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Abstract
The pooling layer is an essential component in the neural
network based speaker verification. Most of the current net-
works in speaker verification use average pooling to derive the
utterance-level speaker representations. Average pooling takes
every frame as equally important, which is suboptimal since
the speaker-discriminant power is different between speech
segments. In this paper, we present a unified attention-based
pooling framework and combine it with the multi-head atten-
tion. Experiments on the Fisher and NIST SRE 2010 dataset
show that involving outputs from lower layers to compute the
attention weights can outperform average pooling and achieve
better results than vanilla attention method. The multi-head
attention further improves the performance.
Index Terms: speaker verification, speaker embedding, atten-
tion mechanism, multi-head attention

1. Introduction
The key problem in speaker verification is how to deal with
variable-length utterances. Traditional models, e.g. joint factor
analysis (JFA) [1], use Bayesian methods as a solution. Speak-
ers are modeled by conditional probability distributions and
the verification scores are log-likelihoods. Based on statistical
modeling, the i-vector framework represents variable-length
samples with low-dimensional fixed-length vectors. Various
backend machine learning algorithms can be applied to improve
the performance. However, the Bayesian methods imply some
strong hypotheses that cannot be fulfilled in practical. Also,
some latent variables cannot be well estimated during training.

Although neural networks have been introduced to speaker
verification for many years, it is typically used to compute suffi-
cient statistics for i-vector extraction [2]. It is not until recently
that neural networks are used to extract speaker-discriminant
vectors directly. Similar to i-vector, neural network based
methods represent utterances with fixed-length vectors, which
are also known as speaker embeddings. Early attempts of
speaker embedding include the d-vector, which was initially
developed for text-dependent speaker verification [3]. Li et al.
revisited d-vector, and found the method performs well in text-
independent tasks [4]. To obtain d-vector, features are extracted
in a frame-wise style and all the features in one utterance are
averaged. This is criticized that the network can only see local
information while the speaker characteristics tend to be noisy
at the frame time-scale. Optimization on the whole utterance
is a better choice. Long short term memory (LSTM) is able
to handle sequential information and is introduced to speaker
verification in [5]. The LSTM output at the last time stamp is
connected to successive layers, since it is believed that LSTM

encodes the entire sequence in the final output. However, some
useful details are still missing in this case, especially when the
speech duration is too long to remember.

To better capture speaker characteristics, temporal pooling
is applied. The network is partitioned into frame- and utterance-
level subnetworks by the pooling layer. Average pooling is
the most popular pooling method to extract the utterance-
level representations and is used in many publications [6, 7].
Other methods, e.g. spatial pyramid pooling (SPP) [8], are
also explored using different network architectures. Speaker
embeddings have outperformed conventional i-vectors in many
conditions and become a promising approach.

The implicit hypothesis behind the temporal average pool-
ing is that every frame in the utterance is equally important.
Although neural networks are powerful to extract useful infor-
mation from the inputs, it is difficult to transform features from
different phonetic spaces to the same speaker representation,
not to mention the fact that a large portion of speech does not
represent the distinctive characteristics of speakers [9]. As we
know, different segments should make different contributions
to the speaker embedding. Attention mechanism is proposed
to cope with this problem. The attention mechanism is ca-
pable to model the sequence dependencies and is suitable for
variable-length transduction modeling. It has been successfully
applied in image caption [10], machine translation [11, 12] and
automatic speech recognition (ASR) [13], etc. In sequence-
to-sequence speech recognition, the influence of the entire
speech to a single recognized word is estimated by the attention
weights. The attention mechanism has also been used in speaker
recognition. In [14], the authors aggregated outputs from a
convolutional neural network (CNN) with weights computed
from both acoustic and phonetic information. Higher-order
attentive pooling is presented in [15]. The first and second-order
moments are used to model the speaker characteristics. Several
variants of attention layers are also reported in [16].

Most of the previous works only used the outputs of the
last layer in the frame-level network to derive the attention
weights. However, the representations extracted from other
hidden layers provide different levels of feature abstractions,
which may be a better source for the attention computation. In
this paper, we first present a unified attention framework. We
show that the variants in [16] are special cases of the proposed
framework. Multi-head attention is then introduced to further
increase the modeling power. Experiments on Fisher and NIST
SRE 2010 10s-10s evaluation show that the attention-based
pooling framework achieves better results than the average
pooling.

The organization of this paper is as follows. The network
architecture and the baseline average pooling we use is briefly
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Figure 1: The x-vector architecture for the speaker embedding
extraction. The pooling layer splits the network into frame-
and utterance-level networks. The superscript s is omitted for
brevity.

introduced in Section 2. Section 3 describes the proposed at-
tention framework and multi-head attention. Our experimental
setup and results are given in Section 4 and 5. The last section
concludes the paper.

2. Neural network speaker embedding
In this paper, speaker embeddings are extracted by the x-vector
architecture [7]. As shown in Fig. 1, the entire network
is partitioned into frame and utterance levels. The input xs

t

is the feature of frame t in utterance s. The frame-level
network consists of L hidden layers and the activation of
each layer is denoted as f l,s

t . A statistics average pooling
component is applied to fL,s

t and reduces them to an utterance
representation us. Fully-connected layers followed with a
softmax layer are then used to predict the posterior of speaker
k with respect to utterance s. Given the parameters of the
frame- and utterance-level networks, θf and θu, the posterior
P (spkrk|s) is expressed as:

fL,s
t = F(xs

t ,θf ) (1)

us = P(fL,s
t ) (2)

P (spkrk|s) = F(u
s,θu) (3)

where F(·), P(·) represent the forward and pooling operations,
respectively. We will omit the superscript s for brevity here-
inafter.

After training, the output of a hidden layer at the utterance-
level network is extracted as the speaker embedding, termed the
x-vector. Linear discriminant analysis (LDA) and probabilistic
linear discriminant analysis (PLDA) [17] are further applied to
compensate the session variabilities.

In this paper, we focus on the implementation of the
pooling operation P(·). Statistics average pooling treats all the
inputs equally and calculates the mean and diagonal standard
deviation. In the next section, we will show this can be replaced
by the proposed multi-head attention-based pooling.

3. Attention-based pooling
3.1. A unified framework

Speech signal is complex and consists of many components.
The speaker-discriminant power of speech segments can be
affected by many factors, e.g., phonetic contents, acoustic en-
vironments and communication channels. Neural networks are
capable to extract speaker information from raw features, but
the process is hardly perfect. Some representations extracted
from the frame-level network are more noisy and is less useful
to model the speaker. In this paper, attention mechanism is used
to automatically select the most speaker-discriminant segments.
Motivated by [12], we propose a unified attention framework for
speaker verification.

Let us define a tuple (vt,kt, q), where vt is the value
sequence with dv dimensions and is the input of the attention
layer, kt is the key sequence corresponding to vt with dk
dimensions, and q is a time-invariant query with dq dimensions.
The query maps the key sequence to the weights αt. The
framework is expressed as

Att(v,k, q) =
[
m̂′, σ̂′]′ (4)

m̂ =

T∑
t=1

αt vt (5)

σ̂ =

√√√√ T∑
t=1

αt diag ((vt − m̂)(vt − m̂)′) (6)

αt = softmax(q′ · G(kt,at,θk)) (7)

where T is the length of the utterance, m̂ and σ̂ is the weighted
mean and standard deviation and the softmax is performed
among the time indices.

In speaker verification, the value is the output of the frame-
level network, i.e. vt = f

L
t . The query q is a parameter which

can be learned by model optimization. As in Eq. (7), the key is
transformed by a compatibility function G(·) and the transform
parameter is θk. An auxiliary feature at is also used in the
transformation to provide extra information. If the auxiliary
feature at is ignored and only consider fL

t as the key, the model
is called self-attention.

As the key is used to calculate the weights, it is required
to indicate the potential speaker-discriminant power of the
corresponding vt. Empirically, we find that it is beneficial to
replace the key with the activation of an intermediate layer.
Previous study claimed that the phoneme information can guide
the computation of the weights since different phonetic units
have different speaker-discriminant power. During the network
training, the activations fL

t from the same speaker become
less related to the phonetic contents and other information.
This is good for speaker verification, but it will also limit the
information that the attention component can attend to. On the
other hand, the lower activations may be more noisy. It is a
trade-off to choose a proper source to feed into the attention
layer. In our experiments, we evaluate kt with different
f l

t. Multi-layer neural networks are also used to model the
corresponding compatibility functions.

In addition, different features can be used as at in Eq (7).
In [14], bottleneck features extracted from a phonetically-aware
neural network are served as the auxiliary features. Linguistic
features extracted from text transcriptions can also provide
useful information to the attention layer [18]. In this paper, we



will only focus on the acoustic features and leave the auxiliary
features to our future work.

The two attention variants in [16], cross-layer and divided-
layer attention, are both special cases of the proposed frame-
work. The cross-layer attention used the output of the 2nd-to-
last layer as the key. The divided-layer attention used the same
key as the cross-layer attention while used a 2-layer network as
G(·), whose first layer is a LSTM sharing the same structure
with the last layer of the original network.

3.2. Multi-head attention

Multi-head attention is shown to be effective in machine trans-
lation [12]. Instead of performing a single attention function,
multi-head attention uses a number of pooling layers to do
attention in parallel. In the multi-head attention, the values,
keys and query are first split to h sub-vectors v(i), k(i) and q(i)

with d′v = dv/h, d′k = dk/h and d′q = dq/h dimensions, and
1 ≤ i ≤ h. These sub-vectors perform the attention pooling
individually and then their results are concatenated. Unlike
[12], the concatenated outputs are not projected again, keeping
the network architecture the same with the single head version.
The multi-head attention can be denoted as

MultiHead(v,k, q) = Concat(Att(v(i),k(i), q(i))) (8)

In the multi-head attention, each head learns individual trans-
formations and different heads can learn different sequence
dependencies. From a view of model training, this allows the
model to attend to information from different representation
subspaces. Intuitively, it increases the modeling power of the
single-head attention with no computational overhead.

4. Experimental setup
4.1. Dataset

We evaluate the performance of the attention mechanism on
Fisher [19] and NIST SRE 2010 10s-10s datasets[20]. The
details of the two datasets are given as follows.

• Fisher is manually partitioned into training and evaluation
subsets. We randomly select 878622 segments (sampled
from 19386 utterances) as the training set. There are 9964
speakers in the 952h training set. The evaluation set contains
2000 speakers (1000 males and 1000 females) which do not
overlap with the training set. The enrollment for each speaker
consists of 2-8 segments, making the total duration 10s
for each speaker. The test data contains 6000 segments (3
segments per person and 1-2s per segment). The cross-gender
trials are excluded, forming 6M target and non-target trials.
Note that this dataset is larger and more difficult than the one
used in our previous experiments.

• NIST SRE10 10s-10s condition 5 are used in our experiments.
NIST SRE 2004-2008 telephone excerpts, Switchboard Phase
II Part 1/2/3 and Cellular Part 1/2 are used as the training
set. This represents 5524 hours of data and comprises 6374
speakers from 64742 utterances.

All models in our experiments are gender-independent, and
the results are reported on the male and female pooled trials.
To fully illustrate the performance across different operation
points, we report equal error rate (EER), minimum detection
cost function from NIST SRE08 (minDCF08) [21] and SRE10
(minDCF10) [20] as the metrics.

4.2. Baseline i-vector system

An i-vector system is used as a complementary comparison to
the standard and attention-based x-vector. 20-dimension static
MFCCs with delta and delta-delta followed by cepstral mean
normalization (CMN) are used as the acoustic features. Energy-
based voice active detection (VAD) are applied. The features
keep the same in our x-vector experiments.

The 2048-mixture universal background model (UBM)
and the 600-dimension i-vector extractor are trained using the
training data. LDA is applied to reduce the dimension of i-
vector to 200 prior to PLDA scoring. On the Fisher dataset,
LDA and PLDA is trained using a subset of the training set,
which we found results in better performance.

4.3. X-vector architecture

Our x-vector architecture is kept the same with the one in Kaldi
recipe SRE16 V2 [22]. The frame-level part of the x-vector
network is a 5-layer time-delay neural network (TDNN) [23].
The input of each layer is the time-sliced output of the previous
layer and the slicing parameter is: {t− 2, t− 1, t, t+1, t+2},
{t − 2, t, t + 2}, {t − 3, t, t + 3}, {t}, {t}. Layer 1 to 4 have
512 nodes and the 5-th layer has 1500 nodes. The utterance-
level part consists of a 2-layer fully-connected network with 512
nodes per layer. The final output is predicted by softmax and
the size is the same as the number of speakers. 150-dimensionl
LDA and PLDA scoring are trained and applied. Refer to [7]
for more details.

4.4. Attention-based pooling layer

The attention-based pooling layer is applied to the x-vector
architecture to replace the statistic average pooling layer. Ac-
tivations from different layers are used as the keys and fully-
connected networks are used as the compatibility function. All
layers contain an affine transform followed by leaky ReLU and
batch normalization. Different network settings are explored
and will be described in the next section. For multi-head
attention, the number of the heads is fixed at 50. The entire
network is jointly optimized by cross entropy.

We implement all the neural networks using TensorFlow
[24]. Other pre- and post-processing are implemented with
Kaldi toolkit.

5. Results
5.1. Fisher

The baseline i-vector and x-vector are first compared on Fisher
dataset. Table 1 shows that x-vector with average pooling
outperforms i-vector in EER and minDCF08, while i-vector
performs better in minDCF10. We find that applying attention
components generally improves the performance. As shown in
this table, using activations from the 3rd and 4th layer as the
keys achieves better results than using output from the last layer.
However, it seems that using a multi-layer network to model the
key transformation does not bring any benefits. We guess the
reason is that the number of nodes in these transform networks
is too small and cannot fully capture the characteristics of
the keys. Finally, the multi-head attention achieves the best
performance, which illustrates the effectiveness of this method.

Then, we explore the attention weights extracted from
different attention layers. For multi-head attention, we plot the
maximum weights at each time stamp. The results are presented
in Fig. 2. This figure shows that the attention weights calculated



Table 1: Results on Fisher dataset. The attention layer using
activations of the x-th layer as the key is denoted as att-x. The
numbers in the brackets explicitly explain the network structure
G(·). For example, 100-500 is a 2-layer transform network
with 100 and 500 nodes per layer. The att-5(500) represents
the conventional attention layer used in many previous works.
The number of the heads in the multi-head attention applied to
att-4(500) is 50.

Systems EER(%) minDCF08 minDCF10
i-vector 10.35 0.0368 0.7863
x-vector 9.18 0.0325 0.8513

att-5 (500) 9.22 0.0325 0.8140
att-4 (500) 9.07 0.0320 0.7983
att-3 (500) 8.95 0.0325 0.8095

att-4 (100-500) 9.10 0.0325 0.8200
att-3 (100-100-500) 9.00 0.0324 0.8080

att-4(500)+MultiHead 8.91 0.0321 0.7835
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Figure 2: The trajectory of the attention weights extracted from
different attention layers. The weights from the multi-head
attention are always the largest. The utterance is randomly
sampled from the test set.

from the outputs of the 4-th and 5-th layers are quite similar.
The weight distribution across the entire utterance is more flat
than we expected. The voiced regions do not get much larger
weights than the unvoiced regions. This is interesting and worth
further investigation.

Although the weights calculated from the 4-th and 5-
th layers are similar, the former one still results in better
performance in Table 1. As stated before, the final output of
the frame-level network may suppress some information which
is not directly related to speakers. However, this auxiliary
information, as we discussed in the previous section, can be
useful to guide the attention layer from different feature spaces.
In this experiment, using the output of a lower layer as the key
is a better choice.

For the multi-head attention, we find that the maximum
weights are always much larger than the single-head ver-
sions. Since these weights come from different heads, the
phenomenon indicates that the weights in each head are spiky
at different positions. By this way, the multi-head attention can
attend to different information of the utterance.

5.2. NIST SRE10

The performance of our attention framework is also evaluated
on the NIST SRE10 10s-10s condition 5. The x-vector is
slightly worse than the conventional i-vector in EER and per-
forms better in minDCF08 and minDCF10. The conventional
attention layer, att-5(500), improve the performance in EER
and minDCF08, while the performance in minDCF10 is slightly

Table 2: Results on NIST SRE10 10s-10s condition 5. The
abbreviations in this table follow the same manner as Table 1.

Systems EER(%) minDCF08 minDCF10
i-vector 10.46 0.0533 0.9817
x-vector 10.81 0.0530 0.9304

att-5 (500) 10.44 0.0497 0.9469
att-4 (500) 10.25 0.0496 0.9707
att-3 (500) 10.85 0.0510 0.9652

att-4 (100-500) 10.99 0.0498 0.9047
att-3 (100-100-500) 10.25 0.0493 0.8663

att-4(500)+MultiHead 9.67 0.0486 0.9111

worse. The performance is similar when using different sources
as the attention key. Using the multi-head attention improves
the results across all these operation points and outperforms the
conventional x-vector by 10%, 8% and 2% in EER, minDCF08
and minDCF10, respectively.

6. Conclusions
In this paper, we first propose a unified attention framework
for speaker verification. Unlike previous works, outputs from
different hidden layers are used as the key of the attention-
based pooling component. We further introduce the multi-
head attention into this framework. The multi-head attention
is able to explore information from different feature subspaces
and provides better performance. The speaker embeddings
extracted using single and multi-head attention pooling both
outperform the average pooling based x-vector on the Fisher
dataset. The experiment also shows that the attention weights
computed from the activations of lower layers can result in bet-
ter performance. On NIST SRE10 10s-10s, most of the single-
head attention outperforms the baseline in EER and minDCF08,
while the improvement in minDCF10 is inconsistent. With
multi-head attention, the proposed method achieves a better
result than the conventional x-vector across all these operation
points. In our experiments, using multi-layer fully-connected
networks to model the key transformation does not necessarily
bring much benefits.

In the future, we will explore the use of the auxiliary
features. Bottleneck features extracted from an ASR network
and linguistic features can be the candidates to improve the
performance of the attention mechanism.
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