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Abstract—In this paper we explore the use of end-to-end
unicast traffic as measurement probes to infer link-level loss
rates. We leverage off of earlier work that produced efficient
estimates for link-level loss rates based on end-to-end multi-
cast traffic measurements. We design experiments based on
the notion of transmitting stripes of packets (with no delay
between transmission of successive packets within a stripe)
to two or more receivers. The purpose of these stripes is to
ensure that the correlation in receiver observations matches
as closely as possible what would have been observed if the
stripe had been replaced by a notional multicast probe that
followed the same paths to the receivers. Measurements pro-
vide good evidence that a packet pair to distinct receivers
introduces considerable correlation which can be further in-
creased by simply considering longer stripes. We then use
simulation to explore how well these stripes translate into
accurate link-level loss estimates. We observe good accu-
racy with packet pairs, with a typical error of about 1%,
which significantly decreases as stripe length is increased to
4 packets.

I. INTRODUCTION

A. Motivation

As the Internet grows in size and diversity, its internal
performance becomes ever more difficult to measure. Any
one organization has administrative access to only a small
fraction of the network’s internal nodes, whereas commer-
cial factors often prevent organizations from sharing inter-
nal performance data.

One promising technique that avoids these problems,
Multicast Inference of Network Characteristics (MINC),
uses end-to-end multicast measurements to infer link-level
loss rates and delay statistics by exploiting the inherent
(and well characterized) correlation in performance ob-
served by multicast receivers. These measurements do not
rely on administrative access to internal nodes since the in-
ference can be calculated using only information recorded
at the end hosts.

The key intuition for inferring packet loss is that the ar-
rival of a packet at a given internal node can be directly
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inferred from the packet’s arrival at one or more receivers
reached from the source by paths through that node; if it
makes it to the receivers, it must have made it to the node.
Conditioning on arrival at a descendent, we can determine
the probability of successful transmission to and beyond
the given node. Efficient inferencing algorithms are given
in [2] for loss, [15] for delay distributions, [7] for delay
variances, and [3] for inferring the logical multicast tree
topology itself.

Although significant advances have been made in the
use of multicast measurements for inferring internal net-
work behavior, it suffers from two serious deficiencies.
First, there remain significant portions of the Internet that
do not support network-level multicast. Second, the inter-
nal performance observed by multicast packets often dif-
fers significantly from that observed by unicast packets.
This is especially serious given that unicast traffic con-
stitutes far and away the largest portion of the traffic on
the Internet. Thus there is a need for techniques based
on end-to-end unicast measurements. This poses a signif-
icant challenge because unicast measurements do not ex-
hibit the well-behaved correlation exhibited by multicast.
Thus, the challenge addressed in this paper is that of de-
veloping unicast-based measurement techniques that cre-
ate sufficient correlation to yield fruitful inference.

B. Contribution

In this paper we adapt the multicast inference tech-
niques proposed in [2] to perform inference of internal
network characteristics from unicast end-to-end measure-
ments. The data for the inference comprises measured
end-to-end loss of unicast probes sent from a source to a
number of destinations. This is used to infer the loss and
delay characteristics of each logical link of the source tree
joining the source to the destinations, i.e., of the composite
paths between its branch points.

The idea is to construct composite probes of unicast
packets whose collective statistical properties closely re-
semble those of a multicast packet. We shall speak of
striping a group of unicast packets across a set of desti-
nations. This entails dispatching the packets back-to-back
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from a source, each packet potentially having a different
destination address. Our premise is that when the duration
of network congestion events exceeds the temporal width
of the stripe, packets should have very similar experience
of the network upon traversing common portions of the
paths to their destinations. If the experiences were iden-
tical, the packets from a stripe that attempt to traverse a
given link would either all be lost, or encounter identical
delay. Hence the packet loss and delays on a given link
would be perfectly correlated within a stripe; the compos-
ite probe would have the same statistical properties as a no-
tional multicast packet that followed the same source tree.
In this case the methods of [2], [7], [15] could be applied
immediately to infer the per link loss and delay statistics
of the logical source tree.

However, correlations within stripes may be less than
perfect in practice. This is because congestion events may
not affect packets uniformly, subjecting stripes to disper-
sion as they travel through a network. Some mechanisms
by which this can happen are the following. Packet loss
will not be uniform during loss events that are narrower
than the stripe, or those that start or stop while the stripe is
in progress. Furthermore, delays will vary due to interleav-
ing of background traffic, e.g., when moving from a low
to a high capacity link. Although such effects should be
small for sufficiently narrow stripes, they will be cumula-
tive. Packet-dropping on the basis of Random Early Detec-
tion (RED) [9] is another mechanism by which packet loss
may become decorrelated. It remains to be seen whether
this mechanism will be widely deployed in communica-
tions networks. On the other hand, the use of RED to
merely mark packets will not break correlations.

This motivates four strands of work in this paper:
(i) determining the magnitude of imperfect correlations
through experiments on real networks;
(ii) calculating their likely impact on the accuracy of in-
ference methods that assume perfect correlations;
(iii) adopting measurement procedures that reduce the im-
pact of imperfect correlations;
(iv) verifying the accuracy of the approach in simulations.

We extend the packet loss model of [2] by incorporat-
ing an additional parameter for each link that describes the
correlation of loss between different packets of the same
stripe. This is done for binary stripes, i.e., those compris-
ing two packets with different destination addresses. These
additional parameters cannot themselves be determined by
end-to-end measurements, at least not without additional
assumptions relating them to each other, or to the existing
loss rate parameters. These calculations show that the er-
ror in using the loss estimator from [2] is small provided
that the conditional probability of loss of one packet in the

stripe given transmission (i.e., non-loss) of the other, is
small compared with the marginal loss rate in the stripe.
This is a condition that we will verify, at least for end-to-
end paths, through measurement.

By constructing appropriate stripes of composite probes
and selecting subsets of these probes for inference, we are
able to enhance correlations within data used for inference.
This is possible when packet transmissions are correlated
in the sense that a given packet in a stripe is more likely
to be transmitted across a given link when other pack-
ets within the stripe are known to have been transmitted
across the link. By conditioning on the measurable event
that nearby packets have been transmitted end-to-end, we
can raise the likelihood of transmission of a given packet to
an intermediate node closer to one. By sending the stripe
packets to diverse addresses, we can infer the properties of
internal network paths from the measurements.

The rest of the paper is as follows. In Section II we for-
mulate the stripe method, first for the binary tree of depth
two, and then for general trees. We specify a family of
different striping methods. We specify the required cor-
relation assumption between packet transmissions within
stripes, and show that it can be used to construct a hierar-
chy amongst the various striping methods; in particular we
establish an order relation for the degree of correction each
method gives to the bias caused by imperfect correlations.

We use two experimental approaches to evaluate the
proposed method. In Section III we use end-to-end mea-
surement on the National Internet Measurement Infras-
tructure (NIMI) [19] to gather data from a diverse set of
Internet paths. We transmitted stripes between pairs of
end-hosts and verified that their packet loss statistics were
consistent with the correlation assumptions that underlie
the method. (These stripes were different from those de-
fined above, since all packets in the stripes were sent to
the same destination; see Section III-A for discussion of
this approach.) We also estimated the likely accuracy that
would be obtained by stripe-based inference in the actual
network.

We support this work in Section IV using network level
simulation with ns [17]. By instrumenting the simulation
we can trace the behavior of packets in the network inte-
rior. This allows us first to study the correlation properties
of packets within stripes as they are transmitted across in-
dividual links in the network (rather than just the end-to-
end properties), and second to compare the inferred link
loss rates with actual link loss rates. For the most accurate
choice of striping method we find the typical absolute er-
ror in loss rate inference to be below 1%. We conclude in
Section V.



3

C. Related Work

There exist several tools and methodologies for charac-
terizing link-level behavior from end-to-end unicast mea-
surements. One of the first methodologies focuses on iden-
tifying the bottleneck bandwidth on a unicast route. The
key idea is that, in an uncongested network, two packets
(packet pair) sent back-to-back will arrive at the receiver
with a spacing that is inversely proportional to the low-
est link bandwidth on the path. This was noted by Jacob-
son as leading to TCP’s “self-clocking” behavior [10], and
formally analyzed by Keshav [12]. Carter and Crovella
then developed a tool to apply the technique [4], which has
since been refined in [13], [18]. Although these method-
ologies focus on a metric other than loss rate, they are
based on the same idea, namely to send packet pairs (or
stripes) so as to introduce correlation in a controlled man-
ner.

In [5], the authors use end-to-end measurements of
packet pairs in a tree connecting a single sender to several
receivers. Experiments consist of a number of packet pairs
where the packets are sent to different receivers so that all
pairs of receivers are covered. The metrics of interest are
success probabilities of all links in the tree. As the second
packet in a pair may not see the same loss behavior as the
first over the common path, conditional success probabili-
ties are introduced as unknown nuisance variables. Given
an a priori distribution for these two sets of parameters,
the authors then use a Bayesian network approach to deter-
mine a posteriori distributions and, from these, estimates
of the link transmission probabilities. Preliminary results
on the method reported in the paper show promise. Our ap-
proach differs from the approach in [5] in that we consider
a more general form of striping scheme which results in
significantly higher correlation. Thus we are able to con-
tinue to rely on the maximum likelihood estimates derived
for the multicast case.

Last, pathchar [6], [11] triggers ICMP messages at
successive routers on a unicast path in order derive link
bandwidth, round trip link loss rate, and round trip link de-
lay statistics. It accurately estimates link bandwidth pro-
vided that it is low. It has not been well validated in the
case of losses and delays. Moreover, it requires consider-
able time to converge and loses accuracy with asymmetric
round trip paths.

II. INFERENCE METHODOLOGY

A. Models for Trees, Stripes, and Packet Loss

We first develop the framework in which to describe the
propagation of stripes of unicast packets through the net-
work. We represent the underlying physical network as

a graph ����� � ������� ������ comprising the physical
nodes ����� (e.g. routers and switches) and the links �����
between them. We consider a single source of probes
� � ����� and a set of receivers � � �����. We assume
that the set of paths from � to each � � � is stationary and
form a tree ����� in ������� ������; thus two such paths
never intersect again once they have diverged. We form
the logical source tree � � ����� whose vertices � com-
prise �, � and the branch points of �����. The link set �
contains the link ��� �� if one or more of the probe paths
in ����� pass through � then � without encountering an-
other element of � in between. Where applicable, denote
by ���� � � the parent of � � � . We write � � � if � is
an ancestor of � in � .

We will use the notation ���� 	 	 	 � ���� to refer to a stripe
comprising packets dispatched to destination nodes in or-
der ��� 	 	 	 � ��� . We describe the progress of the stripe in
� by the variables 
����, taking the value � if packet �
reaches node �, and zero otherwise. Note 
����� � � iff
packet � reaches its destination node. (We do not label
packets by their destination since we consider stripes with
repeated destinations).

We will find it useful to have a notation describing
composite events at sets of receivers. For � � �� �

��� 	 	 	 � ��� define the binary variable

� �
�
���


�����	 (1)

Thus � � � if all packets in � reach their destina-
tions, and � otherwise. We will find it convenient to write
�������� ��� as ����� �� .

We specify a loss model for the stripes. We assume that
losses are independent between different stripes, and for
packets of the same stripe on different links. For each
� � � let ���� � �� be the set of packets that success-
fully reach (and therefore transit across) �. For � � ����
let ����� denote the probability that all packets in � are
transmitted to node �, conditioned upon having reached
the parent node ����. We do not assume that the marginal
probabilities ����� are equal for all � � ����. For dis-
joint subsets ���� � ���� we write as �������� the
conditional probability that packets in � are successfully
transmitted across link �, given that those in �� are suc-
cessfully transmitted, all packets having reached the parent
node ����. This is expressed in terms of the probabilities
�� as

������
�� � ���� 	��������

��	 (2)

With perfect correlations the various �� would be �. The
multicast loss model of [2] is statistically equivalent to the
special case ������

�� � � and hence ����� all equal
some ��.
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For a given link and stripe width, we expect the structure
of the probabilities �� � to depend on the times between
successive packets. For example, if the packets are widely
separated, then the marginal probabilities ����� will be
equal (or nearly so) while the conditional probabilities �
will be close to the marginal probabilities �. Here, we con-
centrate on the other extreme with back-to-back packets in
order to make � close to �. In this paper we focus on es-
timating transmission probabilities for the first packet in a
stripe. We note however that marginal transmission prob-
abilities can depend on the position of a packet within a
stripe, particularly when the stripe width is not negligible
compared with buffer sizes. However, our methods can be
adapted to focus on other packets within the stripe. This
could be useful if it is desired to infer transmission proba-
bilities for packets in traffic bursts.

B. Inference with Binary Stripes on the Two-Leaf Tree

We first investigate the performance of the inference al-
gorithms from [2] under imperfect correlations. We start
with the two-leaf tree shown in Figure 1, having leaf nodes
� and � with common parent � whose own parent is the
root �. Consider the binary stripe �����. The link prob-
abilities are related to the probabilities of leaf events as
follows:

����

���
� ������������� (3)

���

��
� �������������

���

��
� �������������

where � is as defined in (1). This is because, e.g.,
��� � ���������������� � ����������������������,
with similar expressions for �� and ��. With perfect
correlations, �� � �, and hence the � are uniform across
the stripe and may be recovered directly from the leaf
probabilities. These expressions can then be used to es-
timate the � from the leaf events ��� associated with mul-

tiple identical stripes � � �� �� 	 	 	 �. To form the estimates
we first replace each expectation in (3) by the correspond-
ing empirical mean, defined here in general:

�� � ���
��

�	�


���
� 	 (4)

Taking �� � � then yields the estimates

��� � ��
��� ���� ��� � ���� ��� ��� � ���� ��	 (5)

This is effectively the estimator from [2] applied to the
two-leaf tree.

With imperfect correlations, �� cannot be recovered in-
dependently from the leaf expectations. The model is not
identifiable; this was also observed in [5]. Since �� 
 �,
estimation via (5) is biased, overestimating �� and under-
estimating �� and ��.

C. Enhancing Stripe Correlations

The uncertainty over the values of the � undermines
confidence in using (5) directly. We now propose a modi-
fied striping scheme scheme for which the effective value
of the � is closer to 1. To glimpse the idea behind this,
observe that for the stripe ����� with perfect correlations,
������ (defined as the conditional probability for the
first packet of the stripe to reach � given that its second
packet reaches �) is actually equal to the probability of
transmission of a packet along the link ��� ��, conditional
upon reaching �. This is because packet � must have been
present at � if present at �. With imperfect correlations,
packet � may not have been also present at �, leading to
underestimation of ��. Our remedy for this is to use longer
stripes, conditioning on an event at � which makes it more
likely that packet � was present at �.

The simplest example of such a stripe is the three-
packet stripe �������. Provided that transmission of
packets within the stripe is strongly correlated (in a sense
we make precise below) we expect it to be more likely that
packet � reaches �, upon reception of packets � and � at
receiver �, rather than reception of packet � alone. We for-
malize the required notion of correlation in Definition 1
below.

Upon replacing the reception of packet 2 with the recep-
tion of packets 2 and 3, the analogs of the first and second
relations in (3) are

����


���

�

�����

��������
�
���


��

� �������������	 (6)

The parameters �� and �� are estimated by ��
��
� ���
���
� ��
 respectively; �� can be estimated similarly us-

ing the complementary stripe ��� �� ��. Comparing with
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(5) we observe that these estimates introduce less bias than
those from two-packet stripes provided that ������� �� �
�������. This is the case provided that transmissions
within a stripe satisfy the following correlation property.

Definition 1: We say that stripe transmission at a node �
is coalescentif for each stripe ���� 	 	 	 � ��� routed through
�, and disjoint ���� � ����,

������
�� � ������

��� for all ��� � ��	 (7)
Coalescence is a correlation property. It states that a given
set of packets � is more likely to be transmitted on a link,
the more other packets from the stripe have been transmit-
ted. We will investigate the coalescence properties of real
network traffic in Section III.

With coalescence, whenever we add packets to the con-
ditioning event, the effect is to decrease the estimate of ��
and to increase the estimate of �� or ��. Thus, we can
counteract the bias in the two-leaf stripe, evident from (3),
by using wider stripes.

Theorem 1: Assume transmission is coalescent on the
two-leaf tree and consider a stripe ������ and two disjoint
subsets ���� of ���� such that packets in � have desti-
nation � and packets in �� have destination �. Then for
any ��� � ��,

�����

���

�
������

����

	 (8)

The inequality (8) captures the effect that extending the
stripe reduces the estimate of the transmission rate �� and
so counteracts the bias due to �� � �.

Proof: ����� � ������
������

�� ���������
��

while ��� � ����
������

��. Hence ��������� �

������
������� � ������

�������� � ����������� .

Example: the 4-packet stripe. Theorem 1 suggests we can
further reduce bias by lengthening the stripe length. Con-
sider, for instance, the stripe ��������� and compare its
estimation properties with those of its substripes �������
and �����. By Theorem 1 we have the following ordering
between the functional on which estimates of �� are based
in each case:

����
�

���
�


����


���



����

���
	 (9)

The estimators are obtained by replacing each � by the
corresponding empirical mean � from � stripes. By the
Law of Large Numbers, the same inequalities hold for the
estimates with probability 1 as � grows to infinity.

D. Extension to General Trees

We describe estimators that extend the foregoing
method to treat general logical source trees, i.e., trees in

which the depth and branching ratio can be greater than
�. Consider first the case of a depth � tree with an arbi-
trary number of leaves. One approach is to stripe across
all receivers and then to adapt the estimator from [2] for
nodes with arbitrary numbers of offspring in order to esti-
mate the link probabilities. A potential problem with this
approach is that the statistical properties of stripes may not
reflect those of general traffic if their width is not negligi-
ble compared with buffer sizes. For the same reason, vari-
ation of stripe width within a single set of measurements
may introduce non-uniform bias into the link probability
estimates, depending on the local branching ratio. Instead,
here we focus on combining inference from fixed-width
stripe measurements on embedded subtrees.

Consider an arbitrary tree with leaf set �. For each node
� let ���� denote the subset of leaves descended from
�. Let ���� denote the set of ordered pairs of nodes in
���� descended through different children of �. For each
������� � ����, consider the embedded two-leaf binary
tree spanned by the nodes �� �������. By combining esti-
mates from measurements of stripes down each such tree,
we shall estimate the characteristics of the common path
from � to �.

Each stripe will follow the same pattern. We fix a tem-
plate for a stripe of �� packets by partitioning ��� 	 	 	 � ���
into two sets ��� ��. For each ordered pair ���� ����� of
distinct receivers in ���� we form a stripe that sends pack-
ets in positions in �� to ��� and packets in positions in
�� to ��� . More formally, this is the stripe ����� ��� �

���� 	 	 	 � ���� where �� � ��� when � � ��.
The relation between the leaf probabilities and the trans-

mission probabilities on the composite path from � to � are
expressed through

���
���

������

� ����������������	 (10)

where �� �
�

�	� �� and �� �
�

�	� �� . For each non-
leaf and non-root node �, each pair ��� �� � ����, the mea-
surements with � stripes of type ���� �� thus gives rise to
an estimate

�� ���
� �

���

���������

	 (11)

In the experiments described in this paper we combine all
possible estimates through their arithmetic mean

��� � �������
�

������	���

�� ���
� 	 (12)

For leaf nodes � take ��� as the measured transmission
probability over all stripes of packets to �, and set ��� � �
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by convention. The link probability estimates are then ex-
pressed as quotients

��� � ���� ��
���� � �� �	 (13)

E. Sampling and Statistical Issues

Earlier in this section we proposed using wider stripes
as a way of counteracting the inherent bias in using esti-
mators that do not take explicit account of the imperfect
correlations between stripe packets. We now make a num-
ber of further observations of the statistical implications of
using the stripe approach.

First, increasing the stripe width while keeping the total
number of packets sent constant increases the variance of
the estimates. This is because the number of stripes sent is
in inverse proportion to their width.

Second, network characteristics may not be uniform
across a stripe e.g., if stripe width is comparable in size to
that of a buffer. Here we focused on estimating transmis-
sion probabilities for the first packet; other templates could
direct attention to other positions. We note that if marginal
transmission rates are highly heterogeneous across differ-
ent positions in a stripe, then the assumption of indepen-
dent packet loss on different links may not hold. This is be-
cause its expected loss rate of a packet at a given node can
depend on the occurrence of losses closer to the source of
packets in earlier stripe positions. These cause the packet
to advance its position in the stripe and consequently ex-
perience a different loss rate.

Third, there is a phenomenon during TCP slow start
that can lead to every other or every third packet being
lost. Once TCP increases its window enough to “fill the
pipe,” which corresponds to transmitting at the bottleneck
rate, then the next set of acknowledgements effectively in-
creases the sending rate by either a factor of two (if the re-
ceiver acknowledges every incoming packet) or a factor of
1.5 (if the receiver uses the common “ack every other” pol-
icy). If the bottleneck buffer is full at this point, then either
every other or every third packet will be lost at the bottle-
neck due to the mismatch between the bottleneck rate and
the higher sending rate. See Figure 2 of [8] for an illus-
tration. Accordingly, there may be buffer-filling patterns
present in the network that impart particular loss patterns
on the elements of a stripe. The prevalence of the “slow
start” pattern will depend on how often TCP connections
in slow start dominate the consumption of buffer space at
the bottleneck link.

Fourth, we have observed that imperfect correlations at
a node bias inference for parent and child links in opposite
directions. Hence bias is a second order effect spatially,
depending not on the absolute loss correlation, but rather

on the manner in which it changes from node to node in
the network. In the special case of the probabilities �� �
being uniform over all links, imperfect correlations actu-
ally leave the estimates (5) unbiased for internal links (i.e.
all those except the leaf links and root link), though this
special case seems highly unlikely in practice.

Fifth, the analysis of estimator variance for multicast in-
ference carries over when �  �. We refer the reader to [2]
for details. Here we mention that in a regime for which all
loss rates �� � �� �� are close to zero, the estimator ���
has variance which behaves as ���

�
�� � ����

�
, asymp-

totically for large numbers � of probes. To leading order,
this form is independent of topology.

III. NETWORK EXPERIMENTS

The estimation techniques described in Section II rely
on conditional probabilities of packet transmission within
stripes being close to �, and on the coalescence property
in order to counteract the bias due to shortcomings with
this assumption. In this section we investigate confor-
mance of both of these assumptions to measurements of
stripes transmitted across a number of end-to-end paths
in the Internet. Although these experiments did not ac-
cess the transmission properties of individual links (logis-
tically very difficult to measure), they would be able to
detect link-wise departures from the assumptions, since
these would also be reflected in the properties of end-to-
end paths over non-conformant links.

A. Measurement Infrastructure

We conducted the experiments using the National In-
ternet Measurement Infrastructure (NIMI) [19]. NIMI
consists of a number of measurement platforms deployed
across the Internet (primarily in the U.S.) that can be
used to perform end-to-end measurements. We made the
measurements using the zing utility, which sends UDP
packets in selectable patterns, recording the time of trans-
mission and reception. We extended zing to transmit
unicast stripes to multiple destinations, minimizing the
spacing between packets in a stripe by precomputing the
packets to send (including their MD5 integrity checksum,
the most computationally expensive part of constructing
a zing packet) and then transmitting them with back-
to-back system calls, resulting in inter-packet spacings of
about 	��sec.

A key point is that for our measurements we did not ac-
tually send packets to multiple destinations, because we
had no way of calibrating true inference of internal loss
characteristics, which would require measurement inside
the network. Instead, the results we report are all for
stripes sent to the same destination, with the goal being
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Fig. 2. SCATTER PLOT OF TRANSMISSION PROBABILITIES

IN 28 NETWORK EXPERIMENTS. Conditional vs. marginal
end-to-end transmission probabilities. Probabilities for 3-
packet stripes mostly meet or exceed those for 2-packet
stripes.

to assess the conditional loss probability and coalescence
properties.

We gathered a total of 63 successful measurements be-
tween 35 NIMI sites, each measurement recording at both
sender and receiver the transmission of either 100,000
flights of stripes of 3 packets, with separations exponen-
tially distributed with a mean of 100 msec; 10,000 flights
of stripes of 10 packets, separated by a mean of 300 msec
(we also analyzed the first 3 packets in each stripe as
another dataset of 3-packet stripes); or 20,000 flights of
stripes of 3 packets, separated by a mean of 500 msec.
All measurements were made at either 2PM EDT (a busy
time) or 2AM EDT (a fairly unloaded time). There was no
noticeable change in behavior as we varied the inter-stripe
spacing from 100 msec to 500 msec.

Of the 63 traces, 7 exhibited no loss whatsoever, and
consequently we had to eliminate them as they could not
be used to study loss inference. Of the remaining 56, fully
half (28) had conditional loss probabilities of 1, reflect-
ing perfect loss correlation just as we would have if using
multicast traffic instead of unicast. This finding is highly
encouraging for the efficacy of unicast loss inference.

In the remainder of this section, we analyze the proper-
ties of the 28 traces that did not exhibit perfect correlation.

������� � � � � ��� ������� � � � � � � ��
� � � � � � � � � � � � � � �

min. 1.0000 1.0000 1.0000 1.0000 1.0000
mean 1.0189 1.0002 1.0000 1.0001 1.0001
max. 1.1812 1.0021 1.0003 1.0005 1.0003

TABLE I
COALESCENCE OF TRANSMISSION IN NETWORK

EXPERIMENTS. RATIOS OF END-TO-END CONDITIONAL

TRANSMISSION PROBABILITIES IN STRIPES OF WIDTH 2 TO

6. MINIMUM, MEAN AND MAXIMUM OF RATIOS OBSERVED

IN 19 TRACES STRIPES OF WIDTH 10. MINIMUM RATIO 1
CONFORMS WITH COALESCENCE PROPERTY.

B. Transmission Probabilities

Marginal Probabilities. The packet loss rate varied be-
tween zero and about �	
 over the experiments. The
marginal packet loss rates for different positions in the
stripe displayed some heterogeneity. The heterogeneity
was most pronounced at the start of the stripe, with the loss
rate for the second packet in a stripe being typically 1.19
times greater than that of the first. Moving further along
the stripe, loss rates differed between successive positions
typically by up to a typical factor of 1.03.
Conditional Probabilities. We can estimate the error in-
volved in the stripe method by comparing conditional and
marginal transmission probabilities within the stripe. A
scatter plot of the conditional vs. marginal probabilities
for 2 and 3 packet stripes in 28 experiments is shown in
Figure 2. Higher points represent smaller relative error;
conversely for points near the line the error is of the same
order of magnitude as the marginal probability to be esti-
mated. For both 2 and 3 packet stripes, the end-to-end con-
ditional transmission probabilities �� are noticeably larger
than the marginal transmission probabilities ��, with those
for the 3 packet stripe being at least as large as those for the
2 packet stripes in almost all cases. A conditional probabil-
ity of 1 would signify perfect correlations. We can char-
acterize this error arising from �� � � through the ratio
��� ������� ��� when �� �� �. This represents the propor-
tion of the reported loss rate which is typically in error due
to imperfect correlations. For 2-packet stripes, the median
value of this ratio was �	��. (So, for example, an esti-
mated loss rate of �
 would be in error by about �	��
).
The median ratio fell to to �	�� for 3 packet stripes.
Coalescence We calculated end-to-end conditional trans-
mission probabilities ������� �� 	 	 	 �� for stripes of width
� between � and �. (When � � � this just denotes the
marginal probability �����). A necessary condition for co-
alescence is that the ratios ������� 	 	 	 � ��� ������� 	 	 	 � ��
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Fig. 3. SIMULATION TOPOLOGY

�� be � �. We determined the ratios over 19 experiments
with stripes of width 10. In only two instances were the
ratios less than 1, and in these cases by a magnitude of
only about ����. This is a far smaller magnitude than that
by which the ratio typically exceeds 1, as is seen from the
statistics displayed in Table I: the minimum, mean, and
maximum for each � over the 19 experiments. The ratios
are largest for � � �, falling off close to � as � increases
beyond �. This suggests that the additional bias correction
obtained by increasing stripe width is almost negligible for
stripes wider than 3 packets, at least under the network
conditions and the range of loss probabilities exhibited in
these traces.

C. Interpretation

The network experiments are encouraging for unicast-
based inference. First, in half of the traces the stripes ex-
hibited perfect correlations. If this property were repro-
duced in stripes to multiple destinations, their statistical
properties would be identical to that of multicast traffic for
the purposes of link loss inference. Second, in traces with
imperfect correlations, the conditional transmission proba-
bilities within the stripe were considerably higher than the
marginal probabilities, slightly more for the 3 packet stripe
than the 2 packet stripe. This indicates that the bias due
to ignoring the imperfection in correlations is relatively
small. Third, traces exhibited coalescence for the stripe
widths considered, indicating that the bias can be compen-
sated for by using wider stripes, although the incremental
benefit grew smaller for larger stripe widths. These factors
lead us to expect that striped unicast probing will be quite
effective for loss inference under real network conditions.
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Fig. 4. CONDITIONAL TRANSMISSION PROBABILITIES IN

SIMULATIONS. Scatter-plot of conditional vs. marginal link
transmission probabilities for 2, 3 and 4 packet stripes. Con-
ditional probabilities increase with stripe width.

IV. SIMULATION RESULTS

A. Methodology

The experiments of Section III give us confidence that
the statistical properties of stripe transmission make stripes
suitable as probes for inference. However, the experiments
do not enable us to corroborate the accuracy of the estima-
tors for real network traffic. Instead, we employ simulation
to get a sense of how accurate the estimators might be in
practice.

We used the ns simulation environment [17]; this en-
ables the representation of transport-protocol detail of
packet transmissions, with packet loss due to buffer over-
flows at nodes as stripes compete with background traffic.
The simulations reported in this paper used the topology
of Figure 3. The different link speeds and delays are in-
tended to characterize low speed/low delay links at a net-
work edge connected by high speed/high delay links in the
network interior. The goal is to study the methodology in
a simplified environment to look for major problems, not
to make a definitive assessment of the methodology.

Background traffic comprised a mixture of sessions over
TCP and exponential on-off sources. There were on aver-
age 11 sessions per link direction. The buffer on each link
accommodated 20 packets. Measurement probes com-
prised stripes with a 1�sec interpacket time. Stripes were
generated periodically with an inter-stripe of 16 msec. The
tree was covered by cycling through thirty stripes ���� ��
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Fig. 5. Inferred vs. actual link loss rates in simulations. 3 packet
and 2 packet substripes. Scatter plot for 100 experiments.

over pairs of distinct receivers �� �. During an experiment,
each stripe was transmitted 1,000 times. We conducted a
set of 100 experiments using 4 packet stripes. To com-
pare the estimator performance under the different stripe
lengths we considered the 2 and 3-packet substripes ob-
tained using the first two and three packets in each stripe.
In order to evaluate the method, the inferred loss rates were
compared with internal link loss rate as determined by in-
strumentation of the simulation. Link loss rates were com-
puted considering only the first probe in the stripe.

B. Conditional and Marginal Transmission Probabilities

We first examine the statistical properties of the under-
lying link loss processes. Figure 4 is a scatter plot of con-
ditional vs. marginal transmission probabilities for 2, 3
and 4 packet stripes. Observe that conditional probabili-
ties increase with stripe width. We summarize the likely
relative errors in each case though the statistics of the ratio
�� � ������ � ��� of conditional to marginal loss probabil-
ities. For 2 packet stripes the median ratio was �	�� (i.e.,
a relative error of 32%). The ratio fell to �	�� for 3 packet
stripes, and further to �	�� for 4-packet stripes.

These errors are somewhat greater than those observed
for end-to-end transmission in the network experiments.
We believe this may be associated with a greater hetero-
geneity in marginal transmission rates that we observed
in the simulations; loss rates grew by about 30% between
successive positions for the first 4 packets of a stripe. Re-
call from Section III-B that in the network experiments, the
largest such ratio was 19%, and typical ratios were 3%.
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Fig. 6. Inferred vs. actual link loss rates in simulations. 4
packet stripes and 3 packet substripes. Scatter plot for 100
experiments.

stripe width
2 3 4

mean 0.0099 0.0075 0.0063
s.d. 0.0064 0.0057 0.0052

TABLE II
ESTIMATION ERROR IN SIMULATIONS AS FUNCTION OF

STRIPE WIDTH. MEAN AND STANDARD DEVIATION OF

ABSOLUTE DIFFERENCE BETWEEN INFERRED AND ACTUAL

LOSS RATES. ERRORS ARE MINIMIZED FOR 4-PACKET

STRIPES.

The stronger growth in loss ratios along the stripe in the
simulations may be due to the larger size of the stripe rel-
ative to buffer size (20 packets) as compared with that in
real networks.

C. Accuracy of Inference

Finally, we compare inferred and actual link loss rates
in the simulations. We display scatter plots of inferred vs.
actual loss for 2 and 3 packet stripes in Figure 5, and 3 and
4 packet stripes in Figure 6. The same number of stripes
was used in each case. From the figures we observe that
accuracy increases with wider packet stripes as exhibited
by the clustering about the line � � �. In Table II we sum-
marize the statistics of the absolute error, i.e., the modulus
of the difference between the inferred and actual link loss
rates. This is just under 1% in the worst case, i.e., for the 2
packet stripe, and 0.63% in the best case, i.e., the 4 packet
stripe. Thus, by exploiting the coalescence property, we
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have achieved a 40% reduction in absolute error, by sim-
ply increasing the the stripe length from two to four.

V. CONCLUSIONS AND FURTHER WORK

In this paper we have proposed a method of using end-
to-end unicast probing to infer the loss characteristics of
the network interior. The method relies on using collec-
tions of unicast probes, called stripes, dispatched back-to-
back to different destinations, in order to mimic the effect
of a notional multicast packet that followed the same path.
We infer internal loss rates by applying an estimator devel-
oped for multicast inference to the unicast receiver traces.
This estimator is unbiased when the transmissions of a
stripe’s probes on a given link are perfectly correlated. Im-
perfect correlations lead to bias, but we prove that this can
be compensated for by using wider stripes, provided that
the stripe transmissions obey a certain correlation property
that we call coalescence. This is the property that success-
ful transmission of a given packet in the stripe becomes
more likely when more other packets from the stripe have
been successfully transmitted.

Our network experiments show that for end-to-end
transmission, correlations within stripes are very high,
even perfect in some cases. Moreover, the coalescence
property was found to hold in virtually all cases examined.
Together these properties lead us to expect that inference
from striped unicast probes will be effective in estimating
link loss rates.

Our next step in network experimentation is to directly
assess the method by performing corroborative measure-
ments in the network interior. This entails taking measure-
ments on paths over which probe traffic flows; then com-
paring actual loss rates with inferred loss rates on internal
paths.

Currently, such corroboration is available to us only in
simulation experiments. The ns simulations showed good
agreement between inferred and actual loss rates; the typ-
ical error in these experiments was about 1% for the 2-
packet stripe, falling to 0.63% when the stripe width was
increased to 4.

Our next step in simulation will be to investigate the
magnitude of these effects for systems with larger buffers
and more diverse background traffic, which are more rep-
resentative of actual networks.

In this paper we have concentrated on estimation of link
probabilities for the first packet of a stripe. However, due
to heterogeneity of loss along the stripe, such estimates
may not be representative of typical packets, e.g., pack-
ets contained within a burst. Clearly, the present method
could be extended, through use of other stripe templates,
to estimate link probabilities for packet in positions other

than the first. In the future we hope to increase the accu-
racy of inference by tuning the stripe properties to the burst
structure observed in background traffic.

Finally, we remark that a number of other multicast-
based estimators–namely those for delay distributions
[15], for delay variances [7], and logical multicast topol-
ogy [3]–have the potential to be adapted in the same man-
ner as was done for loss estimators in this paper. We feel
that our promising results on unicast-based loss estimation
warrant extending the estimator to these other settings.
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