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Abstract

Coronary MRI is a non-invasive radiation-free imaging tool for the diagnosis of coronary artery 

disease. One of its limitations is the long scan time, due to the need for high resolution imaging in 

the presence of respiratory and cardiac motions. Machine learning (ML) methods have been 

recently utilized to accelerate MRI. In particular, a scan-specific ML technique, called Robust 

Artifical-neural-network for k-space Interpolation (RAKI) has shown promise in cardiac MRI. 

However, it requires uniform undersampling. In this study, we sought to extend this approach to 

arbitrary sampling patterns, using coil self-consistency. This technique, called SPIRiT-RAKI, 

utilizes scan-specific convolutional neural networks to nonlinearly enforce coil self-consistency. 

Additionally, regularization terms can also be incorporated. SPIRiT-RAKI was used to accelerate 

right coronary MRI. Reconstructions were compared to SPIRiT for different undersampling 

patterns and acceleration rates. Results show SPIRiT-RAKI reduces residual aliasing and blurring 

artifacts compared to SPIRiT.
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1. INTRODUCTION

Coronary artery disease (CAD) is the number one cause of death in the United States [1]. 

While invasive methods are considered to be the gold standard for its diagnosis [2], several 

non-invasive imaging modalities have also been proposed [3, 4]. Coronary MRI is a 

radiation-free non-invasive method for the assessment of CAD [4]. Despite several advances 

over the past decade, coronary MRI is still challenging due to its lengthy acquisition time 

and low signal-to-noise ratio (SNR).

Multiple accelerated MRI approaches have been used to accelerate coronary MRI. These 

include non-Cartesian trajectories [5], parallel imaging [6, 7], compressed sensing [8] or 

their combinations [9, 10]. Coronary MRI can be performed using whole-heart or targeted 

acquisitions. The former is easy to prescribe, however acquisition of a large volume 

necessitates long acquisitions. On the other hand, the limited coverage of the latter leads to a 

shorter acquisition, but also limited SNR, which in turn limits the acceleration rates that can 
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be achieved. Thus, more efforts have focused on whole-heart coronary MRI, where 

acceleration rates of up to six have been reported [9]. However, targeted coronary MRI is 

attractive, since its nominal acquisition time, assuming 100% navigator gating efficiency is 

approximately two minutes. Thus, an acceleration rate of five can bring this acquisition into 

a breath-hold duration, reducing the total scan time more than ten-fold by removing 

inefficient respiratory motion compensation.

Recently, machine learning (ML) methods have been proposed for improving image 

reconstruction in accelerated MRI [11–19]. One such technique that has shown promise in 

cardiac MRI is a method called Robust Artificial-neural-networks for k-space Interpolation 

(RAKI) [19]. This approach uses scan-specific convolutional neural networks (CNN) to 

nonlinearly interpolate the missing data in k-space, extending the linear convolutional 

kernels of GRAPPA [20]. These CNNs can be calibrated using scan-specific auto-calibration 

signal (ACS), which can, for instance be acquired as a a small fully-sampled central k-space 

region within the same scan. This alleviates the need for large training databases that is used 

in most ML methods.

RAKI was originally designed for uniform undersampling patterns that are typically used in 

parallel imaging [19]. However, previous work has shown the benefit of random 

undersampling in high-resolution three-dimensional (3D) applications, including coronary 

MRI, in conjunction with regularized reconstruction [9]. For such patterns, k-space 

interpolation exploiting redundancies in the multi-coil data can be performed via a self-

consistency approach, as proposed in iterative self-consistent parallel imaging reconstruction 

(SPIRiT) [21]. SPIRiT calibrates linear convolutional kernels on ACS data to impose 

consistency among coils. Then an objective function is minimized iteratively to yield the 

desired reconstructed data by enforcing this self-consistency, as well as consistency with the 

acquired k-space measurements, and optionally performing image regularization.

In this study, we utilize the notion of self-consistency of SPIRiT to extend RAKI to arbitrary 

undersampling patterns for accelerating targeted coronary MRI. In accordance with SPIRiT, 

additional priors and regularization terms can be incorporated to this formulation as well. 

Our technique, called SPIRiT-RAKI is evaluated on targeted coronary MRI datasets, and 

compared to SPIRiT for various undersampling patterns and acceleration rates.

2. MATERIALS AND METHODS

2.1. SPIRiT-RAKI Calibration and Reconstruction

RAKI trains a CNN using ACS data to learn a nonlinear mapping function from acquired 

data points to missing data [19]. Since RAKI is designed for a uniform undersampling 

pattern only, it uses dilated convolutional kernels in training to match the uniform spacing in 

the undersampling phase. In contrast, for SPIRiT-RAKI, such dilation does not apply and is 

not needed for arbitrary undersampling patterns. Furthermore, the mapping in [19] is from 

acquired points in all coils to missing data in one coil, necessitating the training of many 

CNNs. In contrast, in SPIRiT-RAKI, since self-consistency is being imposed, the output of 

the mapping is the k-space across all coils instead of only missing lines in a single coil. This 
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modification significantly reduces the number of unknowns for calibration and consequently 

the running time for both calibration and reconstruction

A 4-layer CNN architecture was employed for coil self-consistency (Fig. 1). The CNN has 

2nc input and output channels, where nc is the number of coils. The factor of 2 is due to 

complex k-space being mapped to the real field. Since targeted coronary MRI is a 3D 

acquisition, which can be undersampled in both ky and kz phase encoding directions, a 3D 

CNN was used in this study. All layers except the output layer included rectifier linear units 

(ReLU), which forms the nonlinear component of the mapping learned by the CNN. The 

network was then trained on ACS data with a mean square error objective function, which 

was minimized using an ADAM optimizer. Further details on CNN and training parameters 

are provided in Section 2.2. After calibration of the CNN on ACS data, reconstruction was 

performed by minimizing:

‖y − Dx‖2
2 + β‖x − G x ‖2

2 + γ‖WEx‖1 (1)

where x is the desired k-space data across all coils, y is the noisy acquired data, D is the 

undersampling operator, G(·) represents the CNN nonlinear operations to enforce self-

consistency, E is an operator that transforms k-space into image domain first and then 

combines coil images into a SENSE Rate-1 image, and W transforms this image into a 

sparsity domain, which a wavelet transform in this study. The objective function in (1) was 

minimized using variable splitting for the regularization term and a quadratic penalty [22]. 

The ℓ2 terms were minimized using gradient descent, which was implemented using the 

formulation of the ADAM optimizer. Note G(·) is implicitly defined through the CNN, thus 

the derivative of this term was calculated using backpropagation. Furthermore, in this 

setting, we are only interested in the derivative with respect to the input, and not with respect 

to the CNN parameters. The remaining ℓ1 term was implemented using a proximal operator.

2.2. Implementation details

The parameters for the CNN and training were as follows: The kernel size of the first and 

fourth layers were 5 × 5 × 5, whereas it was 3 × 3 × 3 for the second and third layers. The 

first, second and third layers had 32, 16 and 32 output channels, respectively. All layers 

included a bias term. Tikhonov regularization was used for training to avoid over-fitting, and 

the regularization parameter was set to 0.001 for all layers. In addition, a default learning 

rate of 0.001 was used for the ADAM optimizer in the training phase.

For the minimization of (1), the learning rate in ADAM was set to 1 for the gradient descent. 

β and the quadratic penalty term was optimized empirically. The threshold for the proximal 

operator corresponded to 0.001 of the largest wavelet coefficient. Additionally, SPIRiT was 

implemented for comparison based on the online code [21], where the kernel size was set to 

5 × 5 × 3. The thresholding parameter was set to 0.001 of the largest wavelet coefficient. The 

maximum number of iterations was set to 50 for both methods in all cases except for the 

non-regularized SPIRiT, where this number was finely tuned to 75.
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2.3. In Vivo Coronary MRI

Targeted right coronary MRI was acquired on two healthy subjects at 3T with a 30-channel 

body-coil using a T2-prepared GRE sequence. Relevant imaging parameters were FOV=300 

× 300 × 60 mm3 and resolution=1 × 1 × 3mm3. The data were retrospectively under-

sampled, both uniformly and randomly. For the uniform pattern, the data were under-

sampled at an acceleration rate of 2 × 2 along ky and kz directions. ACS region was selected 

as the central 45 × 10 ky − kz lines. This led to an approximate net acceleration rate of 4, 

using an elliptical mask in the ky − kz plane. For these patterns, no sparsity regularization 

was utilized for consistency with traditional parallel imaging methods. Random 

undersampling was implemented using variable-density sampling with Gaussian weights. 

Two undersampling rates were used; the first one matching the net uniform undersampling 

rate, and the second one yielding a net undersampling rate of 5 to assess the performance in 

applications where scan duration is in the breath-held acquisition range.

3. RESULTS

Fig. 2 demonstrates a representative slice from the right coronary MRI of a healthy subject 

using SPIRiT and SPIRiT-RAKI with uniform ky − kz undersampling rate of 4. As described 

in Section 2.3, no regularization was used for uniform undersampling patterns to ensure 

similarity to traditional parallel imaging reconstructions. Both techniques are successful in 

removing fold-over artifacts, although fewer blurring artifacts (see the right coronary artery 

area) and noise amplification are observed for SPIRiT-RAKI. This observation also holds in 

Fig. 3, where results are shown on another subject for the same undersampling pattern and 

rate.

Results from random ky − kz undersampling are depicted in Fig. 4 for the same subject in 

Fig. 3. The reconstruction were performed with wavelet regularization for ℓ1-SPIRiT and ℓ1-

SPIRiT-RAKI for undersampling rates of 4 (top row) and 5 (bottom row). Both results suffer 

from blurring artifacts, with more blurring visible for ℓ1-SPIRiT.

For the 3D kernels and ACS region sizes used in this study, SPIRiT-RAKI was 

approximately two times faster in calibration/training than SPIRiT. However, it was %50 

slower in reconstruction compared to SPIRiT due to the need for solving a non-linear 

gradient descent at each iteration.

4. DISCUSSION

We have proposed an MRI reconstruction technique, SPIRiT-RAKI, which employs a CNN 

to nonlinearly enforce self-consistency among multi-coil MRI data using k-space 

interpolation. The CNN is trained on scan-specific ACS data, making this method 

independent of large training databases, unlike most ML methods. This technique 

successfully extends the RAKI method [19] to arbitrary sampling patterns. Its performance 

was shown in both uniform and random 3D undersampling, with results indicating 

improvement over SPIRiT, and at high acceleration rates for targeted coronary MRI. 

Specifically, the 5-fold undersampled acquisition may reduce the total duration of a targeted 

coronary MRI scan to a breath-hold, which can in turn remove inefficiencies associated with 
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respiratory motion compensation procedures [4], reducing the true scan time more than 10-

fold.

Several modifications were made to the CNNs used in [19]. First, the input-output 

relationship was changed. In the CNNs used in RAKI, the mapping was from acquired zero-

filled k-space across all coils to the missing lines in one coil for 2D uniform undersampling 

patterns. This required 2nc CNNs, leading to long training times. In order to extend the 

method to arbitrary undersampling patterns, the output was changed to all of the k-space 

across all coils. This required training of one large CNN, which also enabled inclusion of an 

additional layer. Second, in order to enable undersampling in both ky and kz, a 3D CNN was 

utilized. The kernel sizes were chosen empirically for these convolutions. Therefore, 

additional optimization may further improve the reconstruction performance, which will be 

explored in future work.

Wavelet regularization was used in this work for consistency with [21]. However, previous 

data on coronary MRI indicate that such regularization may result in blurring artifacts [23], 

which was also observed here. Hence, more advanced regularizers, which have proven 

effective in coronary MRI [9, 23], can help reduce these remaining artifacts more. This will 

be explored in future studies in order to improve the reconstruction of coronary MRI quality 

further.

5. CONCLUSION

SPIRiT-RAKI reconstruction, which uses a scan-specific CNN to enforce coil self-

consistency in an iterative algorithm that allows sparsity regularization, was proposed to 

accelerate targeted coronary MRI.
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Fig. 1: 
The 4-layer CNN architecture to enforce self-consistency among all coils.
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Fig. 2: 
A representative slice from the right coronary MRI of a healthy subject using SPIRiT and 

SPIRiT-RAKI with uniform ky − kz undersampling rate of 4.
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Fig. 3: 
A slice from the right coronary MRI of another healthy subject using SPIRiT and SPIRiT-

RAKI with uniform ky − kz undersampling rate of 4.
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Fig. 4: 
The same slice from the dataset in Fig. 3 using ℓ1-SPIRiT and ℓ1-SPIRiT-RAKI when random 

ky − kz undersampling rates of 4 and 5 are utilized.
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