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Abstract— Unmanned Aerial Vehicles (UAVs) play a crucial
role in meteorological research, particularly in environmental
wind field measurements. However, several challenges exist in
current wind measurement methods using UAVs that need to
be addressed. Firstly, the accuracy of measurement is low, and
the measurement range is limited. Secondly, the algorithms
employed lack robustness and adaptability across different UAV
platforms. Thirdly, there are limited approaches available for
wind estimation during dynamic flight. Finally, while horizontal
plane measurements are feasible, vertical direction estimation
is often missing. To tackle these challenges, we present and
implement a comprehensive wind estimation algorithm. Our
algorithm offers several key features, including the capability
to estimate the 3-D wind vector, enabling wind estimation even
during dynamic flight of the UAV. Furthermore, our algorithm
exhibits adaptability across various UAV platforms. Experi-
mental results in the wind tunnel validate the effectiveness of
our algorithm, showcasing improvements such as wind speed
accuracy of 0.11 m/s and wind direction errors of less than 2.8◦.
Additionally, our approach extends the measurement range to
10 m/s.

Index Terms— Wind Estimation, Disturbance Observer,
Aerial Robotics, Field Robots

I. INTRODUCTION

In recent years, there has been significant interest in
obtaining accurate wind vectors (wind speed and wind di-
rection) due to their importance in predicting environmental
changes [1]. The ability to measure wind vectors in real time
and at multiple locations is crucial for several applications,
such as predicting rainfall trends and typhoon log-in dates.
Currently, wind measurements are primarily conducted using
anemometers and weather balloons. However, anemometers
can only provide fixed-point measurements and lack the
necessary flexibility. Meanwhile, weather balloons are cum-
bersome to deploy and expensive since they cannot be reused.

To address these challenges, the utilization of Unmanned
Aerial Vehicles (UAVs) for wind vector estimation has
gained attention [2]. However, several limitations remain,
including low measurement accuracy, a limited measurement
range, a lack of robustness and adaptability across different
UAV platforms, a scarcity of approaches for in-flight wind
estimation, and the absence of vertical direction estimation.

Motivated by these issues, we propose a robust and high
accurate wind estimation method. Our approach employs a
disturbance observer (DOB) to estimate the external force
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Fig. 1: Wind tunnel experiments with a given wind speed,
the UAV remains hovering to collect data. Video available
at: https://youtu.be/QpbzR2NJULg

vector exerted by the airflow blowing through the UAV,
inspired by [3]. By mapping the external force vector to the
relative air vector, we obtain a comprehensive 3-D force-
air model that can estimate the relative air vector online.
Finally, by incorporating the ground speed of the vehicle
and the estimated relative air vector, we can derive the wind
vector through the synthesis of wind triangles. Experimental
results in the wind tunnel demonstrate that our model has
an error of less than 0.11 m/s for the estimated wind speed
and less than 2.8◦ for the wind direction. The robust one-to-
one mapping of our three-dimensional (3-D) force-air model
ensures resilience to perturbations, enhancing the reliability
of our estimation method. Our proposed method requires
only basic inputs such as ground velocity, acceleration,
attitude, motor rotation speed, and vehicle mass, which
can be easily obtained from a UAV platform. This feature
ensures the adaptability of our method to different platforms.
Moreover, leveraging the self-convergence capability of the
utilized DOB method [4], our approach enables dynamic
calculation of external forces, facilitating real-time wind
estimation during dynamic flight operations. To be specific,
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our research makes the following key contributions:
1) Innovative wind estimation framework: Our frame-

work consists of a front-end module and a back-
end module. The front-end module employs a DOB
method to accurately estimate the external force vector.
On the other hand, the back-end module utilizes the
estimated force vector to perform online estimation of
the relative air vector and computes the wind vector
by synthesizing wind triangles [5]. The decoupling of
the front-end and back-end modules enables separate
optimization for each module using different methods,
ensuring system stability and facilitating maintenance.

2) Improved accuracy and expanded measurement
range: In our experiments conducted with the pre-
sented platform, we tested wind speeds up to 10 m/s.
The mean velocity error was measured to be 0.11 m/s,
which is less than 2% of the true value. The angle
error was found to be less than 2.8◦ in the wind tunnel
experiment.

3) Estimation of a 3-D wind vector: The DOB-based
estimator allows for the estimation of a 3-D force
vector, which in turn enables the estimation of a 3-
D wind vector. This capability significantly broadens
the scope of wind estimation and provides a more
comprehensive understanding of wind patterns for me-
teorological research purposes [6].

4) Simultaneous estimation during dynamic flight: The
DOB-based estimator has the ability to estimate the
force vector online while the vehicle is in dynamic
flight, thereby enabling the accurate estimation of
the wind vector in any scenario. This unique feature
enhances the efficiency and effectiveness of wind vec-
tor estimation, allowing for real-time and continuous
monitoring of wind.

The remainder of this paper is organized as follows: Sec. II
provides an overview of relevant works and methods in
the field of wind vector estimation. Sec. III presents the
principle of wind estimation. Sec. IV introduces the proposed
DOB design method. The force-air model is established
in Sec. V. Experimental results are presented in Sec. VI.
Finally, Sec. VII concludes the paper and introduces future
work.

II. RELATED WORK
In the early stages of wind speed and direction measure-

ments, hardware attachments to fixed-wing vehicles, such
as pitot tubes [7] and custom sensor measurement systems
[8], were commonly used. However, these sensor systems
designed exclusively for fixed-wing configurations proved
unsuitable for multi-rotor UAVs due to their limited payload
space and the effect of downwash airflow from the rotors.
The dominant approach for estimating wind speed and angle
involves judging them solely from the attitude of the UAV
when subjected to wind, as highlighted in [5, 9]. Rotor UAVs
have gained popularity in the field of wind estimation after
optimization by K. Meier et al. [10] and M. Simma et al.
[11]. However, tilt-based methods have limitations. They can

Fig. 2: The UAV platform and coordinate system. A wind
barrel is installed under the UAV to increase the wind
estimation accuracy.

only measure wind speed and direction in the horizontal
plane and require the UAV to be in a steady state at all times.
To address the limitations mentioned above, G. Hattenberger
et al. [12] proposes an estimation method based on Kalman
Filter (KF). However, it is crucial to acknowledge that the
optimality of the KF heavily depends on the accuracy of
the model utilized in the prediction step. If the model is
flawed, it can negatively impact the performance of the
KF. Additionally, the mathematical models of wind used
in these works are often simplistic, limiting the achievable
accuracy of the estimation. To overcome the wind estimation
accuracy problem, wind vectors are measured using system
identification based on adequate modeling of wind distur-
bances [13, 14]. This approach allows for high estimation
accuracy. However, excessively complex wind models do
not necessarily guarantee robustness. In recent years, neural
network based techniques (NN-based) have been employed
to reduce the complexity of wind modeling [15, 16]. By
directly predicting wind speed and direction from UAV
sensor data, these techniques eliminate the need for explicit
wind models. However, the parameter sensitivity of neural
networks can lead to large prediction errors when even slight
changes occur in the unknown parameters. Consequently,
they may exhibit poor adaptability to different models.

To overcome the limitations of current methods, we in-
troduce a novel DOB-based approach for wind field esti-
mation. The proposed method offers several key advantages
[17], including robustness, high accuracy, and the ability to
estimate the 3-D wind vector even during the dynamic flight
of a UAV. Furthermore, our approach is designed to be easily
adaptable to different UAV platforms, ensuring its versatility
and applicability across various systems.

III. PRINCIPLE OF WIND ESTIMATION

The coordinate frames of our UAV platform are shown in
Fig. 2: the body frame xb, yb, zb, the inertial frame xi, yi,
zi, and the intermediate frame xc, yc, zc. The origin ob of
the body frame is set to coincide with the vehicle’s center of
gravity. The intermediate frame is defined by rotating along
zi by ψd. ψd is the desired yaw angle when the vehicle is
hovering. The equation of dynamics of the quadrotor can be



Fig. 3: Principe of wind estimation: (A) The relative air flow generates a total external force fe, which leads to new states
Λ. The force estimator uses the real-time states Λ to acquire the estimated external force f̂e. The air-wind model utilizes
the ground vector ṗ and f̂e to estimate the wind speed Vw and wind direction ϑ. (B) Front-end module: The force estimator
acquires and processes the total states Λ to obtain the external force f̂e. (C) Back-end module: Build a 3-D force-air model
using a pre-calibrated force-air vector dataset. By incorporating the known ground vector ṗ and applying the principles of
the wind triangle, we can ultimately determine the wind vector and extract the wind speed and direction.
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Fig. 4: ’Revolution-Thrust’ curve for each motor.

written in (1) as follows [18]:

mp̈ = −ufR(η)e3 +mg0e3 + fe

Jη̈ = −C(η, η̇)η̇ + uτ + τ e

(1)

where m is mass; g0 is gravitational constant; J ∈ R3×3

is inertia matrix in the body frame; p = [px, py, pz]
T is the

position of the quadrotor in the inertial frame; η = [ϕ, θ, ψ]T

represents roll, pitch, and yaw angle, respectively; R(η)
is the rotation matrix from body frame to inertial frame;
e3 = [0, 0, 1]T ; C(η, η̇) is the coriolis matrix; fe =
[fex, fey, fez]

T is total external force vector in inertial frame;
τe ∈ R3 is total external torque vector in the body frame;
uf ∈ R1 and uτ ∈ R3 are respectively total thrust and
torque which is produced by the thrust of the four rotors.
Fig. 4, illustrates the relationship between the thrust and

revolutions per minute (RPM) of each rotor. This relationship
can be approximated using a quadratic polynomial [19]. In
our specific scenario, the motor revolution-thrust function
can be expressed as:

uf =

4∑
i=1

(207Ω2
i + 11.34Ωi + 0.01315) (2)

where Ωi is the normalized RPM which represents the
current RPM divided by the max RPM.

As shown in Fig. 3 (A), our proposed wind estimation
method is based on a straightforward concept. When the
vehicle is hovering or flying in the sky, the relative airflow
around the vehicle generates a total external force fe. By
estimating this external force and establishing the relation-
ship between the external force vector and the relative air
vector, we can map the relative air vector based on fe. With
knowledge of the relative air vector and the ground velocity,
we can determine the wind speed Vw and wind direction ϑw.
Importantly, our wind estimator allows real-time estimation
of fe, making it suitable for both hovering and dynamic
flight scenarios.

Fig. 3 (B) illustrates the process of force estimation. We
employ a nonlinear disturbance observer (DOB) to estimate
the external force. The DOB utilizes the total thrust uf ,
acceleration p̈, and attitude η of the vehicle to calculate the
fe. The detailed design and implementation of the DOB will
be discussed in Sec. IV.

Fig. 3 (C) provides a detailed explanation of the process
for obtaining wind information. We conduct a wind tunnel



test to collect pre-calibrated relative air vectors Ar and total
states Λ = [ṗ, p̈,η,Ω], which are used to establish a 3-D
force-air model. Given the fe, we utilize the 3-D force-air
model to map the relative air vector Ar. By considering
the relative air vector Ar and the ground vector Ag = ṗ,
and employing the principles of wind triangle synthesis (i.e.,
Ar = Aw + Ag), we can determine the wind vector Aw

and extract both the wind speed Vw and wind direction ϑw.
For detailed calculations, please refer to Sec. V.

IV. DOB DESIGN

Due to the fact that the same wind generates different
external forces in various directions of the vehicle, it results
in distinct convergence rates. These different convergence
rates can lead to errors in wind estimation. To ensure
consistent convergence rates for the estimated force along
the XYZ axes, we propose our DOB method based on the
work of B. Yüksel et al. [20]. We extend their approach and
provide a proof of stability for our modified DOB. We write
(1) in a compact form:

de = Bq̈ +D(q, q̇)q̇ + g −G(q)u (3)

where

B =

[
mI 0
0 J

]
D(q, q̇) =

[
0 0
0 C(η, η̇)

]
g =

[
−mg0e3

0

]
G(q) =

[
−R(η)e3 0

0 I

] (4)

where de = [fe
T , τe

T ]T is an external wrench that acts
on the body of the UAVs; I ∈ R3×3 is identity matrix;
q = [pT ,ηT ]T is the quadrotor’s posture; u = [uf ,uτ

T ]T ∈
R4×1. We propose the following DOB-based on [4]:

˙̂
de = L(q, q̇)(de − d̂e) (5)

where d̂e is the estimated wrench, de is the true value
introduced by (3). In general, there is no prior information
about the derivative of the disturbance, it is reasonable to
suppose that:

ḋe = 0 (6)

we define the observation error as the difference between the
true and observed values:

e = de − d̂e (7)

combining (5) and (7), we can now calculate:

ė = L(q, q̇)d̂e −L(q, q̇)de = −L(q, q̇)e (8)

Therefore, the L(q, q̇) directly impacts the convergence
of error dynamics. In order to achieve different estimation
effects for fe on XYZ axes respectively, inspired by [20],
we design the following observer:

L(q, q̇) = KIB
−1 (9)

where KI ∈ R3×3 is the observation parameter matrix, a
diagonal matrix where the elements on the main diagonal
can be different parameters.

Proposition 1: Consider the wrench estimator from (5).
If L(q, q̇) is defined as (9), then d̂e → de.

Proof: We will demonstrate the convergence of the error
in equation (7) by establishing the asymptotic stability of
(8):

V (e, q) = eTBe (10)

be a positive definite candidate Lyapunov function. We can
write:

dV (e, q)

dt
= −2eTBKIB

−1e+ eT Ḃe

= eT (−2BKIB
−1 + Ḃ)e

(11)

where B is symmetric, mI and J are both constant values.
Therefore, we can compute that:

Ḃ =

[
0 0
0 0

]
(12)

We can infer (11) that:

dV (e, q)

dt
= eT (−2BKIB

−1)e (13)

since V (e, q) is positive definite, and considering that (13)
can be negative definite while KI ∈ R+, the Lyapunov
condition holds. Consequently, KI is positive definite can
guarantee the convergence of e(t) to 0, proving the state-
ment. Based on this, we substitute (9) into (5) yields:

˙̂
de = −KIB

−1d̂e +KIB
−1(Bq̈ +Dq̇ + g −Gu)

(14)
next, we extract and discretize the estimated forces part from
(14), resulting in the following representation of the discrete
force estimator:

f̂e(k + 1) = (I − δt

2m
KI)f̂e(k)+

δt

2m
KI(mp̈− g + ufzb)

(15)

where f̂e is the estimated value of fe; k is control sequence;
δt is sample time; m is mass of UAV; λi, i ∈ {1, 2, 3} are
the i-th diagonal elements of KI ; zb is the third column of
R(η).

The estimated force f̂e is then transformed into the
intermediate frame, denoted as f̂ce = [f̂cex, f̂cey, f̂cez]

T , and
serves as the input for the 3-D force-air model.

V. FORCE-AIR MODEL FITTING

A. Data Collecting

In the experimental setup shown in Fig. 1, hover tests were
conducted with our UAV platform within a wind tunnel to
acquire data on various wind and their corresponding total
states Λ. The objective was to observe the UAV’s response
under varying wind conditions. For this purpose, the UAV
was rotated 10◦ every 20 seconds and the total states Λ were
recorded for a specific wind speed. This rotation process was
repeated until the UAV completed a full revolution from 0◦

to 360◦. Subsequently, we increased the wind speed by 1
m/s and repeated the rotation process, gradually covering a
wind speed range from 0 m/s to 8 m/s. The resulting data



Fig. 5: The horizontal force-air model.

points, representing the DOB forces and wind speeds, are
shown as blue dots in Fig. 5 (a). After data clean [21], the
collected data was specifically used to develop the horizontal
force-air model. To gather data for the vertical force-air
model, flight tests were conducted, during which the vehicle
executed maneuvers in both upward and downward directions
at various speeds. Throughout these flight tests, we recorded
the corresponding total states Λ.

B. Data Fitting

The conventional modeling for wind speed and direction
is complex. It considers the wind direction as equivalent to
the external force angle on the horizontal plane, while the
wind speed is a second-order function of the force norm
[22]. However, as discussed in Sec.V-A, we can simplify
the modeling approach. Thus, we can compute the two
components as follows:

ϑr = arctan 2(f̂cey, f̂cex)

fh =
√
f̂2cex + f̂2cey

(16)

where fh represents the norm of the horizontal external force,
and ϑr is the force angle, indicating the angle from xc to the
force direction. Actually, the wind vector points towards the
center of the UAV, resulting in a 180◦ difference between
the force direction and the wind direction.

Fig. 5 (a) illustrates the relations between the force angle
ϑr, the horizontal force fh, and the horizontal wind speed
Vwh in a coplanar plane. The blue points contain information
about the correlation between the estimated external force
and wind speed. The inputs m = fh cosϑr, n = fh sinϑr
correspond to the wind speed output. The force-air model is
obtained by minimizing the sum of squared errors between
the observed data points and their corresponding predicted
values on the fitted surface, which is depicted as the red
surface. Similarly, we apply the vertical force-air model,
assuming that the tilt angle of the vehicle has no impact on
the vertical direction of the wind. Therefore, for the vertical
force-air model, we can directly map the wind speed based
on the vertical force fcez . By combining these two models,
a comprehensive 3D force-air model can be established,
including all directions and utilizing the variable fce. The
horizontal force-air surface is parameterized as follows:

Vwh = 0.90 + 0.06m+ 0.16n+ 0.09m2 + 0.07n2 (17)

Fig. 5 (b) provides a visual representation of the dataset
using polar coordinates. The polar diameter (dashed line)
corresponds to fh, the polar angle (solid line) represents ϑr,
and the depth (shown on the right color bar) signifies the
magnitude of the wind speed. Due to the irregular shape of
the windward side of the vehicle, the external force varies
with changes in the angle. By examining the known fh and
ϑr of the points positioned in each layer, we can compute
the magnitude of the wind speed.

During UAV flight, the predicted vector obtained from the
force-air model represents the relative air vector Arc in the
intermediate frame. To express Arc in the inertial frame, a
rotation transformation is applied:

Ar = RcArc (18)

where Rc is the rotation matrix from intermediate frame
to inertial frame; Ar = [Arx, Ary, Arz]

T . As outlined in
Sec. III, the proposed dynamic wind estimation is based
on the wind triangle. The environmental wind vector is
determined by subtracting the UAV’s ground vector from the
relative air vector:

Aw = Ar −Ag (19)

where Aw = [Awx, Awy, Awz]
T denotes the desired wind

vector; Ag = [Agx, Agy, Agz]
T is the UAV’s ground vector

obtained from GPS. All quantities are described in the iner-
tial frame of reference. Based on the previous explanation,
we can derive the wind speed and wind direction from: (20):

ϑw = arctan 2(Awy, Awx)

Vwh =
√
A2

wx +A2
wy

Vwv = Awz

(20)

Ultimately, while the UAV is in flight, we can estimate
the ambient wind direction ϑw, as well as wind speed
Vw = [Vwh, Vwv]

T in the horizontal and vertical directions,
respectively.

C. Dynamic Filter

The external force obtained by DOB encompasses high-
frequency noise stemming from sensor drift and differential
noise. Building upon the results of [23], we identified fre-
quency response is almost equal to 1 over low frequencies up
to 0.5 Hz, indicating that the filter is capable of estimating
wind at this frequency. To attenuate the high frequency noise,
the 0.5 Hz disturbance bandwidth is adequate to cover the
wind considered in this study. During periods of low wind
speeds, increasing the filter gain is essential to mitigate noise.
Conversely, in regions of higher wind speeds, reducing the
filter gain becomes necessary to minimize phase delay and
amplitude decline. To address these challenges, we incor-
porate gain scheduling to dynamically adjust the filter gain
based on the wind speed. Fig. 6 showcases the efficacy of
wind speed estimation using three filters: the dynamic filter
(employing frequency gain scheduling), the normal filter
(with an invariant frequency), and without a filter. The green
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Fig. 6: Estimated wind speed comparison of three filters
across a wind speed range of 0− 10 m/s.

box illustrates the dynamic filter’s ability to suppress high-
frequency noise compared to the results obtained without a
filter. As the wind speed gradually increases to 10 m/s, the
dynamic filter reduces the lag time by 2.2 seconds compared
to the normal filter, as indicated by the black arrow. The
dynamic filter outperforms both baseline approaches in noise
suppression and hysteresis reduction.

VI. EXPERIMENT AND RESULTS

A. Platform Introduction

As shown in Fig. 2, we utilized a DJI Matrice 300
UAV for our experiments. To improve the accuracy of wind
estimation, a wind barrel was incorporated directly under the
UAV. This addition increases the wind resistance experienced
by the UAV, allowing for more precise wind estimation
results. The maximum flight speed of the modified UAV is
15 m/s. To ensure safety during wind tunnel flights, a margin
space of 5 m/s has been reserved, allowing for a maximum
airflow speed measurement capability of 10 m/s.

B. Force Estimation Verification

We assess the effectiveness of the DOB in accurately
estimating unidirectional pulling forces. To conduct the
evaluation, we used a tensiometer with a maximum force
capacity of 3 kg and applied tensile forces along the xi,
yi, and zi axes individually. These constant forces were
simultaneously exerted for a duration of 10 seconds. The
estimated results of the external force are presented in Table
I. The mean errors along the X and Y axes are within 1
N, corresponding to relative errors of less than 5.5% and
7.3%, respectively. The estimation error along the Z axes is
below 2 N (UAV weight: 8.0 kg), corresponding to a relative
error of 14.7%. The variances of all the estimated values
are under 0.2 N2. This confirms that our estimated external
forces of the XYZ axes stayed close to the actual external
forces without drifting.

Errors in external force estimation can be attributed to
inaccuracies in the inputs specified by (15). A notable source
originates from errors in uf introduced by ’Revolution-
Thrust’ curve. If there are appreciable errors exist between
estimated and actual external forces, this does not degrade the
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Fig. 7: Comparison of the results of the two methods for
estimating Vwh and ϑw.

TABLE I: The mean error and variance of the estimated
external force along the XYZ axes in the inertial frame.

f̂cex f̂cey f̂cez

Reference Force (N) 4.89 9.78 12.71
Mean Error (N) -0.27 -0.71 -1.87
Variance (N2) 0.09 0.12 0.19

accuracy of the wind estimation. As discussed in Sec. V-B,
wind speed is modeled solely from the estimated force. From
the variances in Table I, we can see that the estimated forces
on all three axes show no obvious drift. These stable errors
ensure a one-to-one correspondence between the estimated
forces and the actual forces. The wind speed associated
with the actual external force aligns with the wind speed
determined by DOB. Consequently, the estimated external
force does not influence the accuracy of the wind estimation,
which isolates the inaccuracy between fe and f̂e from the
wind estimation error.

C. Wind Tunnel Verification

To validate the effectiveness of our platform, we conducted
experiments in a wind tunnel. The UAV maintained a fixed
wind angle (in 60◦) while varying the wind speed over time,
as shown by the blue line in Fig. 7. We implemented the NN-
based approach [24] for wind estimation on our platform,
enabling a comparative analysis. The results are presented
in Fig. 7. In the high wind speed region (4 − 6 m/s), our
methodology achieves a mean speed/angle error of 0.09 m/s
and 2.8◦, whereas the NN-based approach incurs the error
of 0.33 m/s and 2.3◦, respectively. In the low wind speed
region (3 m/s), our method exhibits a mean speed error of
0.27 m/s and an angle error of 3.7◦ versus 0.28 m/s and
0.6◦ for the NN-based approach. The results demonstrate that
the DOB-based method outperforms the NN-based approach
across both high and low wind speeds regions. The estimated
angle values are also within an acceptable range. The data
extracted from the entire experiment are summarized in
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Fig. 8: Wind estimation results for UAV dynamic flight in
indoor windless environment.

Table II. It provides a summary account of the results,
with minimum values in each row highlighted in boldface.
The analysis of the estimated velocity error indicates that
the DOB-based method achieved a mean error of 0.11
m/s and maximum error of 0.21 m/s, while the NN-based
yielded mean and maximum errors of 0.28 m/s and 0.43
m/s, respectively. Compared to the NN-based, the estimated
mean and maximum velocity errors are improved by 60%
and 51%, respectively, using our presented DOB-based. Our
method produced a mean angle error of 2.8◦ and a maximum
error of 5.3◦, compared to 2.3◦ and 2.5◦ of the NN-based,
respectively. Errors here may arise from wind flows through
the vehicle, causing the attitude controller to durably adjust
the attitude by varying the exposed windward area. This
induces fluctuations in DOB’s estimation of external forces,
resulting in estimated angles and speeds that oscillate around
the reference values.

TABLE II: The overall mean and maximum errors of the
estimated velocity and angle for the two methods are derived
from Fig. 7.

Ours NN-based

Mean Speed Error (m/s) 0.11 0.28
Max Speed Error (m/s) 0.21 0.43
Mean Angle Error (deg) 2.8 2.3
Max Angle Error (deg) 5.3 2.5

The DOB-based wind estimation exhibits low sensitivity
to errors in the estimated force, rendering the estimation
results robust against such noise. In addition, it shows high
adaptability to various UAV configurations as the parameters
are straightforward to adjust for different aircraft designs.

D. Field Test Verification

1) Indoor flight test: We validated the accuracy of the
wind estimation during the dynamic flight of the vehicle in
an indoor no-wind environment. As shown at the top of Fig.
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Fig. 9: Wind estimation results for UAV dynamic flight in
outdoors windy environment.

8, the vehicle hovered for the first 4 seconds. It then began
dynamic flight, traversing to and fro, left and right, as well
as up and down. While hovering, the mean V̂wh is 0.21 m/s,
the mean V̂wv is 0.22 m/s, and the mean ϑ̂r is 353◦. We
adopt these values as baselines. When flying horizontally,
the average V̂wh is 0.35 m/s and the V̂wv is 0.32 m/s. When
flying vertically, the V̂wh coincides with the baseline, while
V̂wv is 0.40 m/s. Throughout, ϑ̂r fluctuates within the bounds
of 348◦ to 357◦ with an average of 353◦. From these data,
we can see the dynamic flight introduced the mean errors of
about 0.14 m/s and 0.18 m/s in the horizontal and vertical
directions, respectively. The mean error in angle direction
remained unchanged, but the distribution of estimated values
become more spread out. Overall, while the force-air model
provides a robust estimate for the majority of high wind
speed conditions, residual errors exist in low wind speed
regimes owing to modeling restrictions. During the dynamic
flight, the non-zero advance ratio of the propellers makes
the predicted thrust ûf from the ”Revolution-Thrust” curve
higher than the actual values, thus augmenting the wind
velocity. However, the angle is ascertained by the ratio of
external forces, so it remained stable within a certain range.

2) Outdoor flight test: We validate the capability of our
platform to estimate wind under outdoor dynamic flight
conditions. The UAV velocities and estimated results are pre-
sented in Fig. 9. Despite potential errors in the anemometer
measurements, we observed a wind speed range of 2−3 m/s,
a northward wind direction (360◦ in the inertial frame), and a
slight vertical wind speed. During dynamic flight maneuvers,
the mean V̂wh is 2.2 m/s, the average V̂wv is 1.0 m/s, and the
average ϑ̂r is 352◦. The field conditions show a time-varying
wind pattern characterized by smooth transition. The results
show that our estimated values exhibited smooth attributes
consistent with expectations.

VII. CONCLUSION AND FUTURE WORK

Achieving high-precision wind estimation using only on-
board sensors without specialized equipment remains an



active challenge in robotics. This paper addresses this chal-
lenge by proposing a DOB-based methodology to enable
UAVs to accurately determine ambient wind vectors during
flight. We designed a bespoke wind barrel to augment the
accuracy of wind estimation. Our platform partitions the
force estimator module and the force-air module into front-
end and back-end segments individually. This architecture
allows for separate optimization of the algorithms in each
module. Sec. V-C demonstrates that our approach can es-
timate wind speeds ranging from 10 m/s with real-time
performance. Wind tunnel tests confirm that our method
achieves wind speed and angle estimation accuracies of
0.11 m/s and 2.8◦ respectively, and the estimated wind
speed has 60% improvements over the neural network-based
method. Based on the wind triangle synthesis, our platform
is qualified to estimate the 3-D ambient wind (in horizontal
and vertical direction) during dynamic flight. Experiments
under windless and windy conditions shows that our platform
introduce only a bias of 0.2 m/s during dynamic flight,
and is able to capture the characteristics of the real world
wind. However, challenges remain in accurately modeling
conditions at low wind speeds (below 1 m/s) where the
physical model is compromised. Additionally, the absence
of well-defined vertical wind components complicates 3-D
estimation during dynamic flight. Future work will focus
on exploring torque-air model and refining model fitting
approaches to enhance low-speed estimation accuracy and
dynamic wind vector tracking.
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