimal transmit strategy is employed.

The approach “H , uni pow eigsp” is again the transmit

strategy, where a transmit covariance matrix is calculated by

allocating equal power on the eigenvectors of the channel.



Recall, that these two approaches are also infeasible because

the BS would require full knowledge of the DL channel.

Similar observations can be made in Fig. 3(b) where we

have a different scenario: Ntx = 32, Nrx = 16, and np = 32.

As before, we split the data into training sets HUL,train
16×32 and

HDL,train
16×32 with 104 samples each and an evaluation set HDL,eval

16×32 .

V. DEEP NEURAL NETWORK FOR FEEDBACK ENCODING

Instead of using the two stage process of first estimating

a channel and then selecting a codebook entry via (2), we

propose to find a function which directly maps from the noisy

observations Y to the feedback index k⋆:

f : CNrx×np → {1, · · · , 2M}, Y 7→ f(Y ) = k⋆. (14)

This is readily interpreted as a classification task. In particular,

we propose to use a DNN fDNN to approximate the function

f and, thus, to perform the classification task.

The codebooks (M = 6) are the same as in the previous

section—trained using either HUL,train
Nrx×Ntx

or HDL,train
Nrx×Ntx

for the

two considered scenarios. We further use the four training

data sets to generate labeled data for four different DNN

approaches: either UL or DL with either (Ntx, Nrx) = (16, 4)
or (Ntx, Nrx) = (32, 16). The labels are given by the optimal

codebook indices determined via (2). The input/output pairs

{(Yn, k
⋆
n)}

Ttrain
n=1 then form the DNN training data sets.

Of the remaining data inHUL
Nrx×Ntx

orHDL
Nrx×Ntx

for the two

scenarios, 2500 samples are split off to form four validation

data sets, and, finally, the rest is used for test sets. Thus, the

test sets consist of 6273 samples for (Ntx, Nrx) = (16, 4) and

3648 samples for (Ntx, Nrx) = (32, 16).

A. DNN Structure and Training Procedure

The considered DNN has two input “channels”: one for the

real partℜ(Y ) of the observation Y , and one for the imaginary

part ℑ(Y ). In a first step, these two parts are normalized

w.r.t. the Frobenius norm. We employ random search [17] to

determine the hyperparameters (explained next) of the DNN.

The first modules of the DNN are convolutional modules,

which consist of a convolutional layer, a batch normalization

layer, and an activation function. We have DCM such modules,

where DCM is randomly chosen from [8, 20]. Each of the

convolutional layers has DK kernels, where DK is randomly

chosen from [32, 64]. In the setting (Ntx, Nrx) = (16, 4),
we then flatten the features and obtain a vector of size

Nf = DKNrxnp. In the setting (Ntx, Nrx) = (32, 16), two-

dimensional max pooling by a factor of two is applied prior

to flattening, yielding a Nf = DK
Nrx

2
np

2 -dimensional vector.

Subsequently, we have fully connected layers—each followed

by batch normalization and activation function—, decreasing

the dimension from Nf to 512→ 256→ 128→ 64→ 64 =
2M .

The loss function is cross-entropy. We train for 300 epochs

with a 5 epochs early stopping criterion. The activation func-

tion is the same in each layer, but randomly chosen from

{ReLu, sigmoid, PReLU, Leaky ReLU, tanh, swish}. Further

random parameters are: batch size ∈ [20, 1000], learning
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Fig. 4: Average spectral efficiencies in two different scenarios. Codebooks with M = 6
bits are constructed with UL or DL data and a DNN trained with UL or DL data is used

for feedback encoding.

rate ∈ [10−6, 10−3], L1 regularization ∈ [10−6, 10−3], L2

regularization ∈ [10−6, 10−3], and exponential learning rate

decay ∈ [0.94, 1]. The optimizer is Adam [18]. We run 100
random searches and pick out the best DNN.

Fig. 4 depicts spectral efficiencies over the number of pilots

np ≤ Ntx:

i) The curves labeled “H , DL cb” and “H , UL cb” select

the feedback index with (2) using the true DL channels H

and thus represent an upper bound for the curves labeled

“HOMP, DL cb” and “HOMP, UL cb”, where a codebook

entry—constructed with DL or UL training data—is selected

via (2) using OMP channel estimates. There is again not much

difference between the codebooks constructed using UL or

DL data. Interestingly, the curve “HOMP, wf cov”, where

we use an OMP channel estimate to calculate a transmit co-

variance matrix with water-filling, is worse than the codebook

based approaches “HOMP, DL cb” and “HOMP, UL cb”, if

only a few pilots are transmitted. In contrast, the use of

a codebook with pre-computed transmit covariance matrices

proves advantageous when only a small number of pilots are

transmitted. Recall, that the “HOMP, wf cov” approach is

practically infeasible, since the BS would require knowledge

of the estimated channel.

ii) The proposed DNN approach is labeled “DNN DL” and

“DNN UL”, depending on whether DL or UL training data

has been used. Since the DNN directly maps the observations

to a feedback index k⋆, the MT does not need to know the

codebook, which is in contrast to the other approaches. Fig. 4

shows that for small and moderate numbers of pilots, the DNN

outperforms the approaches “HOMP, DL cb” and “HOMP, UL

cb”, where first a channel is estimated and then a feedback

index is chosen from the codebook via (2). Remarkably, the

DNNs trained with UL or DL data perform equally well.



VI. CONCLUSION

We showed that in FDD systems, we can learn an adaptive

codebook directly at the BS by gathering UL CSI. Further, a

DNN feedback encoder can also be trained at the BS with the

help of the codebook and UL CSI. The feedback encoder’s

weights and biases can be offloaded to all MTs within the

coverage area of the BS. A MT can then directly select a

feedback index from noisy observations via this DNN such

that no channel estimation or knowledge of the codebook

are necessary. The overall concept and the fact that both the

codebooks and the feedback classifiers are learned exclusively

at the BS makes the use of many different adaptive codebooks

in the cell conceivable.
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