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Abstract—A novel spatial model for extreme events is proposed.
The model may for instance be used to describe the occurrence
of catastrophic events such as earthquakes, floods, or hurricanes
in certain regions; it may therefore be relevant for, e.g., weather
forecasting, urban planning, and environmental assessment. The
model is derived from the following ideas: The above-threshold
values at each location are assumed to follow a generalized Pareto
(GP) distribution. The GP parameters are coupled across space
through Markov random fields, in particular, thin-membrane
models. The latter are inferred through an empirical Bayes
approach. Numerical results are presented for synthetic and real
data (related to hurricanes in the Gulf of Mexico).

I. INTRODUCTION

Statistical models can help to assess the likelihood of

extreme events [1], such as earthquakes, floods, or hurricanes,

and the dependency among the events (see, e.g., [1], [2], [3]).

The models may serve as quantitative tools to assess the risks

associated with certain infrastructures and facilities exposed

to extreme conditions.

Extreme value theory provides a solid basis for analyzing

extreme events [1]. The Pickands-Balkema-de Haan (PBdH)

theorem, often called the second theorem in extreme value

theory [4], states that for a large class of unknown underlying

distribution functions F of a random variable X , the condi-

tional excess distribution Fu, for a large threshold u, is well

approximated by the generalized Pareto (GP) distribution.

The characteristics (e.g., GP parameters) of extreme events

often vary systematically with a number of covariates. For

example, the characteristics of extreme waves in hurricane

dominated areas vary systematically with location, time, and

storm direction [5], [6]. Those covariates need to be incorpo-

rated in extreme value models. In this paper, we propose to

use graphical models to capture spatial covariate effects.

So far, spatial extreme models have only received limited

attention. It is common practice to locally fit the GP pa-

rameters, without exploiting the spatial dependency, leading

to inaccurate characterization of the extreme events. In the

following, we briefly review the literature on spatial extreme

models. In [2] a procedure is proposed to compute the pairwise

spatial dependence of extreme events, i.e., the probability of

threshold exceedance at one site conditioned on exceedance

at one other site [3]. Alternatively, Naveau et al. [7] quantify

pairwise spatial dependence through the concept of variogram.

Both studies are limited to pairwise dependency. Recently,

Northrop et al. [6] proposed a parametric model where the

GP parameters depend on the location. The thresholds are

determined through quantile regression, using Legendre poly-

nomials. Our proposed model is similar in spirit, but is based

on graphical models instead of polynomial regression.

In the model proposed here, the threshold exceedance

at each location is modeled by the GP distribution. Thin-

membrane models characterize the variation of the GP pa-

rameters across space. We then follow an empirical Bayes

approach, inferring the smoothness parameters of the thin-

membrane models using expectation maximization (EM).

Numerical results for synthetic and real data (related to hur-

ricanes in the Gulf of Mexico) show that the proposed spatial

extreme model can indeed capture spatial variations in the

characteristics of extreme events. By inferring the smoothness

parameters of the thin-membrane model, the smoothness is

adjusted automatically in a suitable manner. In some numerical

examples, the MRF-GP model yields location-independent GP

shape and scale parameters, while the GP threshold is location

dependent. Spatial variations in the characteristics of extreme

events are then fully captured by only varying the threshold in

space, resulting in a model with significantly fewer parameters.

The paper is organized as follows. In Section II, we briefly

review the GP distribution and thin-membrane model, which

are the main components of the proposed model. The model

itself is explained in detail in Section III. Numerical results on

synthetic and real datasets are briefly presented in Section IV.

We offer concluding remarks in Section V.

II. PRELIMINARIES

In this section, we give a short description of the generalized

Pareto (GP) distribution and the thin-membrane model.

A. Generalized Pareto Distribution

We consider a random variable X with unknown distribu-

tion F . We are interested in inferring the conditional excess

distribution function Fu. If the selected threshold u is high

enough, for a large class of distributions F , the conditional

excess distribution function Fu converges to a generalized

Pareto (GP) distribution [4]:

F (x;u, σ, γ) =

⎧⎪⎨
⎪⎩
1−

{
1 +

γ

σ
(x− u)

}− 1
γ

, γ �= 0

1− exp

(
−x− u

σ

)
, γ = 0,

(1)



for x ≥ u and 1+ γ/σ(x−u) ≥ 0, where γ ∈ R is the shape

parameter and σ > 0 is the scale parameter.

If the random variable X has a GP distribution for a fixed

threshold u, the conditional distribution of X−t, given X ≥ t,
corresponding to a higher threshold u+t, also has a GP distri-

bution. The shape parameter γt of the conditional distribution

remains unchanged, i.e., γt = γ, while the scale parameter σt

is a linear function of the threshold, i.e., σt = σ + γt.

B. Thin-Membrane Model

A Markov random field (MRF) or a graphical model is a

collection of random variables indexed by the vertices of an

undirected graph G = (V, E). Each node i ∈ V is associated

with a random variable Xi. An edge (i, j) is absent if the cor-

responding two variables Xi and Xj are conditional indepen-

dent: P (Xi, Xj |XV|i,j) = P (Xi|XV|i,j)P (Xj |XV|i,j), where

V|i, j denotes all the variables except Xi and Xj . In particular,

for Gaussian distributed X , the graph G is characterized by

the inverse of the covariance matrix (precision matrix) K, i.e.,

K(i, j) �= 0 if and only if the edge (i, j) ∈ E [8].

The thin-membrane model is a Gaussian MRF that is

commonly used as smoothness prior. Such model tries to

minimize the difference between neighbors, and its probability

density function (pdf) can be written as:

P (X) ∝ exp{−α
∑
i∈V

∑
j∈N (i)

(Xi −Xj)
2}

∝ exp(−αXTKpX), (2)

where N (i) denotes the neighboring nodes of node i, and α
is the smoothness parameter. The matrix Kp is the adjacency

matrix: its diagonal elements [Kp]i,i are equal to the number

of neighbors of site i and its off-diagonal elements [Kp]i,j
equal −1 if the sites i and j are adjacent and 0 otherwise.

III. SPATIAL EXTREME MODEL

In this section, we introduce our novel spatial extreme

model (denoted as MRF-GP model), which is based on the

following two assumptions:

1) The threshold exceedance at each site follows a GP

distribution (1) with threshold ui, shape parameter γi,
and scale parameter σi.

2) Spatial dependence is captured by the spatial-dependent

parameters u = (u1, · · · , up), γ = (γ1, · · · , γp),
σ = (σ1, · · · , σp), where p is the number of sites.

Specifically, the three parameter vectors u, γ, and σ
each have a thin-membrane model as prior. Conditioned

on the spatially dependent GP parameters, the extreme

values at different sites are mutually independent.

Fig. 1 shows the factor graph of our model [9]. For

simplicity, we depict the GP pdf of only one site on the grid

(node indicated by “GP”). The three rectangular lattices on

the right hand side represent the thin-membrane models; the

nodes αz represent the factors exp{−αz(zi − zj)
2}, where z

stands for either u, γ or σ.
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Fig. 1. Factor graph of MRF-GP model. The messages leaving the GP
nodes towards the three thin-membrane subgraphs (indicated by the arrows)
are approximated as Gaussian distributions [9].

Suppose that we have n samples x
(j)
i at each of the p

locations, where i = 1, · · · , p and j = 1, · · · , n. Our objective

is to infer the three parameters u, γ, and σ.

Let y = (y1, y2, . . . , yp) denote the “observed” value of z =
(z1, z2, . . . , zp), where z is either u, γ or σ. In our approach,

the “observed” yi are computed at each site i from the n
observed samples at that site. We model the observations as

y = z+b, where b ∼ N(0, Rz) is a zero-mean Gaussian white

noise with a diagonal covariance matrix Rz .

Since we assume that the prior distribution of z is a thin-

membrane model (cf. (2)), the posterior distribution is given

by:

P (z|y) ∝ exp(−αzz
TKpz) exp{−1

2
(y − z)TR−1

z (y − z)}

∝ exp{−1

2
zT (αzKp +R−1

z )z + zTR−1
z y}. (3)

The maximum a posteriori estimate of z is then given by:

ẑ = argmaxP (z|y) = (αzKp +R−1
z )−1R−1

z y. (4)

In the following, we discuss how the “observed” value y,

the noise covariance matrix Rz , and the smoothing parameter

αz are computed for each of the three parameters u, γ, and

σ.

A. Local Observations of z

The thresholds ûi are selected so that the probability of

threshold exceedance is identical (e.g., 5%) at all locations.

The resulting thresholds are considered as local observations.



The local observed value of γ and σ is the vector of local

maximum likelihood (ML) estimates (γ̂i
ML, σ̂i

ML) at each site,

which can be obtained by numerically solving the following

two coupled equations [11]:

n∑
j=1

x
(j)
i − ui

σ̂i
ML − γ̂i

ML(x
(j)
i − ui)

=
n

1− γ̂i
ML

(5)

n∑
j=1

ln
[
1− γ̂i

ML(x
(j)
i − ui)

σ̂i
ML

]
= −nγ̂iML. (6)

From a message-passing perspective, the local estimates

σ̂i
ML and γ̂i

ML are chosen as the means of the Gaussian

messages leaving the GP node along the σ and γ edges

respectively, towards the thin-membrane subgraphs associated

with σ and γ respectively [9].

B. Covariance Matrices Rz

We use the bootstrap approach (as in [12]) to infer the

noise covariance matrices Ru, Rγ and Rσ , and also the 95%
confidence interval of the estimates of γ and σ as follows:

1) We generate m sample sets S1, · · · , Sm, each with size

n× p, by resampling at random with replacement from

the original n observations (at each of the p locations).

2) The thresholds uk = (uk
1 , · · · , uk

p) are estimated by

fixing the same quantile value (e.g., 5%) for each of the

m subsets Sk, where k = 1, · · · ,m. With that choice

of thresholds uk, the parameters γk = (γk
1 , · · · , γk

p ),
and σk = (σk

1 , · · · , σk
p) are estimated using ML method

(cf. (5)(6)) for each Sk.

3) The variance of uk
i (k = 1, · · · ,m) at site i is our

estimate of [Ru]i,i, with i = 1, . . . , p. Similarly, we

obtain estimates of the diagonal covariance matrices Rγ

and Rσ .

4) The 95% confidence interval for γ and σ is estimated

as the values corresponding to the 2.5% and 97.5%
quantiles of γk and σk.

From a message-passing perspective, the diagonal elements

of Ru, Rγ and Rσ are the covariances of the Gaussian

messages leaving the GP node towards the thin-membrane

subgraphs [9].

C. Smoothing Parameters α

The smoothness parameters αz are hyperparameters in the

overall model. Through EM we obtain point estimates of those

hyperparameters, whereas we infer the posterior distributions

of z. Such procedure corresponds to an empirical Bayes

approach [10].

In the E-step, we compute [13]:

Q(αz, α̂
(k−1)
z ) = E

Z|y,α̂(k−1)
z

[logP (y, Z|αz)] (7)

= −1

2
αz{trace[Kp(α̂

(k−1)
z Kp +R−1

z )−1]

+ (ẑ(k−1))TKp ẑ
(k−1)}+ 1

2
log det(αzKp),

where ẑ(k) is computed as in (4) with αz is replaced by α
(k)
z .

In the M-step, we select the value α̂
(k)
z of αz that maximizes

Q(αz, α̂
(k−1)
z ). A closed form expression of α̂

(k)
z exists [13]:

α̂(k)
z =

p

trace[Kp(α̂
(k−1)
z Kp +R−1

z )−1] + (ẑ(k−1))TKp ẑ(k−1)
,

(8)

where p is the number of sites. We iterate the E-step and

M-step till convergence, yielding a local extremum of the

marginal posterior of αz .

IV. RESULTS

In this section, we apply the MRF-GP model to syn-

thetic and real data. We compare it to a locally fit model,

where the parameters u = (u1, · · · , up), γ = (γ1, · · · , γp),
σ = (σ1, · · · , σp) are all locally fit through ML estimation

(cf. (5)(6)), without taking spatial priors into account. We

compare the MRF-GP and the locally fit model based on three

criteria:

1) We verify whether the shape parameter γi is independent

of the threshold ui, and the scale parameter σi depends

linearly on ui (cf. Section II-A).

2) We investigate how the shape and scale parameters de-

pend on the threshold smoothness parameter αv . Earlier

studies suggest that a properly selected threshold surface

(sometimes combined with scale surface) is sufficient to

capture the spatial variation, and as a consequence, the

shape surface may be flat [6].

3) We compute the 95% confidence interval of all estimates

by bootstrapping.

A. Synthetic Data

Here we present results for two case studies with synthetic

data. Samples are drawn from GP marginals with location-

dependent parameters. In both cases, the threshold surface is a

quadratic Legendre polynomial, as shown in Fig. 2(a), whereas

the shape and scale parameters are chosen differently in each

case.
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Fig. 2. True GP parameters for synthetic data: (a) Threshold surface for case
study 1 and 2; (b) Scale parameter surface for case study 2.

1) Case Study 1: The shape and scale parameters γ and

σ respectively are chosen to be constant, and equal to -

0.3 and 4.4 respectively. We generate 1250 samples from

the GP distributions at each site. From Fig. 3, we can see

that the estimates resulting from the MRF-GP model follow
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Fig. 3. Estimates of shape and scale parameters γ and σ as a function of
threshold u, at one of the sites (Case study 1); the results at the other sites
are similar. (a) Results for local fitting; (b) MRF-GP.
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Fig. 4. Estimates of the thresholds u, and shape and scale parameters γ and
σ as a function of threshold smoothness parameter αu (Case study 1). The
thresholds were chosen at each site to retain the 60% quantile. (a) Results for
local fitting; (b) MRF-GP.

the predicted dependency on the threshold more closely: the

shape parameter γ is nearly independent of the threshold u,

whereas the scale parameter σ scales linearly with u (cf.

Section II-A). Clearly, the local ML estimates fluctuate more,

and hence are less reliable. Moreover, the MRF-GP estimates

have narrower confidence intervals compared to the local ML

estimates. Interestingly, Fig. 4 shows that for a large range of

the threshold smoothing parameter αu, the estimates of γ and

σ do not depend on location, which is also the case for the true

parameter values. On the other hand, the local ML estimates

are significantly different at each site. Fig. 5(a) shows the mean

square error (MSE) of the local and MRF-GP estimates, as a

function of αu: the MSE of the MRF-GP estimates is more

than a order of magnitude smaller than the MSE of the local

estimates.
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Fig. 5. Mean square error for ML and MRF-GP estimates of shape and scale
parameters γ and σ as a function of threshold smoothness parameter αu. The
thresholds were chosen at each site to retain the 60% quantile. (a) Case study
1; (b) Case study 2.

2) Case Study 2: In the second case study, we extend the

scale parameter surface to be quadratic, as shown in Fig. 2(b),

however, the shape parameter γ remains the value -0.3 as in

the previous case study. We wish to verify whether the MRF-

GP model can capture the additional spatial dependence. The

results are qualitatively similar to the ones of the first case

study. The only difference is that the estimates of σ are no

longer independent of location (Fig. 6), which is not surprising

since the true parameters σ follow a quadratic surface. In

other words, by inferring ασ and αγ , the spatial smoothness

of σ and γ can automatically and appropriately be adjusted.

The MRF-GP estimates are more accurate than the local ML

estimates, as shown in Fig 5(b), although the improvement is

less pronounced than in Case Study 1 (cf. Fig 5(a)).

B. Real Data

We consider the GOMOS (Gulf of Mexico Oceanographic

Study) data [14], which consists of 315 peak wave height val-

ues corresponding to hurricane events in the Gulf of Mexico.

There are 78 sites arranged on a 6×13 rectangular lattice with

spacing of 0.125◦ (approximately 14km).

The MRF-GP model yields more accurate GP parameter

estimates than local fitting: The MRF-GP estimates of γ and

σ again follow the predicted dependency on the threshold u
more closely than the local estimates, and the 95% confidence

intervals are narrower (not shown here). However, also for
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Fig. 6. Estimates of the thresholds u, and shape and scale parameters γ and
σ as a function of threshold smoothness parameter αu (Case study 2). The
thresholds were chosen at each site to retain the 60% quantile. (a) Results for
local fitting; (b) MRF-GP.

the MRF-GP, the parameter γ significantly depends on the

threshold u, which is also an issue for the approach of [6].

Consequently, selecting a threshold quantile is a delicate issue

for the data set at hand. Interestingly, Fig. 7 shows that the

MRF-GP estimates of the parameters γ and σ are identical

for each site. The variation of the GP marginals across space

can be captured effectively by a spatial-dependent threshold

u only. Consequently, the MRF-GP model has vastly fewer

parameter than for local fitting (where all parameters are

location-dependent), but achieves about the same loglikelihood

(for a wide range of quantiles). Therefore, the MRF-GP model

is preferred over local fitting for the GOMOS data.

V. CONCLUSION

We introduced a novel spatial extreme model: the marginal

excess probabilities are assumed to be GP distributions,

and thin-membrane models serve as priors for the location-

dependent GP parameters. The smoothness of the GP parame-

ters across space can automatically be inferred from the data.

In some cases, certain GP parameters may be become location-

independent.
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Fig. 7. Estimates of the thresholds u, and shape and scale parameters γ and
σ as a function of threshold smoothness parameter αu (GOMOS data). (a)
Results for local fitting; (b) MRF-GP.
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