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Abstract

Computing the rate-distortion function for continuous sources is commonly regarded as a standard continuous

optimization problem. When numerically addressing this problem, a typical approach involves discretizing the source

space and subsequently solving the associated discrete problem. However, existing literature has predominantly

concentrated on the convergence analysis of solving discrete problems, usually neglecting the convergence relationship

between the original continuous optimization and its associated discrete counterpart. This neglect is not rigorous, since

the solution of a discrete problem does not necessarily imply convergence to the solution of the original continuous

problem, especially for non-linear problems. To address this gap, our study employs rigorous mathematical analysis,

which constructs a series of finite-dimensional spaces approximating the infinite-dimensional space of the probability

measure, establishing that solutions from discrete schemes converge to those from the continuous problems.

I. INTRODUCTION

The lossy source coding theory [1] and the rate-distortion function (RDF) for discrete memoryless sources were

first established by Shannon [2], [3]. Until the end of 1960s, major developments of the classical setup had been

summarized in [4], including the lossy source coding theorem and associated RDF for sources and reproductions

defined in abstract spaces. The RDF that characterizes the fundamental tradeoff between compression rate and
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distortion, and plays a fundamental role in information theory. Several recent problems, including the rate-distortion-

perception (RDP) function [5] and the information bottleneck (IB) [6], have been formulated based on the concept

of RDF. The RDF, along with its inspired extensions, has found extensive applications in fields such as image and

video compression [7], [8] as well as machine learning [9], [10] problems.

The computation of RDF for discrete source and reproduction alphabets can be solved by the well-known Blahut-

Arimoto (BA) algorithm [11], [12], which has been widely applied due to its conceptual simplicity. Recently,

an intriguing connection has been identified between optimal transport (OT) and rate-distortion (RD) [13], [14].

Leveraging insights from the OT perspective, more efficient algorithms have been developed for the computation

of RDF; see, e.g., [15], [16].

For RD problems where the source alphabet is continuous, these algorithms are not directly applicable, and a

general approach is to first discretize the continuous source space, and then solve the resulting discrete RD problem.

The solution of the discrete RD problem can be ensured by these algorithms. However, one issue still remains and

has usually been neglected: do the solutions of the discrete problems actually converge to those of the original

continuous problems? To the best of our knowledge, we have not seen discussions of this issue in the relevant

literature on the RD theory and related topics. From a mathematical perspective, the continuous RD problem is a

non-linear optimization problem. As is well-known, non-linear problems do not necessarily yield the solutions of

the original continuous problems after discretization [17]. Moreover, similar discussion is also presented for OT

problems, and the convergence of solutions for discrete problems to those for continuous problems [18], [19] is

also specialized. Hence, it is necessary to give a rigorous analysis for this issue.

Motivated by the discussion above, we propose a general framework for continuous RD problems and establish

the convergence of their associated discrete problems. The main idea in our proof is considering a proper form

of the RDF and constructing a series of finite-dimensional spaces to approximate the infinite-dimensional space of

the probability measure for the reproduction. Leveraging functional space analysis and estimation techniques [20]

and inspired by [21], we rigorously prove the desired convergence property. Notably, this convergence result is

independent of specific numerical algorithms for discrete problems.

Furthermore, based on our framework, we provide a proof that O(m| log ε|
εd+1 ) arithmetic operations are needed to

achieve ε accuracy using the BA algorithm [11], [12] and that O
(m| log ε|

εd+1 (1 + log | log ε|)
)

arithmetic operations

while using the recently proposed Constrained BA (CBA) algorithm [15], which solves the RDF directly rather

than the RD Lagrangian in the BA algorithm. Here m is the number of discretized nodes of the source X when

conducting numerical integration and d is the dimension of the reproduction space Y . It is worth mentioning that

our framework may also be applied to other information theory problems including the IB problem and the RDP

problem, due to their close connections in discrete formats.

For continuous RD problems, there is a considerable interest in determining the support set of reproduction,

since in general, the optimal reproduction of a continuous source, under a mean squared error distortion, is discrete

[22]–[24]. To address this issue, a mapping approach has been proposed [24] to optimize both the locations and

the probability masses of the reproduction symbols. However, as remarked in [25], there has not been theoretical

guarantee for the mapping approach because taking into account the locations of reproduction symbols results in
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a non-convex optimization problem. In contrast, our method considers a series of discrete problems with their

discretization step tending to zero, and the convergence is guaranteed since this does not involve determining the

locations of reproduction symbols. While our convergence proof focuses on uniform grids of discretization, it is

noteworthy that, with some technical modifications [26], our approach remains applicable to non-uniform grids.

This adaptability is crucial for designing more efficient discretization schemes, and is left for future research.

The remaining of this article is organised as follows. In Section II, the continuous and discrete RD problems are

introduced and some mathematical notations are given. In Section III, the main theorem showing the convergence of

discrete schemes is established. Then, in Section IV, the convergence rate and the complexity estimation are further

provided. In Section V, numerical experiments are given to corroborate the analysis. The conclusion is drawn in

Section VI.

II. PRELIMINARIES

A. The Continuous RD Problem

Consider a continuous memoryless source X ∈ X with reproduction Y ∈ Y . Here, X ,Y are finite-dimensional

Euclidean spaces. We denote the dimension of Y as d. In the sequel, denote the probability distributions of X,Y

as p, r respectively and the distortion measure as ρ(x, y).

The original RD problem can be expressed as a max-min form (see [27], equation (7)):

max
β≥0

min
r∈W

−
∫

log[

∫
exp(−βρ(x, y))dr(y)]dp(x)− βD, (1)

where W = {r :
∫
dr(y) = 1} and D is the average distortion threshold. In the sequel, we denote the objective

function in (1) as F (r, β). Here, r should be understood as a distribution and the topology on W is the weak

convergence topology [28].

By fixing the multiplier β, we have another form of the RD function (see [24], equation (3)), which has been

used to develop the BA algorithm [11], [12]

min
r∈W

f(r) ≜ −
∫

log[

∫
exp(−βρ(x, y))dr(y)]dp(x). (2)

B. Discretization of the Continuous RD Problem

Since r(y) is a continuous distribution, we discretize it at discrete points {ynj }nj=1, the equidistant nodes of

[−n
1
2d , n

1
2d ]d. We denote the discretization step size as h, i.e., h = 2n− 1

2d and the interval [ynj − h/2, ynj + h/2]

containing yj as Ij and note that these intervals are disjoint. For (2), the following discrete form can be given:

min
r:
∑n

j=1 rj=1
−
∫

log[

n∑
j=1

exp(−βρ(x, ynj ))rj ]dp(x). (3)

Correspondingly, (1) has the following discrete form:

max
β≥0

min
r:
∑n

j=1 rj=1
−
∫
log[

n∑
j=1

exp(−βρ(x, ynj ))rj ]dp(x)− βD. (4)

We can express their solution as rn =
∑

j rjδyn
j

, where δyn
j

is the δ distribution at ynj .
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C. Notations from Mathematical Analysis

In this paper, ∥ · ∥ represents the infinity norm and → means convergence in R, while ⇒ means uniform

convergence [20], i.e., fn⇒f means that ∀ε > 0, |fn(x)− f(x)|≤ε,∀x, when n is large enough. We also denote

the set that contains all the limit points of the sequence {rn}∞n=1 as L({rn}∞n=1). The limit points [28] of {rn}∞n=1

are all the points satisfying that every punctured neighbourhood contains at least one point in {rn}∞n=1. Moreover,

[−M,M ]d means the Cartesian product [−M,M ] × [−M,M ] × · · · [−M,M ], where d intervals are involved. In

the sequel, log
∫
exp(−βρ(x, y))dr(y) appears frequently and for simplicity, we denote it as Hr(y)(x).

III. CONVERGENCE ON DISCRETE SCHEMES

To prove the convergence of discrete schemes, we need some mild assumptions:

∀β > 0,∀ε > 0,∃δ > 0, s.t. ∀x, ∀∥y1 − y2∥ < δ,

∣∣∣∣ exp(−βρ(x, y1))− exp(−βρ(x, y2))

∣∣∣∣ < ε, (5a)∫
max
∥y∥≤A

ρ(x, y)dp(x) < ∞,∀A > 0, (5b)

∀β > 0,∀ε > 0,∃δ > 0, s.t. ∀x,∀∥y1 − y2∥ < δ,∣∣∣∣ exp(−βρ(x, y1))ρ(x, y1)− exp(−βρ(x, y2))ρ(x, y2)

∣∣∣∣ < ε.
(6)

These are reasonable assumptions since for most cases including the mean absolute and mean squared error

distortions, they hold.

Theorem 1: Under Assumptions (5), the solutions rn to the discrete problem (3) satisfy both value convergence

and sequence convergence, i.e.,

f(rn) → f∗, and L({rn}∞n=1) is the solution set of (2),

where f∗ is the optimal value of the continuous problem (2).

Proof: We denote the actual optimal solution as r∗ and Wn = {
∑n

j=1 rjδyn
j
|rj ≥ 0,

∑n
j=1 rj = 1}. As shown

in Section II-B, the continuous RD problem has the discrete form (3), which is in fact minimizing f(r) as defined

in (2), over Wn. Denote the optimal solution of the discrete problem as rn. Then f(rn) ≤ f(r),∀r ∈ Wn. We

observe that if we can find q̃n ∈ Wn satisfying f(q̃n) → f(r∗), then we have

f(r∗) ≤ f(rn) ≤ f(q̃n) → f(r∗). (7)

The first inequality is due to the fact Wn ⊆ W . The relationship (7) would then lead to the convergence f(rn) →

f(r∗). Now, we let

qn =

n∑
j=1

An
j δyn

j
,

where An
j =

∫
Ij
dr∗ and Ij is defined in Section II-B. Let

q̃n = qn

/∫
dqn.

Since ∫
dqn =

∑
j

∫
Ij

dr∗ ≤ 1,
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we have

f(q̃n) = f(qn) + log(

∫
dqn) ≤ f(qn).

Since q̃n ∈ Wn and f(q̃n) ≤ f(qn), we only need to prove f(qn) → f(r∗). Before the proof of f(qn) → f(r∗),

we need to show the convergence after the truncation of X first. We let A > 1 satisfy∫
∥y∥≤A−1

dr∗(y) ≥ 1/2,

and M ≥ A be given. We first do the following estimation for x ∈ [−M,M ]d∣∣∣∣ ∫ exp(−βρ(x, y))dqn(y)−
∫

exp(−βρ(x, y))dr∗(y)

∣∣∣∣
≤

∑
i

∫
Ii

∣∣ exp(−βρ(x, y))− exp(−βρ(x, yni ))
∣∣dr∗(y) + ∫

|y|>n
1
2d

exp(−βρ(x, y))dr∗(y)

≤
∑
i

∫
Ii

εdr∗(y) +

∫
|y|>n

1
2d

dr∗(y)

≤ 2ε, for sufficiently large n.

Here, we have used Assumptions (5) in the second inequality and used the fact

qn =
∑
j

∫
Ij

dr∗ δyn
j
.

Next we establish the uniform convergence. Note that for x ∈ [−M,M ]d,∫
exp(−βρ(x, y))dqn(y) ≥

∫
∥y∥≤M

exp(−βρ(x, y))dqn(y)

≥
∫
∥y∥≤M

exp(−βρ∗)dqn(y) ≥ 1

2
exp(−βρ∗) ≜ δ.

(8)

Here ρ∗ = maxx,y∈[−M,M ]d ρ(x, y) and
∫
∥y∥≤M

dqn ≥ 1
2 is due to∫

∥y∥≤A

dqn(y) =
∑

i:yn
i ∈[−A,A]d

∫
Ii

dr∗(y) ≥
∫
∥y∥≤A−1

dr∗(y) ≥ 1

2
. (9)

Since log x is uniformly continuous in [δ,+∞) and
∫
exp(−βρ(x, y))dqn(y) uniformly converges, we have

log

(∫
exp(−βρ(x, y))dqn(y)

)
⇒ log

(∫
exp(−βρ(x, y))dr∗(y)

)
, x ∈ [−M,M ]d.

Then ∣∣∣∣ ∫
∥x∥≤M

log

[ ∫
exp(−βρ(x, y))dqn(y)

]
dp(x)−

∫
∥x∥≤M

log

[ ∫
exp(−βρ(x, y))dr∗(y)

]
dp(x)

∣∣∣∣
≤

∫
∥x∥≤M

εdp(x) ≤ ε, when n is sufficiently large.

Then as n → +∞, we have∫
∥x∥≤M

log

[ ∫
exp(−βρ(x, y))dqn(y)

]
dp(x) →

∫
∥x∥≤M

log

[ ∫
exp(−βρ(x, y))dr∗(y)

]
dp(x).
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Thus, we obtain the convergence after truncation. In the following, based on this result, we prove the convergence

f(qn) → f(r∗). For M ≥ A,

|f(qn)− f(r∗)| =
∣∣∣∣ ∫ Hqn(y)(x)dp(x)−

∫
Hr∗(y)(x)dp(x)

∣∣∣∣
≤

∣∣∣∣ ∫
∥x∥≤M

[Hqn(y)(x)−Hr∗(y)(x)]dp(x)

∣∣∣∣+ ∫
∥x∥>M

(
−Hqn(y)(x)−Hr∗(y)(x)

)
dp(x),

(10)

where

Hr(y)(x) = log

∫
exp(−βρ(x, y))dr(y).

We denote g(x) = max∥y∥≤A ρ(x, y), and note that∫
exp(−βρ(x, y))dqn(y) ≥ exp(−βg(x))

∫
∥y∥≤A

dqn(y) ≥ 1

2
exp(−βg(x)).

Here the second inequality is similar to (9). Similarly,∫
exp(−βρ(x, y))dr∗(y) ≥ 1

2
exp(−βg(x)).

We thus obtain the following evaluation∫
∥x∥>M

(
−Hqn(x)−Hr∗(x)

)
dp(x) ≤

∫
∥x∥>M

(2 log 2 + 2βg(x))dp(x) → 0, as M → +∞.

Here Assumption (5b), i.e.,
∫
g(x)dp(x) < ∞ has been used. Thus, by (10), we have

|f(qn)− f(r∗)| ≤
∣∣∣∣ ∫

∥x∥≤M

[Hqn(y)(x)−Hr∗(y)(x)]dp(x)

∣∣∣∣+ ∫
∥x∥>M

(2 log 2 + 2βg(x))dp(x).

By taking the upper limit of n for this inequality, we obtain

lim sup
n

∣∣∣∣f(qn)− f(r∗)

∣∣∣∣ ≤ ∫
∥x∥>M

(2 log 2 + 2βg(x))dp(x).

By letting M → +∞, we obtain f(qn) → f(r∗).

To prove the convergence of the solutions, we let r̃ be a limit point of the solution sequence {rn}∞n=1. Then there

exists a subsequence {rnk}∞k=1 satisfying rnk → r̃. Next, we have

f(r̃) = lim
k

f(rnk) = f(r∗),

since we have proven limn f(r
n) = f(r∗). Therefore, we have shown that f(r̃) is equal to the optimal value, and

consequently r̃ is an optimal solution.

■

Next, we provide the convergence proof of the RD problem (1). Due to its max-min form and additional variable

β, the proof is more complicated than that of Theorem 1.

Theorem 2: Under Assumptions (5) and (6), the solutions (rn, βn) to the discrete problem (4) satisfy both value

convergence and sequence convergence, i.e.,

F (rn, βn) → F ∗, and L({(rn, βn)}∞n=1) are solutions of (1),

where F ∗ is the optimal value of the continuous problem (1).
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Proof: We denote the optimal solution of the continuous problem (1) and the discrete problem (4) as (r∗, β∗), (rn, βn)

respectively. Denote Wn = {
∑n

j=1 cjδyn
j
|cj ≥ 0,

∑n
j=1 cj = 1}, where δyn

j
is the δ distribution at ynj . Similar to

Theorem 1, the discrete problem (4) is equivalent to optimizing F (r, β) over Wn. By the property of max-min

problems (4) and (1), we have ∀r ∈ Wn,∀β ≥ 0,

F (rn, βn) ≤ F (r, βn), F (rn, βn) ≥ F (rn, β).

Furthermore, ∀r ∈ W, ∀β ≥ 0,

F (r∗, β∗) ≤ F (r, β∗), F (r∗, β∗) ≥ F (r∗, β).

Next, we construct qn =
∑n

j=1 A
n
j δyn

j
, here

An
j =

∫
Ij

dr∗,

Ij is the interval [ynj − h/2, ynj + h/2] containing yj . Let

q̃n = qn

/∫
dqn ∈ Wn.

Since
∫
dqn ≤ 1, we have

F (q̃n, β) = F (qn, β) + log(

∫
dqn) ≤ F (qn, β), ∀β ≥ 0.

Then we have the following chain of inequalities:

F (r∗, β∗) ≤ F (rn, β∗) ≤ F (rn, βn) ≤ F (q̃n, βn) ≤ F (qn, βn) ≤ F (qn, β̃n),

where β̃n = argmaxβF (qn, β). We observe that if F (qn, β̃n) → F (r∗, β∗), then we have

F (r∗, β∗) ≤ F (rn, βn) ≤ F (qn, β̃n) → F (r∗, β∗). (11)

Therefore, we obtain the convergence F (rn, βn) → F (r∗, β∗). So in summary, we only need to prove F (qn, β̃n) →

F (r∗, β∗).

From the optimality of β̃n, we know β̃n should satisfy the first order condition and is the root of a monotone

function

Gqn(β) =

∫ (∫
e−βρ(x,y)ρ(x, y)dqn(y)

)/(∫
e−βρ(x,y)dqn(y)

)
dp(x)−D.

The monotone property is due to Cauchy inequality

G′
qn(β) = −

∫ [(∫
e−βρ(x,y)dqn(y)

)(∫
e−βρ(x,y)ρ(x, y)2dqn(y)

)
−
(∫

e−βρ(x,y)ρ(x, y)dqn(y)

)2]
( ∫

e−βρ(x,y)dqn(y)

)2 dp(x) < 0.

It does not equal to 0, otherwise, by the condition of equality for Cauchy inequality, ρ(x, y) is a function only with

respect to x, and this degenerate case can be disregarded.

We first show β̃n is lower bounded for n, i.e., β̃n ≥ B1 > 0,∀n. Otherwise, there exists a subsequence

β̃nk → 0. We will show it is a contradiction. Since β̃nk → 0, we have

∃k0,∀k > k0, β̃nk < β∗/2.
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Here, we assume β∗ > 0 and the degenerate case β∗ = 0 can be disregarded, in which the rate equals to 0. Then

by the monotone property of Gqnk , we have

0 = Gqnk (β̃nk) > Gqnk (β∗/2).

Thus,

D >

∫ (∫
e−β∗ρ(x,y)/2ρ(x, y)dqnk(y)

)/(∫
e−β∗ρ(x,y)/2dqnk(y)

)
dp(x)

≥
∫
∥x∥≤M

(∫
e−β∗ρ(x,y)/2ρ(x, y)dqnk(y)

)/(∫
e−β∗ρ(x,y)/2dqnk(y)

)
dp(x).

Here, M is a sufficiently large parameter. By the proof of Theorem 1, we have∫
e−β∗ρ(x,y)/2dqnk(y) ⇒

∫
e−β∗ρ(x,y)/2dr∗(y).

Similarly, ∫
e−β∗ρ(x,y)/2ρ(x, y)dqnk(y) ⇒

∫
e−β∗ρ(x,y)/2ρ(x, y)dr∗(y).

And similar to (8) in the proof of Theorem 1, we have∫
e−β∗ρ(x,y)/2dqnk(y) ≥ δ0.

Meanwhile, we have an upper bound estimation∫
e−β∗ρ(x,y)/2ρ(x, y)dqnk(y) ≤

∫
B dqnk(y) ≤ B.

Here, B is the bound of the function e−β∗x/2x, x ≥ 0. Next, since g(x, y) = x/y is uniformly continuous in

[0, B]× [δ0,∞), we obtain(∫
exp(−β∗ρ(x, y)/2)ρ(x, y)dqnk(y)

)
(∫

exp(−β∗ρ(x, y)/2)dqnk(y)

) ⇒

(∫
exp(−β∗ρ(x, y)/2)ρ(x, y)dr∗(y)

)
(∫

exp(−β∗ρ(x, y)/2)dr∗(y)

)
Thus,

D ≥
∫
∥x∥≤M

(∫
e−β∗ρ(x,y)/2ρ(x, y)dqnk(y)

)/(∫
e−β∗ρ(x,y)/2dqnk(y)

)
dp(x)

→
∫
∥x∥≤M

(∫
e−β∗ρ(x,y)/2ρ(x, y)dr∗(y)

)/(∫
e−β∗ρ(x,y)/2dr∗(y)

)
dp(x)

(12)

We let M → ∞, and get

Gr∗(β∗/2) ≤ 0 = Gr∗(β∗).

Using the monotonicity of Gr∗ , we have β∗/2 ≥ β∗, which is a contradiction.

Next, we will prove the convergence of β̃n. To prove β̃n → β∗, we only need to show every convergent

subsequence converges to β∗, i.e., if a convergent subsequence β̃nk → β̄, then β̄ = β∗. Now, let β̃nk be a

convergent subsequence and β̃nk → β̄. Since β̃nk is lower bounded, we have β̄ > 0. Let A0 satisfies e−β̄t/2t ≤ ε

and e−β̄t/2 ≤ ε, ∀t ≥ A0.∣∣∣∣ ∫ e−β̃nkρ(x,y)ρ(x, y)dqnk(y)−
∫

e−β̄ρ(x,y)ρ(x, y)dqnk(y)

∣∣∣∣ ≤ ∫
|e−β̃nkρ(x,y) − e−β̄ρ(x,y)|ρ(x, y)dqnk(y)

≤
∫

e−β̄ρ(x,y)|e(β̄−β̃nk )ρ(x,y) − 1|ρ(x, y)dqnk(y)
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Next, we divide it into two parts and estimate each part.∫
y:ρ(x,y)>A0

e−β̄ρ(x,y)|e(β̄−β̃nk )ρ(x,y) − 1|ρ(x, y)dqnk(y)

≤
∫
y:ρ(x,y)>A0

e−β̄ρ(x,y)e|β̄−β̃nk |ρ(x,y)ρ(x, y)dqnk(y)

≤
∫
y:ρ(x,y)>A0

e−β̄ρ(x,y)/2ρ(x, y)dqnk(y)

≤
∫
y:ρ(x,y)>A0

εdqnk(y) ≤ ε, when k is sufficiently large

here, the second inequality is due to |β̄ − β̃nk | ≤ β̄/2, when k is sufficiently large.∫
y:ρ(x,y)≤A0

e−β̄ρ(x,y)|e(β̄−β̃nk )ρ(x,y) − 1|ρ(x, y)dqnk(y)

≤
∫
y:ρ(x,y)≤A0

|e(β̄−β̃nk )ρ(x,y) − 1|A0 dqnk(y)

≤
∫
y:ρ(x,y)≤A0

(e|β̄−β̃nk |ρ(x,y) − 1)A0 dqnk(y)

≤
∫
y:ρ(x,y)≤A0

(e|β̄−β̃nk |A0 − 1)A0 dqnk(y)

≤ (e|β̄−β̃nk |A0 − 1)A0 ≤ ε, when k is sufficiently large

Combining the two parts, we obtain∣∣∣∣ ∫ e−β̃nkρ(x,y)ρ(x, y)dqnk(y)−
∫

e−β̄ρ(x,y)ρ(x, y)dqnk(y)

∣∣∣∣ ≤ 2ε, when k is sufficiently large.

Thus, ∫
e−β̃nkρ(x,y)ρ(x, y)dqnk(y)−

∫
e−β̄ρ(x,y)ρ(x, y)dqnk(y) ⇒ 0, ∀x. (13)

And by the proof of Theorem 1, we have∫
e−β̄ρ(x,y)ρ(x, y)dqnk(y) ⇒

∫
e−β̄ρ(x,y)ρ(x, y)dr∗(y), ∀x.

Thus, ∫
e−β̃nkρ(x,y)ρ(x, y)dqnk(y) ⇒

∫
e−β̄ρ(x,y)ρ(x, y)dr∗(y), ∀x.

Similarly, we have ∫
e−β̃nkρ(x,y)dqnk(y) ⇒

∫
e−β̄ρ(x,y)dr∗(y), ∀x.

Next, we will prove Gqnk (β̃nk) → Gr∗(β̄). Since β̃nk → β̄, we have |β̃nk − β̄| ≤ ε, when k is sufficiently large.

Using the monotonicity of Gqnk , we obtain

Gqnk (β̄ + ε) ≤ Gqnk (β̃nk) ≤ Gqnk (β̄ − ε). (14)

Next, We divide Gqnk (β̄+ ε) into two parts, and estimate each part. For simplicity, we denote β̄+ ε as β. We first

estimate the part ∫
∥x∥>M

(∫
e−βρ(x,y)ρ(x, y)dqnk(y)

)/(∫
e−βρ(x,y)dqnk(y)

)
dp(x).
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We denote Ax = − 1
β log

∫
e−βρ(x,y)dqnk(y), then∫

e−βρ(x,y)ρ(x, y)dqnk(y)

≤
∫
y:ρ(x,y)≤Ax

e−βρ(x,y)ρ(x, y)dqnk(y) +

∫
y:ρ(x,y)>Ax

e−βρ(x,y)ρ(x, y)dqnk(y)

≤
∫
y:ρ(x,y)≤Ax

e−βρ(x,y)Ax dqnk(y) +

∫
y:ρ(x,y)>Ax

e−βmax(Ax,1/β) max(Ax, 1/β)dq
nk(y)

≤ Ax

∫
e−βρ(x,y) dqnk(y) + e−βmax(Ax,1/β) max(Ax, 1/β)

= Ax exp(−βAx) + e−βmax(Ax,1/β) max(Ax, 1/β)

Thus, ∫
∥x∥>M

(∫
e−βρ(x,y)ρ(x, y)dqnk(y)

)/(∫
e−βρ(x,y)dqnk(y)

)
dp(x)

≤
∫
∥x∥>M

(
Ax exp(−βAx) + e−βmax(Ax,1/β) max(Ax, 1/β)

)/
exp(−βAx)dp(x)

≤
∫
∥x∥>M

(
Ax +max(Ax, 1/β)

)
dp(x)

≤
∫
∥x∥>M

(
2Ax + 1/β

)
dp(x)

Note that
Ax = − 1

β
log

∫
e−βρ(x,y)dqnk(y)

≤ − 1

β
log

∫
∥y∥≤A

e−βρ(x,y)dqnk(y)

≤ − 1

β
log

∫
∥y∥≤A

e−βg(x)dqnk(y)

≤ − 1

β
log(e−βg(x)/2)

= g(x) + (log 2)/β, when k is sufficiently large.

Here, A is the constant in Theorem 1 and g(x) = max∥y∥≤A ρ(x, y). And we get∫ (
2Ax + 1/β

)
dp(x) < ∞.

Similar to (12), the other part∫
∥x∥≤M

(∫
e−βρ(x,y)ρ(x, y)dqnk(y)

)/(∫
e−βρ(x,y)dqnk(y)

)
dp(x)

→
∫
∥x∥≤M

(∫
e−βρ(x,y)ρ(x, y)dr∗(y)

)/(∫
e−βρ(x,y)dr∗(y)

)
dp(x), as k → ∞.

Finally, combining the estimate of the two parts, we have

Gqnk (β) =

∫ (∫
e−βρ(x,y)ρ(x, y)dqnk(y)

)/(∫
e−βρ(x,y)dqnk(y)

)
dp(x)−D

≤
∫
∥x∥≤M

(∫
e−βρ(x,y)ρ(x, y)dqnk(y)

)/(∫
e−βρ(x,y)dqnk(y)

)
dp(x) +

∫
∥x∥>M

(
2Ax + 1/β

)
dp(x)−D
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We first let k goes to ∞,

lim sup
k

Gqnk (β) ≤
∫
∥x∥≤M

(∫
e−βρ(x,y)ρ(x, y)dr∗(y)

)/(∫
e−βρ(x,y)dr∗(y)

)
dp(x)

+

∫
∥x∥>M

(
2Ax + 1/β

)
dp(x)−D

Then let M → ∞, we obtain

lim sup
k

Gqnk (β) ≤
∫ (∫

e−βρ(x,y)ρ(x, y)dr∗(y)

)/(∫
e−βρ(x,y)dr∗(y)

)
dp(x)−D = Gr∗(β),

i.e., lim supk Gqnk (β̄ + ε) ≤ Gr∗(β̄ + ε).

Meanwhile,

Gqnk (β) =

∫ (∫
e−βρ(x,y)ρ(x, y)dqnk(y)

)/(∫
e−βρ(x,y)dqnk(y)

)
dp(x)−D

≥
∫
∥x∥≤M

(∫
e−βρ(x,y)ρ(x, y)dqnk(y)

)/(∫
e−βρ(x,y)dqnk(y)

)
dp(x)−D

Let k → ∞ and then M → ∞, we have

lim inf
k

Gqnk (β) ≥ lim
M→∞

∫
∥x∥≤M

(∫
e−βρ(x,y)ρ(x, y)dr∗(y)

)/(∫
e−βρ(x,y)dr∗(y)

)
dp(x)−D = Gr∗(β),

i.e., lim infk Gqnk (β̄ + ε) ≥ Gr∗(β̄ + ε). Thus, we obtain

lim
k

Gqnk (β̄ + ε) = Gr∗(β̄ + ε).

Similarly,

lim
k

Gqnk (β̄ − ε) = Gr∗(β̄ − ε).

Using (14), we have

Gr∗(β̄ + ε) = lim
k

Gqnk (β̄ + ε) ≤ lim inf
k

Gqnk (β̃nk) ≤ lim sup
k

Gqnk (β̃nk) ≤ lim
k

Gqnk (β̄ − ε) = Gr∗(β̄ − ε).

Then, let ε → 0, we obtain 0 = limk Gqnk (β̃nk) = Gr∗(β̄). Therefore, Gr∗(β̄) = 0 = Gr∗(β∗). Then by the strict

monotonicity, we have β̄ = β∗. Thus β̃n → β∗ holds.

Now, we will show the convergence F (qn, β̃n) → F (r∗, β∗). By Theorem 1, we have F (qn, β∗) → F (r∗, β∗).

Thus we only need to show F (qn, β̃n)− F (qn, β∗) → 0.

0 ≤ F (qn, β̃n)− F (qn, β∗) = −
∫

log

∫
exp(−β̃nρ(x, y))dqn(y)∫
exp(−β∗ρ(x, y))dqn(y)

dp(x)− (β̃n − β∗)D

We divide the integration into two parts and estimate each part.

−
∫
∥x∥≤M

log

∫
exp(−β̃nρ(x, y))dqn(y)∫
exp(−β∗ρ(x, y))dqn(y)

dp(x)

=

∫
∥x∥≤M

log

(∫
exp(−β∗ρ(x, y))dqn(y)−

∫
exp(−β̃nρ(x, y))dqn(y)∫

exp(−β̃nρ(x, y))dqn(y)
+ 1

)
dp(x)

≤
∫
∥x∥≤M

|
∫
exp(−β∗ρ(x, y))dqn(y)−

∫
exp(−β̃nρ(x, y))dqn(y)|∫

exp(−β̃nρ(x, y))dqn(y)
dp(x)

≤
∫
∥x∥≤M

|
∫
exp(−β∗ρ(x, y))dqn(y)−

∫
exp(−β̃nρ(x, y))dqn(y)|

δ0
dp(x)
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Here, δ0 is a lower bound∫
exp(−β̃nρ(x, y))dqn(y) ≥

∫
∥y∥≤M

exp(−B0ρ(x, y))dq
n(y)

≥
∫
∥y∥≤M

exp(−B0ρ
∗)dqn(y)

≥ 1

2
exp(−B0ρ

∗) ≜ δ0.

Here, B0 is the upper bound of β̃n, since it is convergent. And M is larger than the constant A in Theorem 1. ρ∗

is a constant equals to maxx,y∈[−M,M ]d ρ(x, y). Using the same derivation as (13), we have∫
exp(−β̃nρ(x, y))dqn(y)−

∫
exp(−β∗ρ(x, y))dqn(y) ⇒ 0.

Thus,∫
∥x∥≤M

|
∫
exp(−β∗ρ(x, y))dqn(y)−

∫
exp(−β̃nρ(x, y))dqn(y)|

δ0
dp(x) ≤ ε, when n is sufficiently large

Meanwhile, we denote g(x) = max∥y∥≤A ρ(x, y), then

−
∫
∥x∥>M

log

∫
exp(−β̃nρ(x, y))dqn(y)∫
exp(−β∗ρ(x, y))dqn(y)

dp(x)

= −
∫
∥x∥>M

log

(∫
exp(−β̃nρ(x, y))dqn(y)

)
dp(x)−

∫
∥x∥>M

log

(∫
exp(−β∗ρ(x, y))dqn(y)

)
dp(x)

≤
∫
∥x∥>M

[
− log

(∫
∥y∥≤A

exp(−β̃nρ(x, y))dqn(y)

)
− log

(∫
∥y∥≤A

exp(−β∗ρ(x, y))dqn(y)

)]
dp(x)

≤
∫
∥x∥>M

[
− log

(∫
∥y∥≤A

exp(−β̃ng(x))dqn(y)

)
− log

(∫
∥y∥≤A

exp(−β∗g(x))dqn(y)

)]
dp(x)

≤
∫
∥x∥>M

[
− log

(
1/2 exp(−β̃ng(x))

)
− log

(
1/2 exp(−β∗g(x))

)]
dp(x)

=

∫
∥x∥>M

[
2 log 2 + β̃ng(x) + β∗g(x)

]
dp(x)

≤
∫
∥x∥>M

[
2 log 2 +B0g(x) + β∗g(x)

]
dp(x)

Combining the two parts and taking the limit n → ∞, we obtain

lim sup
n

[F (qn, β̃n)− F (qn, β∗)] = lim sup
n

−
∫

log

∫
exp(−β̃nρ(x, y))dqn(y)∫
exp(−β∗ρ(x, y))dqn(y)

dp(x)

= lim sup
n

(
−
∫
∥y∥≤M

log

∫
exp(−β̃nρ(x, y))dqn(y)∫
exp(−β∗ρ(x, y))dqn(y)

dp(x)−
∫
∥y∥>M

log

∫
exp(−β̃nρ(x, y))dqn(y)∫
exp(−β∗ρ(x, y))dqn(y)

dp(x)

)
≤ 0 +

∫
∥x∥>M

[
2 log 2 +B0g(x) + β∗g(x)

]
dp(x)

Then by taking the limit of M → ∞, we obtain the convergence. Here we used Assumption (5b)
∫
g(x)dp(x) < ∞.

To prove the convergence of the solutions, we let (r̃, β̃) be a accumulation point of the solution sequence

{(rn, βn)}∞n=1. Then there is a subsequence {(rnk , βnk)}∞k=1 satisfying rnk → r̃ and βnk → β̃. Next, we have

F (r̃, β̃) = lim
k

F (rnk , βnk) = F (r∗, β∗),
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since we have proven limn F (rn, βn) = F (r∗, β∗). By the optimal property of (r∗, β∗), (rnk , βnk), we have

F (r̃, β̃) = F (r∗, β∗) ≤ F (rnk , β
∗
) ≤ F (rnk , βnk) ≤ F (q̃nk , βnk).

Here, q̃nk ∈ Wnk
is a discrete version of r̄ = argminr∈WF (r, β̃). Similar to the value convergence analysis above,

we have F (q̃nk , βnk) → F (r̄, β̃). Thus, we have

F (r̃, β̃) ≤ F (r̄, β̃) ≤ F (r, β̃), ∀r ∈ W.

This means r̃ = argminr∈WF (r, β̃) and

F (r̃, β̃) = min
r∈W

F (r, β̃) ≜ h(β̃).

However, F (r̃, β̃) = F (r∗, β∗) = h(β∗), and h(β∗) = maxβ≥0 h(β), due to the optimal property of (r∗, β∗). So,

we obtain β̃ is optimal, i.e., β̃ = argmaxβ≥0 h(β). And combining r̃ = argminr∈WF (r, β̃), we obtain (r̃, β̃) is

optimal. ■

IV. CONVERGENCE RATE AND ALGORITHM COMPLEXITY

First, we will establish some convergence rate results of problem (3). Before the analysis of the convergence

rate, we need a lemma first.

Lemma 1: e−λρ(x,y) is Lipschitz continuous, when (x, y) ∈ [−M,M ]d × [−M,M ]d, i.e., there exists a constant

L > 0 satisfying:

|e−λρ(x1,y1) − e−λρ(x2,y2)| ≤ L(∥x1 − x2∥+ ∥y1 − y2∥),∀(x1, y1), (x2, y2) ∈ [−M,M ]d × [−M,M ]d.

Proof: Since e−λρ(x,y) is continuously differentiable, its Jacobi matrix J(x, y) is bounded in [−M,M ]d ×

[−M,M ]d, i.e., ∥J(x, y)∥ ≤ L. Then by the Finite Increment Theorem, we have

|e−λρ(x1,y1) − e−λρ(x2,y2)| ≤ ∥J(x, y)∥(∥x1 − x2∥+ ∥y1 − y2∥),

for some (x, y) ∈ [−M,M ]d × [−M,M ]d. Then by the bound on ∥J(x, y)∥, we obtain the Lipchitz continuous

property. ■

Next, we will prove the convergence rate of the discrete schemes (3).

Theorem 3: When the distribution p of X is supported in [−M,M ]d, the optimal values f(rn) of the discrete

problem (3) satisfy the error estimate

|f(rn)− f∗| ≤ Ch,

where C is a constant and h = 2M/n
1
d is the discretization step size.

Proof: By Lemma 4.1 in [23], we have the distribution r of the reproduction variable is supported in [−M,M ]d

as long as ρ(x, y) is a strictly increasing continuous difference distortion measure. Thus, we can just take the

equidistant discretization nodes {ynj }nj=1 from [−M,M ]d. Due to the inequality (7) in Theorem 1, we have

0 ≤ f(rn)− f(r∗) ≤ f(qn)− f(r∗).
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Thus, we only need to evaluate f(qn)− f(r∗).∣∣∣∣ ∫ exp(−λρ(x, y))dqn(y)−
∫

exp(−λρ(x, y))dr∗(y)

∣∣∣∣
=

∣∣∣∣∑
i

∫
Ii

dr∗(y) exp(−λρ(x, yni ))−
∫

exp(−λρ(x, y))dr∗(y)

∣∣∣∣
=

∣∣∣∣∑
i

∫
Ii

dr∗(y) exp(−λρ(x, yni ))−
∑
i

∫
Ii

exp(−λρ(x, y))dr∗(y)

∣∣∣∣
≤

∑
i

∫
Ii

| exp(−λρ(x, y))− exp(−λρ(x, yni ))|dr∗(y)

≤
∑
i

∫
Ii

L∥y − yni ∥dr∗(y)

≤
∑
i

∫
Ii

Lh/2 dr∗(y) = Lh/2

The second equality is due to
⋃n

i=1 Ii ⊇ [−M,M ]d and we have used the result in Lemma 1.

Next, we have an evaluation on the lower bound of
∫
exp(−λρ(x, y))dqn(y).∫

exp(−λρ(x, y))dqn(y) =

∫
∥y∥≤M

exp(−λρ(x, y))dqn(y)

≥ e−λρ∗
∫
∥y∥≤M

dqn(y) = e−λρ∗
≜ δ0,∀x ∈ [−M,M ]d.

Here, ρ∗ = maxx,y∈[−M,M ]d ρ(x, y). Similarly, we have∫
exp(−λρ(x, y))dr∗(y) ≥ δ0.

Then,

log

(∫
exp(−λρ(x, y))dqn(y)

)
− log

(∫
exp(−λρ(x, y))dr∗(y)

)
= log

((∫
exp(−λρ(x, y))dqn(y)−

∫
exp(−λρ(x, y))dr∗(y)

)/∫
exp(−λρ(x, y))dr∗(y) + 1

)
≤

( ∫
exp(−λρ(x, y))dqn(y)−

∫
exp(−λρ(x, y))dr∗(y)

)/∫
exp(−λρ(x, y))dr∗(y)

≤ Lh/(2δ0)

Finally, we have an evaluation on the convergence rate

f(qn)− f(r∗) =

∫
log

(∫
exp(−λρ(x, y))dqn(y)

)
dp(x)−

∫
log

(∫
exp(−λρ(x, y))dr∗(y)

)
dp(x)

=

∫
∥x∥≤M

(
log

(∫
exp(−λρ(x, y))dqn(y)

)
− log

(∫
exp(−λρ(x, y))dr∗(y)

))
dp(x)

≤
∫
∥x∥≤M

Lh/(2δ0) dp(x)

≤ Lh/(2δ0) = O(h).

Thus,

f(rn)− f(r∗) = O(h).
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Since the total number of discrete nodes is n, there is n
1
d nodes in each direction. So, the discretization distant is

2M
n1/d . Thus the convergence rate equals O(1/n

1
d ) as well. ■

Next, based on the convergence rate analysis above, we can conduct a complexity analysis of solving the

continuous RD problem (2) for achieving ε-accuracy via the BA algorithm.

Theorem 4: To ensure ε-accuracy when computing the optimal value, the BA algorithm needs O(m| log ε|
εd+1 )

arithmetic operations. Here, m is the number of discretizaion nodes of X when conducting numerical integration

and d is the dimension of Y .

Proof: By Theorem 3, to ensure f(rn) − f(r∗) ≤ ε, we need n to satisfy 1/n1/d ∼ ε, i.e., n ∼ 1/εd. Then

we use the BA algorithm to solve the associated discrete problem within ε tolerance. As shown in [16, Theorem

2, Equation (96)], the BA algorithm needs O(log n/ε) iterations to achieve ε-accuracy. In each iteration, the BA

algorithm iterates between two variables w(yni |x) and r(yni ) in the following way:

w(yni |x) =
(
r(yni )e

−βρ(x,yn
i )

)/ n∑
i=1

e−βρ(x,yn
i )r(yni ),

r(yni ) =

∫
p(x)w(yni |x)dx.

Let x1, x2 · · ·xm be the nodes of numerical integration with respect to x. When computing w(yni |x), we need to

perform matrix-vector multiplication
n∑

i=1

e−βρ(xj ,y
n
i )r(yni ), j = 1, 2 · · ·m,

and it involves O(mn) arithmetic operations. The total computation cost for w(yni |x) is O(mn). When computing

r(yni ), we need to perform numerical integration,∫
p(x)w(yni |x)dx ∼

m∑
j=1

Ajp(xj)w(y
n
i |xj), i = 1, 2 · · ·n,

where Aj are the numerical integration coefficients. This is a matrix-vector multiplication and it involves O(mn)

arithmetic operations. Thus, the computation cost for each iteration in the BA algorithm is O(mn). Hence, the total

computation cost is O(mn log n/ε) = O(m| log ε|/εd+1). ■

Correspondingly, the convergence rate of problem (4) can be obtained.

Theorem 5: When the distribution p of X is supported in [−M,M ]d, the optimal values F (rn, βn) of discrete

problem (4) satisfy the error estimate

|F (rn, βn)− F ∗| ≤ Ch,

where C is a constant and h = 2M/n
1
d is the discretization step size.

Before the analysis of the convergence rate, we need a lemma first.

Lemma 2: e−βρ(x,y), e−βρ(x,y)ρ(x, y) is uniformly Lipschitz continuous for 0 < B1 ≤ β ≤ B0, when (x, y) ∈

[−M,M ]d × [−M,M ]d, i.e., there exists a constant L > 0 satisfying:

|e−βρ(x1,y1) − e−βρ(x2,y2)| ≤ L(∥x1 − x2∥+ ∥y1 − y2∥),

|e−βρ(x1,y1)ρ(x1, y1)− e−βρ(x2,y2)ρ(x2, y2)| ≤ L(∥x1 − x2∥+ ∥y1 − y2∥),

∀(x1, y1), (x2, y2) ∈ [−M,M ]d × [−M,M ]d, ∀0 < B1 ≤ β ≤ B0,
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Proof: Since e−βρ(x,y) is continuously differentiable, its Jacobi matrix Jβ(x, y) with respect to (x, y) is continuous

in [−M,M ]d× [−M,M ]d. And taking into account β, Jβ(x, y) is continuous in [−M,M ]d× [−M,M ]d× [B1, B0].

Thus it is bounded, i.e., ∥Jβ(x, y)∥ ≤ L. Then by the Finite Increment Theorem, we have

|e−βρ(x1,y1) − e−βρ(x2,y2)| ≤ ∥Jβ(x, y)∥(∥x1 − x2∥+ ∥y1 − y2∥),

for some (x, y) ∈ [−M,M ]d × [−M,M ]d. Then by the bound on ∥Jβ(x, y)∥, we obtain the Lipschitz continuous

property. Similarly, we can prove the Lipschitz continuous property of e−βρ(x,y)ρ(x, y). ■

Next, we will give the proof of Theorem 5.

Proof: Since r is supported in [−M,M ]d, we can just take the equidistant discretization nodes {ynj }nj=1 from

[−M,M ]d. Due to the inequality (11) in Theorem 4, we have

0 ≤ f(rn, βn)− f(r∗, β∗) ≤ f(qn, β̃n)− f(r∗, β∗).

Thus, we only need to evaluate f(qn, β̃n)− f(r∗, β∗).

First, we estimate the convergence rate of β̃n → β∗.∣∣∣∣ ∫ exp(−β̃nρ(x, y))dqn(y)−
∫

exp(−β̃nρ(x, y))dr∗(y)

∣∣∣∣
=

∣∣∣∣∑
i

∫
Ii

dr∗(y) exp(−β̃nρ(x, yni ))−
∫

exp(−β̃nρ(x, y))dr∗(y)

∣∣∣∣
=

∣∣∣∣∑
i

∫
Ii

dr∗(y) exp(−β̃nρ(x, yni ))−
∑
i

∫
Ii

exp(−β̃nρ(x, y))dr∗(y)

∣∣∣∣
≤

∑
i

∫
Ii

| exp(−β̃nρ(x, y))− exp(−β̃nρ(x, yni ))|dr∗(y)

≤
∑
i

∫
Ii

L∥y − yni ∥dr∗(y)

≤
∑
i

∫
Ii

Lh/2 dr∗(y) = Lh/2

The second equality is due to
⋃n

i=1 Ii ⊇ [−M,M ]d. And the second inequality uses the bound on β̃n, i.e.,

0 < B1 ≤ β̃n ≤ B0. Similarly, we have∣∣∣∣ ∫ exp(−β̃nρ(x, y))ρ(x, y)dqn(y)−
∫

exp(−β̃nρ(x, y))ρ(x, y)dr∗(y)

∣∣∣∣ ≤ Lh/2.

Next, we have an evaluation on the lower bound of
∫
exp(−β̃nρ(x, y))dqn(y).∫

exp(−β̃nρ(x, y))dqn(y) =

∫
∥y∥≤M

exp(−β̃nρ(x, y))dqn(y)

≥ e−β̃nρ∗
∫
∥y∥≤M

dqn(y) = e−β̃nρ∗
≜ δ0,∀x ∈ [−M,M ]d.

(15)

Here, ρ∗ = maxx,y∈[−M,M ]d ρ(x, y). Similarly, we have∫
exp(−β̃nρ(x, y))dr∗(y) ≥ δ0.
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And we have an upper bound estimation on
∫
exp(−β̃nρ(x, y))ρ(x, y)dr∗(y).∫

exp(−β̃nρ(x, y))ρ(x, y)dr∗(y) ≤
∫

exp(−B1ρ(x, y))ρ(x, y)dr
∗(y)

≤
∫

M1dr
∗(y) = M1.

Here, M1 is the upper bound on the function exp(−B1t)t, t ≥ 0. Now, since Gr∗(β∗) = 0 = Gqn(β̃n), we have

the following estimation

|Gr∗(β̃n)−Gr∗(β∗)| = |Gr∗(β̃n)−Gqn(β̃n)|

≤
∫
∥x∥≤M

∣∣∣∣
( ∫

exp(−β̃nρ(x, y))ρ(x, y)dqn(y)

)
(∫

exp(−β̃nρ(x, y))dqn(y)

) −

(∫
exp(−β̃nρ(x, y))ρ(x, y)dr∗(y)

)
(∫

exp(−β̃nρ(x, y))dr∗(y)

) ∣∣∣∣dp(x)
=

∫
∥x∥≤M

∣∣∣∣ b1a1 − b2
a2

∣∣∣∣dp(x) = ∫
∥x∥≤M

|a2b1 − a1b2|
a1a2

dp(x)

≤
∫
∥x∥≤M

a2|b1 − b2|+ b2|a2 − a1|
a1a2

dp(x) ≤
∫
∥x∥≤M

Lh/(2δ0) +
M1Lh/2

δ20
dp(x)

≤ Lh/(2δ0) +
M1Lh/2

δ20
= O(h).

Here, for simplicity, we use a1, a2, b1, b2 to represent the corresponding integration.

Next, we will give the estimate of β̃n−β∗. Let −L1 = G′
r∗(β∗) < 0, then in a neighborhood (−δ2+β∗, δ2+β∗)

of β∗, we have G′
r∗(β) ≤ −L1/2 and β̃n is in the neighborhood when n is sufficiently large. Therefore, by the

Lagrange Mean Value Theorem, we have

|Gr∗(β̃n)−Gr∗(β∗)| = |G′
r∗(ζ)| |β̃n − β∗| ≥ L1

2
|β̃n − β∗|.

Here, ζ is a real number between β̃n and β∗. Thus, we obtain

|β̃n − β∗| ≤ 2

L1
|Gr∗(β̃n)−Gr∗(β∗)| = O(h).

Next, we will give the convergence rate of f(qn, β̃n)− f(r∗, β∗).

|f(qn, β̃n)− f(r∗, β∗)| ≤ |f(qn, β̃n)− f(qn, β∗)|+ |f(qn, β∗)− f(r∗, β∗)|.

For the first part, we have the following estimation

0 ≤ f(qn, β̃n)− f(qn, β∗) = −
∫
∥x∥≤M

log

∫
exp(−β̃nρ(x, y))dqn(y)∫
exp(−β∗ρ(x, y))dqn(y)

dp(x)− (β̃n − β∗)D

≤
∫
∥x∥≤M

log

(∫
exp(−β∗ρ(x, y))dqn(y)−

∫
exp(−β̃nρ(x, y))dqn(y)∫

exp(−β̃nρ(x, y))dqn(y)
+ 1

)
dp(x) +O(h)

≤
∫
∥x∥≤M

|
∫
exp(−β∗ρ(x, y))dqn(y)−

∫
exp(−β̃nρ(x, y))dqn(y)|∫

exp(−β̃nρ(x, y))dqn(y)
dp(x) +O(h)

≤
∫
∥x∥≤M

|
∫
exp(−β∗ρ(x, y))dqn(y)−

∫
exp(−β̃nρ(x, y))dqn(y)|

δ0
dp(x) +O(h)
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Here, δ0 is a lower bound as shown in (15).

|
∫

exp(−β∗ρ(x, y))dqn(y)−
∫

exp(−β̃nρ(x, y))dqn(y)|

≤
∫

e−β∗ρ(x,y)|e(β
∗−β̃n)ρ(x,y) − 1|dqn(y)

≤
∫
∥y∥≤M

|e(β
∗−β̃n)ρ(x,y) − 1| dqn(y)

≤
∫
∥y∥≤M

(e|β
∗−β̃n|ρ(x,y) − 1) dqn(y)

≤
∫
∥y∥≤M

(e|β
∗−β̃n|ρ∗

− 1) dqn(y)

≤ (e|β
∗−β̃n|ρ∗

− 1) ≤ 2|β∗ − β̃n|ρ∗ = O(h), when n is sufficiently large

Here, ρ∗ = maxx,y∈[−M,M ]d ρ(x, y). Thus,

|f(qn, β̃n)− f(qn, β∗)| ≤
∫
∥x∥≤M

|
∫
exp(−β∗ρ(x, y))dqn(y)−

∫
exp(−β̃nρ(x, y))dqn(y)|

δ0
dp(x) +O(h)

≤
∫
∥x∥≤M

O(h)/δ0 dp(x) +O(h) ≤ O(h)/δ0 +O(h) = O(h).

Meanwhile, due to Theorem 2, |f(qn, β∗)−f(r∗, β∗)| = O(h). Thus, we obtain the convergence rate |f(rn, βn)−

f(r∗, β∗)| = O(h) = O(1/n
1
d ).

■

Using the recently proposed CBA algorithm [15], we can solve the original RD problem (1) directly. The next

theorem gives the complexity result of solving the continuous RD problem (1) for achieving ε-accuracy via the

CBA algorithm.

Theorem 6: To ensure ε-accuracy when computing the optimal value, the CBA algorithm needs O
(m| log ε|

εd+1 (1 +

log | log ε|)
)

arithmetic operations 1. Here, m is the number of discretizaion nodes of X when conducting numerical

integration and d is the dimension of Y .

Proof: By Theorem 5, to ensure F (rn, βn)− F (r∗, β∗) ≤ ε, we need n to satisfy 1/n1/d ∼ ε, i.e., n ∼ 1/εd.

Then we use the CBA algorithm to solve the discrete problem within ε tolerance. As shown in a recent work [15],

we need O(mn logn
ε (1 + log | log ε|)) arithmetic operations to achieve ε-accuracy. Thus, the complexity is

O
(mn log n

ε
(1 + log | log ε|)

)
=O

(m| log ε|
εd+1

(1 + log | log ε|)
)
.

■

V. NUMERICAL EXPERIMENTS

In this section, we conduct experiments on uniform source to confirm the convergence. We consider the uniform

source on interval [−8, 8] and conduct experiments with different discretization parameters, namely the node number

n = 20, 40, 80, 160 of Y , while we take the node number m = 300 of X to ensure computing the integral of x with

1The CBA algorithm takes an additional cost log | log ε| to update the multiplier β, while the BA algorithm fixes β. Thus, the CBA algorithm

is applicable for solving the original problem (1) directly.
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high accuracy. Moreover, we use the BA algorithm and the CBA algorithm to solve the discrete RD problem (3)

and (4) respectively with high accuracy. The corresponding results of the reproduction distribution are illustrated

in Figure 1 and Figure 2.

Fig. 1. The discrete optimal reproduction produced by the BA algorithm for the slope β = 0.1 (left) and β = 0.2 (right).

Fig. 2. The discrete optimal reproduction produced by the CBA algorithm for the distortion D = 4 (left) and D = 3 (right).

As shown in [24], the optimal reproduction of the uniform source is a discrete distribution. From the figures,

the convergence is clearly demonstrated and the solutions of discrete problems converge to a discrete distribution

as the grids become finer.
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VI. CONCLUSION

In this paper, we prove the convergence of discrete schemes for computing the continuous RD problem and

establish convergence rate results and complexity estimations. Numerical experiments confirm the convergence.

Considering the fundamental role of the RD problem, it is envisioned that our method may lead to a series of

applications to various information problems.
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