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Abstract

Multi-label classification is an important learning problem with many applications.
In this work, we propose a principled similarity-based approach for multi-label
learning called SML. We also introduce a similarity-based approach for predicting
the label set size. The experimental results demonstrate the effectiveness of SML

for multi-label classification where it is shown to compare favorably with a wide
variety of existing algorithms across a range of evaluation criterion.

1 Introduction

Multi-label classification is an important learning problem [12] with applications in bioinformat-
ics [10], image & video annotation [3, 14] and query suggestions [1]. The goal of multi-label
classification is to predict a label vector y ∈ {0, 1}K for a given unseen data point x ∈ R

M .

Previous work has mainly focused on reducing the multi-label problem to a more standard one such
as multi-class [9, 2] and binary classification [11], ranking [5] and regression [8, 7]; see [18] for a
recent survey. Standard multi-class approaches can be used by mapping a multi-label problem with
K labels to a multi-class problem with 2K labels [9, 2]. Binary classification methods can also be
used by copying each feature vector K times and for each copy k an additional dimension is added
with value k; and the training label is set to 1 if label k is present and 0 otherwise [11]. Rank-based
approaches attempt to rank the relevant labels higher than irreverent ones [5]. Regression methods
map the label space onto a vector space where standard regression methods can be applied [8, 7].

In this work, we introduce a similarity-based approach for multi-label learning called SML that
gives rise to a new class of methods for multi-label classification. Furthermore, we also present a
similarity-based set size prediction algorithm for predicting the number of labels associated with an
unknown test instance x. Experiments on a number of data sets demonstrate the effectiveness of
SML as it compares favorably to existing methods across a wide range of evaluation criterion. The
experimental results indicate the practical significance of SML.

In addition, SML is a direct approach for multi-label learning. This is in contrast to existing methods
that are mostly indirect approaches that transform the multi-label problem to a binary, multi-class,
or regression problem and apply standard algorithms (e.g., decision trees). Furthermore, other rank-
based approaches such as RANK-SVM [5] are also indirect extensions of SVM [13, 16] to multi-label
classification. Notably, SML completely avoids such mappings (required by SVM) and is based on
the more general notion of similarity.
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2 Preliminaries

Let X = R
M denote the input space and let Y = {1, 2, . . . ,K} denote the set of possible class

labels. Given a multi-label training set D defined as: D = {(x1, Y1), . . . , (xN , YN )} where xi ∈ X
is a M -dimensional training vector representing a single instance and Yi is the label set associated
with xi. Given D the goal of the multi-label learning problem is to learn a function h : X → 2K

which predicts a set of labels for an unseen instance xj ∈ R
M . A multi-label learning algorithm

typically outputs a real-valued function f : X × Y → R where fk(xi) is the confidence of label
k ∈ Y for the unseen test instance xi. Given an instance xi and its associated label set Yi, a good
multi-label learning algorithm will output larger values for labels in Yi and smaller values for labels
not in Yi.

We consider a variety of evaluation criterion for comparing multi-label learning algorithms. The
multi-label hamming loss is the fraction of incorrectly classified instance-label pairs:

ED(f) =
1

N

N∑

i=1

1

K

∣∣∣ h(xi)∆Yi

∣∣∣ (1)

where ∆ is the symmetric difference between the predicted label set Ŷi = h(xi) and the actual
ground truth label set Yi. One-error evaluates how many times the top-ranked label is not in the set
of ground truth (held-out) labels:

ED(f) =
1

N

N∑

i=1

I

[
[
arg max

k∈Y

fk(xi)
]
6∈ Yi

]
(2)

where for any predicate p the indicator function I[ p ] = 1 iff p holds and 0 otherwise. Given a set of
labels ordered from most likely to least, coverage measures the max position in the ordered list such
that all proper labels are recovered:

ED(f) =
1

N

N∑

i=1

max
k∈Y

π(xi, k)− 1 (3)

where π(xi, k) is the rank of label k ∈ Y . Alternatively, Ranking loss measures the fraction of
reversely ordered label pairs:

ED(f)=
1

N

N∑

i=1

1

|Yi||Ȳi|

∣∣∣
{
(k, k′)∈Yi×Ȳi

∣∣ fk(xi)≤fk′(xi)
}∣∣∣ (4)

Average precision measures the average fraction of relevant labels ranked higher than a particular
label k ∈ Yi:

ED(f) =
1

N

N∑

i=1

1

|Yi|

∑

k∈Yi

∣∣{k′∈Yi | π(xi, k
′)≤π(xi, k)

}∣∣
π(xi, k)

(5)

Multi-label algorithms should have high precision (Eq. 5) with low hamming loss (Eq. 1), one-error
(Eq. 2), coverage (Eq. 3), and ranking loss (Eq. 4).

3 Similarity-based Multi-label Learning (SML)

This section presents our general similarity-based approach for multi-label learning called SML.
Given a multi-label training set D = {(x1, Y1), . . . , (xj , Yj), . . . , (xN , YN )} where xj ∈ R

M is a
M -dimensional training vector representing a single instance and Yj is the label set associated with

xj , the goal of multi-label classification is to predict the label set Yi of an unseen instance xi ∈ R
M .

Assume w.l.o.g. that all feature vectors x1, . . . ,xN are normalized to length 1. Given the subset
Dk ⊆ D of training instances with label k ∈ {1, 2, . . . ,K} defined as

Dk =
{
(xi, Yi) ∈ D | k ∈ Yi

}
(6)

we estimate the weight fk(xi) of label k for an unseen test instance xi ∈ R
M as:

fk(xi) =
∑

xj∈Dk

Φ 〈xi,xj〉 (7)
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where Φ is an arbitrary similarity function. Notably, the proposed family of similarity-based multi-
label learning algorithms can leverage any arbitrary similarity function Φ. Furthermore, our ap-
proach does not require mappings in high-dimensional Hilbert spaces [15, 6] as required by RANK-
SVM [5]. We define a few parameterized similarity functions below. Given M -dimensional vectors
xi and xj , the RBF similarity function is:

Φ(xi,xj) = exp
[
−γ ‖xi − xj‖

2

]
(8)

A common class of similarity measures for vectors of uniform length are polynomial functions:

Φ(xi,xj) =
[
〈xi,xj〉+ c

]d
(9)

where 〈·, ·〉 is the inner product of two vectors, d is the degree of the polynomial, and c is a regular-
ization term trading off higher-order terms for lower-order ones in the polynomial. Linear-SML and
quadratic-SML are special cases of Eq. (9) where d = 1 and d = 2, respectively. Furthermore, all
label weights denoted by f(xi) for test instance xi are estimated as:

f(xi) =




f1(xi)

...

fK(xi)




=




∑
xj∈D1

Φ 〈xi,xj〉

...
∑

xj∈DK

Φ 〈xi,xj〉




(10)

After estimating f(xi) =
[
f1(xi) · · · fK(xi)

]T
∈ R

K via Eq. 10, we predict the label set Yi of
xi; see Section 3.1 for further details. As an aside, binary and multi-class problems are special cases
of the proposed family of similarity-based multi-label learning algorithms. Furthermore, the binary
and multi-class algorithms are recovered as special cases of SML when |Yi| = 1, for 1 ≤ i ≤ N .
Indeed, the proposed similarity-based multi-label learning approach expresses a family of algorithms
as many components are interchangeable such as the similarity functionΦ, normalization, weighting
function Ψ used to control the influence of the individual similarity score Sij , and the sampling or
sketching approach to reduce the training data. The expressiveness and flexibility of SML enables it
to be easily adapted for application-specific tasks and domains. In addition, SML lends itself to an
efficient and straightforward parallel implementation.

3.1 Similarity-based Label Set Prediction

We present a similarity-based approach for predicting the label set size. For each label set Yi cor-
responding to a training instance xi in the training set D, we set its label to |Yi|, i.e., the number
of labels associated with xi. Let y = [ y1 y2 · · · yN ] ∈ R

N denote an N -dimensional la-
bel vector where each yi = |Yi| is the new transformed cardinality label of xi in D. The new
label vector y ∈ R

N is used to predict the label set size. In particular, the new training data is:
D′ = {(xi, yi)}, for i = 1, 2, . . . , N where the label set Yi of each instance is replaced by its trans-
formed label yi that encodes the label set size |Yi| of xi. Furthermore, let Y ′ = {|Yi|}

N
i=1

denote
the label space given by the transformation and K ′ = |Y ′| denote the number of unique labels (i.e.,
label set cardinalities). It is straightforward to see that the above transforms the original multi-label
classification problem into a general multi-class problem for predicting the label set size.

Given D′ = {(x1, y1), . . . , (xN , yN )}, the label set size of an unseen instance xi is predicted as
follows. First, the similarity of xi with respect to each training instance (xj , yj) ∈ D′ is derived
as Φ(xi,xj), 1 ≤ j ≤ N and the similarities from training instances with the same set size (label)
k ∈ Y ′ are combined via addition. More formally, the similarity of instances in D′ of the same set
size (class label) k ∈ Y ′ with respect to xi is:

fk(xi) =
∑

xj∈D′

k

Φ 〈xi,xj〉 (11)

where D′
k ⊆ D′ is the subset of training instances with label k ∈ Y ′. Therefore, we predict the set

size of xi using the following decision function:

ξ(xi) = arg max
k∈Y′

∑

xj∈D′

k

Φ 〈xi,xj〉 (12)
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where ξ(·) is the predicted label set size for xi. It is straightforward to see that ξ(xi) is the label set

size with maximum similarity. Given the label set size ξ(xi), we predict the label set Ŷi of xi by
ordering the labels from largest to smallest weight based on f1(xi), f2(xi), . . . , fK(xi) and setting

Ŷi to the top ξ(xi) labels with the largest weight.

Other approaches: Alternatively, we can infer the label set of xi by learning a threshold function
t : X → R such that:

h(x) =
{
k | fk(x) > t(x), k ∈ Y

}
(13)

where fk(x) is the confidence of label k ∈ Y for the unseen test instance x. To learn the threshold
function t(·), we assume a linear model t(x) = 〈w, f(x)〉+b. More formally, we solve the following
problem based on the training set D:

minimize
w,b

N∑

i=1

[
〈w, f(xi)〉+ b− s(xi)

]2
(14)

In Eq. 14, we set s(xi) as:

s(xi) = arg min
τ∈R

∣∣{k ∈ Yi s.t. fk(xi) ≤ τ}
∣∣ +

∣∣{q ∈ Ȳi s.t. fq(xi) ≥ τ}
∣∣ (15)

where Ȳi is the complement of Yi. After learning the threshold function t(·), we use it to predict the
label set Yi for the unseen instance xi. Nevertheless, any approach that predicts the label set Yi from
the learned weights f1(xi), . . . , fK(xi) can be used by SML; see [12, 18] for other possibilities.

3.2 Complexity Analysis

Given a single test instance x, the runtime of SML is O(NMK̄) where N is the number of training

instances, M is the number of attributes, and K̄ = 1

N

∑N

i=1
|Yi| is the average number of labels per

training instance. This is straightforward to see as SML derives the similarity between each training
instance’s M -dimensional attribute vector. The space complexity of SML for a single test instance
x is O(K) where K is the number of labels. This obviously is not taking into account the space
required by SML and other methods to store the training instances and the associated label sets. For
the similarity-based set size prediction approach, the time complexity is only O(NM) since the
label set size with maximum similarity can be maintained in o(1) time. However, the approach uses
O(K ′) space where K ′ ≤ K .

It is straightforward to incorporate a sampling mechanism into the approach to further improve the
time and space requirements. In particular, given a new test instance x we can sample a small
fraction of training instances denoted by Ds via an arbitrary distribution F and use this smaller set
for predicting labels for x.

4 Experiments

This section investigates the practical significance of SML for multi-label classification. In particular,
we evaluate SML against a wide variety of multi-label algorithms including:

• ML-KNN [17]: A kNN-based multi-label approach that uses Euclidean distance to find
the top-k instances that are closest. ML-KNN was shown to perform well for a variety of
multi-label problems.

• BOOSTEXTER [11]: A boosting-based multi-label algorithm called BOOSTEXTER.
• ADTBOOST.MH [4]: A multi-label decision tree approach.
• RANK-SVM [5]: A multi-label SVM approach based on ranking.

For BOOSTEXTER and ADTBOOST.MH we use 500 and 50 boosting rounds respectively since per-
formance did not change with more rounds (which is consistent with [17]). For RANK-SVM we use
polynomial kernels with degree 8 which performs best as shown in [5, 17]. Unless otherwise men-
tioned, our approach uses the RBF similarity function in Eq. (8); the RBF hyperparameter is learned
automatically via k-fold cross-validation on 10% of the labeled data. In this work, we systematically
compare the multi-label learning algorithms using data from different domains.
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4.1 Gene functional classification

The first multi-label learning task we evaluate is based on predicting the functions of genes from
Yeast Saccharomyces cerevisiae - a widely studied organism in bioinformatics [10]. Each gene
may take on multiple functional classes. In this investigation, we used the Yeast data from [5, 10].
Each gene consists of a concatenation of micro-array expression data and phylogenetic profile data.
Following Elisseeff et al. [5], we preprocess the data such that only the known structure of the
functional classes are used. The resulting multi-label yeast data consists of N = 2417 genes where
each gene is represented by a 103-dimensional feature vector. There are K = 14 labels denoting the
functional classes.

Table 1: Experimental results for each multi-label learning algorithm on the yeast data (mean+−std).

Evaluation criterion SML ML-KNN [17] BOOSTEXTER [11] ADTBOOST.MH [4] RANK-SVM [5]

Hamming loss (↓) 0.193 +− 0.013 0.194 +− 0.010 0.220 +− 0.011 0.207 +− 0.010 0.207 +− 0.013

One-error (↓) 0.220 +− 0.021 0.230 +− 0.030 0.278 +− 0.034 0.244 +− 0.035 0.243 +− 0.039

Coverage (↓) 6.082 +− 0.184 6.275 +− 0.240 6.550 +− 0.243 6.390 +− 0.203 7.090 +− 0.503

Ranking loss (↓) 0.155 +− 0.011 0.167 +− 0.016 0.186 +− 0.015 N/A 0.195 +− 0.021

Average precision (↑) 0.783 +− 0.016 0.765 +− 0.021 0.737 +− 0.022 0.744 +− 0.025 0.749 +− 0.026

We use 10-fold cross-validation and show the mean and standard deviation. Experimental results
for SML and other multi-label learning algorithms are reported in Table 1. Notably, all multi-label
algorithms are compared across a wide range of evaluation metrics. The best result for each evalua-
tion criterion is shown in bold. In all cases, our approach outperforms all other multi-label learning
algorithms across all 5 evaluation criterion. Furthermore, the variance of SML is also smaller than
the variance of other multi-label learning algorithms in most cases. This holds across all multi-label
learning algorithms for coverage, average precision, and ranking loss.1

4.2 Scene image classification

The second multi-label learning task we evaluate SML for is natural scene classification using image
data. In scene classification each image may be assigned multiple labels representing different
natural scenes such as an image labeled as a mountain and sunset scene. Therefore, given an unseen
image the task is to predict the set of scenes (labels) present in it. The scene data consists of 2000
images where each image contains a set of manually assigned labels. There are K = 5 labels,
namely, desert, mountains, sea, sunset, and trees. Each image is represented by a 294-dimensional
feature vector derived using the approach in [2].

Table 2: Results of the multi-label learning algorithms for natural scene classification (mean+−std).

Evaluation criterion SML ML-KNN [17] BOOSTEXTER [11] ADTBOOST.MH [4] RANK-SVM [5]

Hamming loss (↓) 0.140 +− 0.009 0.169 +− 0.016 0.179 +− 0.015 0.193 +− 0.014 0.253 +− 0.055

One-error (↓) 0.252 +− 0.026 0.300 +− 0.046 0.311 +− 0.041 0.375 +− 0.049 0.491 +− 0.135

Coverage (↓) 0.984 +− 0.112 0.939 +− 0.100 0.939 +− 0.092 1.102 +− 0.111 1.382 +− 0.381

Ranking loss (↓) 0.164 +− 0.020 0.168 +− 0.024 0.168 +− 0.020 N/A 0.278 +− 0.096

Average precision (↑) 0.852 +− 0.016 0.803 +− 0.027 0.798 +− 0.024 0.755 +− 0.027 0.682 +− 0.093

We use 10-fold cross-validation and show the mean and standard deviation. The experimental results
of SML and the other multi-label algorithms using the natural scene classification data are reported in
Table 2. The best result for each evaluation criterion is in bold. From Table 2, it is obvious that SML

outperforms all other multi-label algorithms on all but one evaluation criterion, namely, coverage. In
terms of coverage ML-KNN and BOOSTEXTER are tied and have slightly lower coverage than SML.

1Note the ADTBOOST.MH [4] program does not provide ranking loss.
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5 Conclusion

We have described a general framework for similarity-based multi-label learning called SML that
gives rise to a novel class of methods for the multi-label problem. Furthermore, we also presented
a similarity-based approach for predicting the label set size. Experiments on a number of data sets
demonstrate the effectiveness of SML as it compares favorably to existing methods across a wide
range of evaluation criterion.
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