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Abstract. Meta-training has been empirically demonstrated to be the
most effective pre-training method for few-shot learning of medical im-
age classifiers (i.e., classifiers modeled with small training sets). However,
the effectiveness of meta-training relies on the availability of a reason-
able number of hand-designed classification tasks, which are costly to
obtain, and consequently rarely available. In this paper, we propose a
new method to unsupervisedly design a large number of classification
tasks to meta-train medical image classifiers. We evaluate our method
on a breast dynamically contrast enhanced magnetic resonance imaging
(DCE-MRI) data set that has been used to benchmark few-shot training
methods of medical image classifiers. Our results show that the proposed
unsupervised task design to meta-train medical image classifiers builds
a pre-trained model that, after fine-tuning, produces better classifica-
tion results than other unsupervised and supervised pre-training meth-
ods, and competitive results with respect to meta-training that relies on
hand-designed classification tasks.-

Keywords: meta-training, unsupervised learning, unsupervised task de-
sign, breast image analysis, magnetic resonance imaging, few-shot, pre-
training, clustering.

1 Introduction

The accuracy and robustness of deep learning based medical image classifiers is
generally positively correlated with the size of the annotated training set used
during the modelling process [1]. However, large annotated training sets are
expensive and not readily available for some medical image analysis applications,
such as breast screening from DCE-MRI [2]. Therefore, training medical image
classifiers with small annotated training sets has become a highly investigated
topic, particularly after the advent of deep learning [1].

The most competitive medical image classifiers are currently based on convo-
lutional neural networks (CNNs) [1] that need large training sets to be properly
modelled. To reduce the need for such large annotated sets, pre-training ap-
proaches have been explored in medical image analysis, where the most relevant
for our paper are: 1) supervised pre-training using independent data sets [5],
where the model is pre-trained by solving a classification problem in a different
data set; 2) unsupervised pre-training using clustering [3], where the model is
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Fig. 1: Unsupervised task design to meta-train medical image classifiers. Deep cluster-
ing [3] produces a set of clusters that are used in the unsupervised design of classification
tasks. These tasks are used in a meta-training process to produce a pre-trained model
that can be fine-tuned to new classification tasks using small labelled training sets, in
this paper represented by the breast screening problem from DCE-MRI [4].

pre-trained by performing clustering without any knowledge about the ground
truth labels; and 3) unsupervised pre-training using input reconstruction [6],
where the model is pre-trained by reconstructing the input images of the train-
ing set. Arguably, the main issue with these pre-training methods is that their
objective functions are irrelevant for the medical image classifier being developed
downstream. Alternatively, the need for pre-training methods can be alleviated
with the use of other types of training methods, such as multiple instance learn-
ing (MIL) [7] or multi-task learning [8], but both methods still need large training
sets. More recently, a pre-trained model produced by supervised meta-training
(i.e., a meta-training process that depends on hand-designed classification tasks)
showed superior performance compared to the previously described pre-training
methods [4]. Nevertheless, these promising meta-training results are counterbal-
anced by an unappealing need of an expensive hand-designing process to produce
the classification tasks [4]. Given the high cost of this process, the availability of
a large number of hand-designed classification tasks is rare, which hampers the
exploration of meta-training for medical image classifiers.

In this paper, we propose a new method to unsupervisedly produce a large
number classification tasks to meta-train medical image classifiers. To this end,
we use deep clustering [3] to automatically build image clusters that can be
grouped in different ways to enable the design of multiple classification tasks
employed in the meta-training process – see Fig. 1. We evaluate our method
on the breast screening classification task from a breast DCE-MRI data set
that has been used to benchmark few-shot training algorithms of medical image
classifiers [4]. Results show that our proposed approach produces classification
results that are significantly better than other unsupervised and supervised pre-
training methods, and competitive to supervised meta-training.
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2 Literature Review

DCE-MRI is a recommended image modality in breast screening programs for
patients at high-risk [9]. However, DCE-MRI interpretation is time-consuming
and prone to high inter-observer variability [10]. Thus, computer-aided diagnosis
(CAD) systems are being developed to assist radiologists increase their diagno-
sis sensitivity [11] and specificity [12], and reduce analysis time. However, the
development of CAD systems for breast DCE-MRI is challenging due in part to
the small size of annotated data sets available for training.

Meta-training has been shown to be an effective strategy to improve the
learning of classifiers using relatively small training sets [13]. For instance, Maicas
et al. [4] proposed the use of hand-designed breast classification tasks to meta-
train a model that was then fine-tuned to solve the breast screening task. Results
showed that this method improves over other strategies to train classifiers from
small data sets, such as MIL [7] and multi-task learning [8]. However, the method
proposed in [4] relies on costly hand-designed classification tasks.

Similarly to our paper, Hsu et al. [14] proposed an unsupervised method
to design computer vision classification tasks for meta-training. Results showed
that this approach produced worse classification performance than meta-training
modelled with hand-designed tasks (i.e., supervised meta-training). We believe
that the reason behind this drop in performance lies in the large number of
hand-designed tasks already available for supervised meta-training in computer
vision applications [14], enabling a good classification performance baseline. The
difficulty to obtain a large number of hand-designed tasks for medical image
classification problems means that the number of these hand-designed tasks will
be small, which may result in a relatively low classification performance baseline.
We hypothesize that our proposed method that unsupervisedly designs a large
number of classification tasks to meta-train a medical image classifier can achieve
a classification performance that is at least comparable to supervised meta-
training [4] trained with a small number of hand-designed tasks. Our proposed
method has the advantage that it does not rely on costly hand-designed tasks.

3 Data Set and Methods

3.1 Data set

The data set is represented by D = {(vi, ti, bi, yi)}|D|i=1, where v : Ω → R cor-
responds to the first DCE-MRI subtraction volume (Ω denotes the volume lat-
tice) [15], t : Ω → R represents the T1-weighted MRI only used to separate
the left and breast regions of the volume, b ∈ {left, right} indicates the left or
right breast, and y ∈ Y = {0, 1} indicates the classification label: no malignant
findings, or malignant findings, respectively.

3.2 Deep Clustering to Unsupervisedly Design Classification Tasks

The proposed unsupervised task design method builds several binary classifica-
tion tasks from image groups formed by deep clustering [3]. The training of deep
clustering alternates an optimisation of two objective functions [3]. We denote
the θ-parameterised model that produces the unsupervised learning features by
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fθ(v) ∈ RD and the ω-parameterised classifier that produces a pseudo-label
representing one of the unknown K classes and is placed on top of fθ(.) by
gω(fθ(v)) ∈ {0, 1}K . The first objective function is the cross-entropy loss `(.)
with respect to the pseudo-labels {ỹi}|D|i=1, with ỹ ∈ Ỹ = {0, 1}K ,

min
θ,ω

1

|D|

|D|∑
i=1

`(gω(fθ(vi)), ỹi), (1)

which is used to estimate the optimal θ∗ and ω∗. The second objective function
finds the K centroids, denoted by C ∈ RD×K , and pseudo-labels ỹ with

min
C

1

|D|

|D|∑
i=1

min
ỹi

‖fθ(vi)−Cỹi‖22, (2)

where ỹi is a K-dim one-hot vector.
Each step of the optimization above will generate new values for the model

parameters, centroids and pseudo-labels. We extend deep clustering [3] with
a model selection process based on maximising the Silhouette coefficient that
measures clustering quality [16] with

κ =
1

|D|

|D|∑
i=1

b(i)− a(i)
max (a(i), b(i))

, (3)

where a(i) represents the average `2 distance between fθ(vi) and all points fθ(vj)
where i 6= j and ỹi = ỹj ; and b(i) denotes the smallest average `2 distance
between fθ(vi) and fθ(vj) where i 6= j and ỹi 6= ỹj .

The unsupervised design of classification tasks is based on the formation
of L binary classification problems derived from the pseudo-labels obtained
from (2). Each of these L binary classification problems is built by randomly
selecting 2 nonempty and disjoint subsets K(0)

l and K(1)
l from the pseudo label

set {1, 2, . . . ,K} and labelling their corresponding data points as class 0 and
1, respectively. Note that the number of classification tasks for a given K is

L =
∑n−1
i=1

∑min(i,n−i)
k=1

(ni)×(
n−i
k )

1+δ(i−k) , where
(
A
B

)
denotes the binomial coefficient,

and δ(.) represents the Dirac delta function.

3.3 Meta-training with the Unsupervised Classification Tasks
Meta-training estimates the parameters of a meta-learner, so it can be used as
a pre-trained model that is efficiently fine-tuned to previously unseen classifi-
cation tasks, using small annotated training sets [13]. The algorithm assumes
that there exists a task distribution T , from which each classification task Tl is
drawn, where each task comprises a training set {v(l,t)

i , ỹ
(l,t)
i }Mi=1 and a testing

set {v(l,v)
i , ỹ

(l,v)
i }Ni=1, withM << N andM+N = |Tl|. Meta-training iteratively

samples T tasks from T , and re-trains a multi-target classifier for those tasks
using the training and testing sets defined above.

We use the MAML meta-training [17] that consists of a Bayesian hierarchical
model, where ψ denotes the classifier meta parameter, and φl represents the
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parameter for task Tl. The meta-training objective function is defined by:

max
ψ

log p(Y(v)
l=1..T |Y

(t)
l=1..T ,V

(v)
l=1..T ,V

(t)
l=1..T , ψ), (4)

where T is the number of tasks per meta-training iteration, Y(v)
l = {ỹ(l,v)i }Ni=1,

Y(t)
l = {ỹ(l,t)i }Mi=1, V

(v)
l = {v(l,v)

i }Ni=1, and V
(t)
l = {v(l,t)

i }Mi=1. In (4), we have

log p(Y(v)
l=1..T |Y

(t)
l=1..T ,V

(v)
l=1..T ,V

(t)
l=1..T , ψ) ≥

T∑
l=1

E
p(φl|Y(t)

l ,V(t)
l ,ψ)

[
log p(Y(v)

l |V
(v)
l , φl)

]
,

(5)
where the lower bound is derived from Jensen’s inequality [18]. Therefore, the
maximisation in (4) is approximated with the lower bound maximisation in (5),
where the posterior p(φl|Y(t)

l ,V(t)
l , ψ) is approximated with a Dirac delta func-

tion at a local optimal task-specific model parameter φ∗l , with p(φl|Y
(t)
l ,V(t)

l , ψ) =
δ(φl − φ∗l ). The local optimal model parameter φ∗i is obtained with truncated
gradient descent initialised by the meta parameters ψ:

φ∗l = ψ − α∇φl

[
− log p(Y(t)

l |,V
(t)
l , φl)

]
, (6)

where α is the learning rate, and the truncated gradient descent consists of
a single step of (6). Maximising the lower bound of the log likelihood in (5)
represents the MAML algorithm in [13], which produces a pre-trained model
that can quickly learn new tasks drawn from T .

4 Experiments and Results

4.1 Experimental Set-Up

We evaluate our proposed method on a breast DCE-MRI data set [2] (formally
defined in Sec. 3.1), which has previously been used to evaluate few-shot training
methods [4]. To allow a fair comparison with previous papers, we split the data
set in a patient-wise manner into the same training, validation and testing sets,
containing 45, 13, and 59 patients, respectively. We use the T1-weighted MRI to
automatically extract the left and right breast regions from the first DCE-MRI
subtraction volume [4]. Each breast region is resized into a volume of 100×100×
50 [4]. For the breast screening problem, only breasts that contain a malignant
finding(s) are considered positive, while breasts with only benign findings or no
findings are considered negative. There are 30, 9, and 38 positive and 60, 17,
and 80 negative breasts in the training, validation and testing sets, respectively.

The model fθ(v) that unsupervisedly produces the volume features is a 3D
Densenet [19] composed of five dense blocks, each containing two dense layers.
The features represent the input to the deep clustering algorithm, explained
in Sec.3.2, with the number of clusters K ∈ {3, 4, 5}. The model that is meta-
trained, and fine-tuned, has the same architecture as fθ(.). During meta-training,
we use a meta learning rate α = 0.001 in (6). At each meta-iteration, a meta-
batch size of T = 4 classification tasks is sampled according to a random or a
curriculum learning strategy [4]. The meta-trained model is fine-tuned to the
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breast screening task using the entire training set, where model selection is per-
formed using the validation set and results are reported in the test set.

The evaluation for the breast screening problem is based on the area under
the ROC curve (AUC). We also measure the standard error utilising an estimate
based on the Wilcoxon test [20] that estimates confidence intervals based on
the testing set. In this evaluation, we study the type of task sampling for meta-
training, i.e. random, or curriculum learning [4], and the influence of the number
of clusters K in (1), used to build the tasks. We compare our method (U-MT)
with the previously proposed supervised meta-training for the case where the
breast screening task is included (S-MT (S)) and not included (S-MT (NS))
in the meta-training process. We also compare our method with: a) Densenet
trained from scratch on the breast screening task; b) Densenet from (a) fine-
tuned with MIL [7]; c) Densenet trained with multi-tasking (using hand-designed
tasks) [4]; d) Densenet pre-trained as a variational autocoder (i.e., unsupervised
training) and fine-tuned for the breast screening task; and e) Densenet pre-
trained with deep clustering (i.e., unsupervised training) and fine-tuned for the
breast screening task. All Densenet models of these competing methods have
the same architecture as the meta-trained model described above. The rationale
for baselines (d) and (e) is to evaluate the effect of pre-training based on a
reconstruction or a clustering scheme. With this purpose, we present results
based on nearest neighbor classification and the fine-tuned classification model.

4.2 Results

We show the AUC results (± standard error) for breast screening baselines in
Tab. 1. Table 2 presents the results of meta-training, as a function of K ∈
{3, 4, 5}, with supervised and unsupervised task design using random and cur-
riculum learning task sampling methods. Figure 2 presents examples of breast
screening classification.

Training Method Baseline AUC
From Scratch [19] 0.83± 0.04

MIL based fine-tuning [7] 0.85± 0.04

Multi-Task [8] 0.85± 0.04

Variational Autoencoder + Nearest Neighbour 0.61± 0.06

Variational Autoencoder + Fine-Tune in breast screening 0.84± 0.04

Deep Clustering + Nearest Neighbour 0.53± 0.06

Deep Clustering + Fine-Tune in breast screening 0.80± 0.05

Table 1: AUC results (± standard error) for breast screening baselines.

We measure the statistical significance of the difference in performance be-
tween our best performing approaches (Random with K = 5 and Curriculum
with K = 5) and all baseline methods, obtaining a p-value p ≤ 0.001 for all
cases (unpaired two-tailed t-test). Also, comparing our newly proposed U-MT
(Random with K = 5) and S-MT (S) (Curriculum with K = 3) [4], we obtain a
p-value p > 0.05.
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Random Curriculum
K = 3 K = 4 K = 5 K = 3 K = 4 K = 5

S-MT [4] (S) 0.86± 0.04 N/A N/A 0.90± 0.04 N/A N/A
S-MT [4] (NS) 0.85± 0.04 N/A N/A 0.89± 0.04 N/A N/A
U-MT (Ours) 0.81± 0.05 0.88± 0.04 0.89± 0.04 0.87± 0.04 0.86± 0.04 0.88± 0.04

Table 2: AUC for the breast screening task for our proposed method (U-MT) as a
function of the number of image clusters K and the task sampling method (random
and curriculum). We also present the results of supervised meta-training [4] (S-MT)
for the cases where the breast screening is included (labelled as S) and not included
(labelled as NS) in the meta-training tasks. N/A indicates that the experiment is not
feasible due to the lack of extra ground truth labels.

(a) (b) (c) (d)

Fig. 2: Example of breast screening diagnosis produced by our approach. Image (2a)
shows the correct positive diagnosis of a breast containing a malignant tumour. Image
(2b) shows the correct negative diagnosis of a breast with a benign tumour. Image (2c)
shows the incorrect positive classification of a breast containing no tumours. Image
(2d) shows the correct negative diagnosis of a breast with a benign tumour.

5 Discussion and Conclusion

We have presented a new method that unsupervisedly designs classification tasks
to meta-train medical image classifiers. Our method significantly outperforms
several baselines consisting of traditional pre-training methods based on varia-
tional autoencoder, deep clustering, MIL, and multi-task learning (see Tab. 1).
Our method also produces results comparable to the state-of-the-art set by meta-
training using hand-designed tasks [4] (see Tab. 2). However, instead of using
manually defined labels during meta-training, we unsupervisedly build classifi-
cation tasks, allowing us to build a larger set of tasks, compared to the hand-
designed ones. Also from Tab. 2, we notice that larger number of tasks, which
increases with the number of clusters (Sec. 3.2), generally implies better AUC
results. This confirms our initial hypothesis that, differently from computer vi-
sion problems, automatically building tasks is of great importance for medical
image classification problems, where image labels that allow a large number of
tasks are costly to obtain. We also observe that sampling tasks according to
curriculum learning provides a good improvement of accuracy compared to ran-
dom task sampling for a small number of clusters (K = 3), but not for larger
number of tasks (K = 5). We hypothesize that meta-training with curriculum
learning sampling needs a larger number of meta-iterations to learn a curriculum
that is better than random task sampling. Given the large number of tasks for
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K ∈ {4, 5}, the meta-training process converged before the curriculum learning
algorithm – that deserves further research.
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