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ABSTRACT

Prostate cancer is the most common noncutaneous cancer in
the world. Recently, multi-modality transrectal ultrasound
(TRUS) has increasingly become an effective tool for the
guidance of prostate biopsies. With the aim of effectively
identifying prostate cancer, we propose a framework for the
classification of clinically significant prostate cancer (csPCa)
from multi-modality TRUS videos. The framework utilizes
two 3D ResNet-50 models to extract features from B-mode
images and shear wave elastography images, respectively.
An adaptive spatial fusion module is introduced to aggregate
two modalities’ features. An orthogonal regularized loss is
further used to mitigate feature redundancy. The proposed
framework is evaluated on an in-house dataset containing
512 TRUS videos, and achieves favorable performance in
identifying csPCa with an area under curve (AUC) of 0.84.
Furthermore, the visualized class activation mapping (CAM)
images generated from the proposed framework may provide
valuable guidance for the localization of csPCa, thus facili-
tating the TRUS-guided targeted biopsy. Our code is publicly
available at https://github.com/2313595986/ProstateTRUS.
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(csPCa), transrectal ultrasound, shear wave elastography,
deep learning, class activation mapping
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Fig. 1. A frame extracted from the transrectal ultrasound
(TRUS) video, displaying both B-mode and shear wave elas-
tography (SWE) images. The B-mode provides anatomical
details, while the SWE depicts tissue stiffness.

1. INTRODUCTION

Prostate cancer (PCa) is the most prevalent cancer among
males in the world [1]. Prostate biopsy, the gold standard
for PCa diagnosis, has been widely used in clinical practice.
Specifically, PCa can be classified into clinically significant
PCa (csPCa, Gleason score ≥ 3+4=7) and clinically insignif-
icant PCa (cisPCa, Gleason score ≤ 3+3=6) [2]. Since csPCa
has a worse prognosis compared with cisPCa, early detection
and identification of patients with csPCa is beneficial to im-
prove the survival rate and prognosis.

Current guidelines recommend multiparametric magnetic
resonance imaging (mp-MRI) as the primary tool for prostate
biopsy due to its capability to depict the localization and mor-
phology of PCa, thereby enabling the implementation of tar-
geted biopsy [3]. However, some inherent factors restrict
the widespread use of MRI-guided targeted biopsies, such as
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Fig. 2. A schematic overview of our proposed framework for csPCa classification in TRUS videos. The classification framework
consists of two 3D ResNet-50 models to extract features from B-mode images and SWE images, respectively. The adaptive
spatial fusion module is designed to aggregate two modalities’ features. The orthogonal regularization encourages weights to
be orthogonal, thereby mitigating feature redundancy.

complex operations, low availability and high cost. Hence,
transrectal ultrasound (TRUS) is a more universally available
tool for PCa diagnosis following mp-MRI [4]. TRUS has the
advantages of convenient and real-time imaging, but the low
contrast between malignant and normal tissue reduces its abil-
ity to identify PCa. Thus, TRUS is used mostly with sys-
tematic biopsy, necessitating more puncture cores to increase
PCa detection rates [5]. Meanwhile, it will increase the pain
and burden of patients and cause a great waste of medical re-
sources. Therefore, accurate identification of the target lesion
in TRUS during biopsy procedure has long been an actively
explored research issue.

Multimodal technological upgrades such as transrectal
shear wave elastography (SWE), as shown in Fig. 1, have
been developed to facilitate TRUS-guided targeted biopsy [6].
SWE can be used to qualitatively and quantitatively analyze
prostate tissue stiffness. Clinical studies have demonstrated
that the target lesion within the prostate typically exhibits
greater stiffness compared to the surrounding normal tis-
sue [7]. This can be attributed to the increased proportion of
extracellular matrix proteins associated with PCa formation.
Thus, SWE enables the identification and characterization of
abnormally stiff regions in the prostate, thereby facilitating
the TRUS-guided targeted biopsy.

To better support the TRUS-guided targeted biopsy, sev-
eral algorithms have been developed to help predict csPCa
based on TRUS images. Liang et al. [8] employed a multi-
parametric ultrasound-based radiomics model, which incor-
porated B-mode and SWE to predict the csPCa. This model
achieved an area under curve (AUC) of 0.85 on 112 patients.
Wildeboer et al. [9] combined the information from B-mode,
SWE and contrast-enhanced ultrasound to develop a classi-
fier for the identification of csPCa. They achieved an AUC
of 0.90 on 48 patients. However, these studies focused on the
analysis of hand-crafted features, and most of them required
manual interactions. Sun et al. [10] proposed a mask-guided
hierarchical framework for identifying csPCa using B-mode

videos. They first introduced a 2D segmentation network to
remove surrounding tissues around the prostate gland. Subse-
quently, they constructed classification network on a dataset
containing 699 patients’ B-mode videos, and yielded an AUC
of 0.86.

The primary motivation of this study is to propose a
modality-fusion video classification network for the iden-
tification of csPCa. Our approach utilizes TRUS videos,
incorporating B-mode and SWE information, to train the net-
work. Specifically, we introduce an adaptive spatial fusion
module to aggregate these two modalities’ features and facil-
itate the final classification. During training, an orthogonal
regularization strategy is further used to encourage weights
to be orthogonal, thereby mitigating feature redundancy. Ad-
ditionally, we employ the class activation mapping (CAM)
to visualize the indicative areas related to the prediction of
csPCa, which enables the feasibility of TRUS-guided biopsy.

2. METHOD

An overview of our proposed framework for csPCa classifi-
cation is illustrated in Fig. 2. The framework incorporates
two 3D ResNet-50 models [11] for feature extraction from
the B-mode images and the corresponding SWE images, re-
spectively. An adaptive spatial fusion module is introduced
to effectively combine the extracted features from these two
modalities. Additionally, an orthogonal regularization strat-
egy is used to promote weight orthogonality, thereby mitigat-
ing feature redundancy.

In particular, the classification framework takes B-mode
scan X : Ω ⊂ RT×H×W×C and SWE scan E : Ω ⊂
RT×H×W×C as input, and outputs the corresponding predic-
tion P (Y |X,E; θ) of csPCa, where Y denotes class labels
and θ denotes the network’s parameters. T indicates the
frame number of the TRUS video, H indicates frame height,
W indicates frame width and C indicates channel number.



2.1. Adaptive Spatial Fusion Module

According to study [5], abnormal hypoechogenicity in B-
mode images and abnormal stiff regions in SWE images
are usually characterized as lesions for targeted biopsy. In-
spired by recent attention mechanisms for the feature ag-
gregation [12, 13], we introduce an adaptive spatial fusion
module to measure the pixel-level contribution of these two
modalities to final classification.

As shown in the right part of Fig. 2, the features FX from
B-mode and FE from SWE are first added together. Then the
added features are concatenated with the modality-specific
features and passed through the convolutional blocks to gen-
erate modality-specific spatial attention weights:

WX = σ(IN(convX([1/2(FX + FE),FX ]))), (1)
WE = σ(IN(convE([1/2(FX + FE),FE ]))), (2)

where each convolutional block comprises a 1 × 1 × 1 con-
volution with stride 2 followed by a instance norm IN and a
Sigmoid activation function σ. Subsequently, the spatial at-
tention weights are normalized by the Softmax function:

ŴX =
exp(WX)

exp(WX) + exp(WE)
, (3)

ŴE =
exp(WE)

exp(WX) + exp(WE)
. (4)

Then we perform voxel-wise multiplication of the spatial at-
tention weights with the corresponding modality feature maps
to obtain the adaptively fused feature maps F̂:

F̂ = ŴX · FX + ŴE · FE . (5)

The feature maps F̂ are then integrated back into the modality-
specific network branches, as shown in the left part of Fig. 2.
With hierarchical feature fusion, each branch is capable of
capitalizing on the strengths of the other while preserving its
unique characteristics.

2.2. Orthogonal Regularization

Orthogonal regularization [14] is a regularization technique
for convolutional neural networks, which encourages weights
to be orthogonal, thereby mitigating feature redundancy. It
simply enforces the weight matrices product WW⊤ to be
close to the identity matrix I, where W denotes the weight
matrix of the convolutional kernels.

Therefore, we employ the sum of the cross entropy loss
and the orthogonal regularization loss to train the network:

L = − 1

|Ω|
∑
X∈Ω

log(P (Y |X,E; θ))− λ
∑

(|WW⊤| − I),

(6)
where λ is a weight coefficient.

Fig. 3. The receiver operating characteristic (ROC) curves of
different methods on the testing set.

Table 1. The comparison of different methods including one
most relevant method [10] and several ablation models (best
results are highlighted in bold).

B-mode SWE Fusion OR AUC F1 Acc

✓ 0.72 0.82 0.69
✓ 0.58 0.81 0.68

✓ ✓ 0.80 0.82 0.72
✓ ✓ ✓ 0.82 0.83 0.74
✓ ✓ ✓ ✓ 0.84 0.86 0.79

Sun et al. [10] w/o prostate mask 0.76 0.80 0.66

3. EXPERIMENTS

3.1. Dataset

In this study, we conducted experiments on an in-house
TRUS video dataset collected from the Cancer Center of Sun
Yat-Sen University. A total of 512 patients were included in
this study and all patients received TRUS, SWE and prostate
biopsy. Among them, 346 patients had csPCa detected by
biopsy while 166 patients were determined to be negative
for csPCa. We randomly employed 400 scans (271 with
csPCa) for training, and 112 scans (75 with csPCa) for test-
ing. Considering the computational cost, the TRUS videos
were resized to 200 × 144 × 144 × 3. The intensities were
normalized to [0, 1].

3.2. Implementation Details

Our proposed method was implemented in PyTorch, using 2
NVIDIA Tesla V100 GPUs with 40G memory. We utilized
two 3D ResNet-50 models as the backbone. The whole net-
work was optimized by a stochastic gradient descent (SGD)
optimizer for 300 epochs, with an initial learning rate of
0.0001. The ploy learning policy was employed to adjust the



Fig. 4. Six examples to show the TRUS frames and their corresponding heat maps generated using the class activation mapping
(CAM). The regions highlighted in the heat maps contribute to the network’s prediction of csPCa, and therefore may indicate
the lesion areas associated with csPCa.

learning rate, (1 − epoch/200)0.9. The training batch size
was set to 2, consisting of a csPCa sample and a non-csPCa
sample, which alleviated the class imbalance issue. For the
orthogonal regularization loss, we set λ to 1e-5. Our code is
available at https://github.com/2313595986/ProstateTRUS.

3.3. Quantitative and Qualitative Analysis

3.3.1. Quantitative Analysis

We employed three typical classification metrics to evaluate
csPCa identification performance, including area under the
ROC curve (AUC), F1-score (F1) and accuracy (Acc). Higher
scores for AUC, F1 and Acc indicate better classification per-
formance.

To demonstrate the effectiveness of each component of
our method, we conducted ablation study on single modal-
ity (using only B-mode or SWE information), and also per-
formed ablation on the usage of adaptive spatial fusion mod-
ule (Fusion) and orthogonal regularization (OR). The numer-
ical results are shown in Table 1 and the receiver operating
characteristic (ROC) curves are shown in Fig. 3. The pro-
posed method achieved an AUC of 0.84, F1-score of 0.86,
and accuracy of 0.79. It can be observed that the concatena-
tion of two modalities (i.e., early fusion) resulted in a obvi-
ous improvement on AUC, compared to using B-mode only
or SWE only. Moreover, both adaptive spatial fusion module
and orthogonal regularization further contributed to the im-
provement of classification accuracy.

We also compared our method with the study conducted
by [10]. To ensure a fair comparison, we excluded their seg-
mentation module. In the absence of prostate segmentation
masks, our method outperformed theirs in terms of AUC, ex-
hibiting an increase of 0.08. This result highlights the efficacy

of our method.

3.3.2. Qualitative Analysis

To determine the frames and specific locations within the
TRUS video that contributed to the network’s prediction of
csPCa, we employed the gradient-weighted class activation
mapping (Grad-CAM) [15] to generate heat maps, as shown
in Fig. 4. The regions highlighted in the heap maps may
indicate the lesion areas associated with csPCa. This finding
suggests the potential feasibility of TRUS-guided targeted
biopsy, by leveraging the CAM images generated using our
method.

4. CONCLUSION

We introduce a simple yet effective method for the classifica-
tion of clinically significant prostate cancer in TRUS videos.
The primary attribute is to employ the designed adaptive spa-
tial fusion module to fully exploit complementary informa-
tion from both B-mode and SWE images. The experimental
results on an in-house TRUS video dataset show the efficacy
of the proposed method. What’s more, the visualized heat
maps generated from the proposed method may provide valu-
able guidance for the localization of csPCa, thus suggesting
the potential feasibility of multi-modality TRUS-guided tar-
geted biopsy. Note that this study focuses on the classification
of the csPCa. One potential aspect to boost the classification
performance is to leverage the prostate mask [10] by auto-
mated prostate segmentation [16]. Another aspect could be
using weakly-supervised methods [17, 18] that leverage weak
annotations to attain accurate lesion localization and therefore
providing biopsy-guidance.
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