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Abstract - The need for diagnostic tools for the characterization
ofprogressive movement disorders - as the Parkinson Disease (PD)
- aiming to early detect and monitor the pathology is getting more
and more impelling. The parallel request ofwearable and wireless
solutions, for the real-time monitoring in a non-controlled
environment, has led to the implementation of a Quantitative Gait
Analysis platform for the extraction of muscular implications
features in ordinary motor action, such as gait.
The here proposed platform is used for the quantification of PD
symptoms. Addressing the wearable trend, the proposed
architecture is able to define the real-time modulation of the
muscular indexes by using 8 EMG wireless nodes positioned on
lower limbs. The implemented system "translates" the acquisition
in a I-bit signal, exploiting a dynamic thresholding algorithm. The
resulting I-bit signals are used both to define muscular indexes
both to drastically reduce the amount of data to be analyzed,
preserving at the same time the muscular information. The overall
architecture has been funy implemented on Altera Cyclone V
FPGA. The system has been tested on 4 subjects: 2 affected by PD
and 2 healthy subjects (control group). The experimental results
highlight the validity of the proposed solution in Disease
recognition and the outcomes match the clinical literature results.

Keywords-EMG, Gait, FPGA, Parkinson Disease, Wearable
Diagnostic

I. INTRODUCTION

Parkinson disease (PD) is a progressive neurological disease
characterized by bradykinesia (slowness) or akinesia (absent
movement), tremor, rigidity and postural instability [1]. The
Centers for Disease Control and Prevention (CDC) rated the
motor complications from PD as the 14th top cause of death in
the United States [2]. Typically, these movement disorders are
associated with a slow short-stepped, shuffling gait pattern. For
this aim, analysis of the gait in response to medication, visual
cues, attentional strategies, provide insight into the nature ofthe
motor control deficit in Parkinson disease and the efficacy of
current therapeutic interventions. Currently, the Unified
Parkinson Disease Rating Scale [3] jointly with the
Hoehn&Yahr (H&Y) [4] one, are used to assess the severity of
gait and mobility complications, as well as the
presence/absence of characteristic motor signs in term of
independence and quality oflife. Despite the widespread use of
this scales, these metrics of judgment suffer of strong
subjectivity from neurologists and caregivers, since the score
assignment are left to visual inspection approaches. Then,
subjectively extracted information are the current trends in
daily clinician's diagnostic work and therapeutic decisions.
With the aim of releasing the assessment of a serious disease
such as Parkinson's from this kind of information, a new rising
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branch of bio-medical application was born, named
Quantitative Gait Analysis (QGA).The QGA is a systematic
study of human walking in terms of kinematics, and spatio­
temporal parameters useful for the characterization of human
movement. With the above-stated definition, QGA in clinical
assessment can guide physicians to optimal decision making. In
such cases, QGA can provide objective and progressive data
about the gait deviation and functional deficits [5]. The QGA
solutions can be divided in: (i) wearable systems (WS) and (ii)
non-wearable ones (NWS). Among the NWSs, most of the
systems utilizes a combination of commercial video recording
system and inertial sensors for gait monitoring in PD [6, 7], or
complex hybrid combinations of cameras and Kinect system
[8]. These systems adopt image-processing approaches that are
not suitable for low computational and real-time
implementation. Other NWSs use floor sensors [9] to reach
useful evaluation about the force exerted by the subject's feet
on the floor when he/she walks. The major limitation ofNWSs
is that these solutions typically require the use of controlled
research environment, in which the sensors are located and
capture data on the gait. For NWS applications, the subject is
typically asked to walk on a clearly marked walkway [10].
Differently, WSs make it possible to analyze data outside the
laboratory and capture information about the human gait during
the person's everyday activities. Wearable systems use a
network of sensor (e.g. accelerometers, gyroscopic,
magnetometers, active markers) located on the user body (e.g.
feet, knees, leg, arms and waist) [11, 12]. The above-mentioned
methods despite of their sensing capability, provide only a
partial knowledge of the disease since the PD involves a
deterioration of deep muscular activity before it becomes
clearly visible through visual inspection techniques. Analyzing
the muscular involvements represents, instead, a deep
knowledge of motor activity allowing precise quantification of
the progression ofthe disease. In this work, we propose a novel
QGA wearable and wireless platform for PD early recognition,
fully based on electromyography (EMG). The proposed
architecture is able to define the real-time modulation ofan "ad
hoc" calculated muscular index, to characterize the gait. The
system describes the muscular activity, acquired by 8
commercial EMG wireless electrodes, exploiting their single bit
correspondent signals and, thus, define on them, some muscular
indexes. The monitoring ofthese quantitative deep myoelectric
parameters allows discriminating also an early stage of PD, as
well as highlighting the difference between Controls and
diseased people. Finally, if used in synchronized mode with
EEG signals, the system is able to understand the presence of
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(1)

an involuntary movement, which can be an unbalancing event
(e.g. inducing fall) or muscular dyskinesia [13, 14]. The here
proposed QGA platform has been tested on PD patients (n=2)
and controls (n=2), provided in-vivo measures, in order to
highlight the approach validity in the quantification of disease
symptoms. The paper is organized as follows: Sec. II recalls a
basic medical knowledge, extracts the typical clinical protocol
for the gait assessment, and describes the algorithm for the
EMG - I-bit translation and the muscular indexes evaluation.
Sec. III outlines the implementation on FPGA. Sec. N is
dedicated to the experimental results. Sec. V concludes the
paper.

II. THE QGA PLATFORM
A. Clinical Description and Gait Analisys Protocol

The early symptom of Parkinson's disease is the
disappearance of the anticipatory postural reflexes, which are
usually activated when a disturbance, however slight, of the
posture occurs. For this reason, the probability to reach postural
instability trends increases in PD patients. Indeed, the PD is an
extrapyramidal system impairment, which is the motion control
system [15]. Therefore, when a lesion affects this system, in
particular the nigrostriatal circuits, induces decrement in the
movement control capability, plastic rigidity and lack of motor
automatisms. For instance, missing accessory movements, such
as the oscillation of the upper limbs in the course of walking,
lead the patient to lose the control and then generates
abnormality in the gait patterns. These gait drifts are typically
linked to abnormal trunk's postures ofthe parkinsonian patients.
Among them, the Pisa Syndrome (PS) - a sustained lateral
bending ofthe trunk (at least 10°) - is a real clinical enigma, and
its management remains a challenge [15, 16]. However, the lack
of consistent diagnostic criteria leads to significant differences
in frequency reports [17]. All of these cardinal features of the
Parkinson's disease are strictly linked to the motor symptoms of
the disease itself: In this work, the standardized clinical task
adopted during the system validation is extracted from the
Unified Parkinson Disease Rating Scale (UPDRS) Part III and
N guidelines [3]. In order to validate the proposed QGA
platform ability in gait analysis and PD status recognition,
subjects are asked to perform the protocolled task named 10­
meter walk. The protocol asks to the subjects under test to walk
for 10 meters distance, 10 times with a comfortable walking
speed [3]. This procedure is clinically defined to be suitably used
as diagnostic procedure (sec.: III10 "March", ill.ll "Freezing",
111.13 ''Postural Assessment", IIl14 "Bradykinesia" - UPDRS,
Nand N.3 " Motor Fluctuations") [3, 4].

B. The Implemented Solution
The system, outlined in Fig.l, uses 8 EMG electrodes

positioned on the lower limbs. In particular, the muscle
monitored by the surface EMG are: Gastrocnemius, Tibialis,
Rectus and Biceps Femoralis of both the legs. The acquired
signals undergo to a low-pass filtering that allows only the useful
frequency EMG spectrum: about 250Hz [18]. At the FPGA
platform front-end, the data are sampled at 500Hz with 16-bit
resolution [19, 20]. The FPGA is then dedicated to the signal
processing stage. As shown in Figure 1, the wireless body area

Fig. 1. Architecture ofthe implmented QGA system.

network sends data to the FPGA platform, which operates with
a first block oftriggering (Fig.1 - ith ''Trigger System").
This block aims to create a unique correspondence between a
16-bit EMG sample and a Boolean value, as soon as the
magnitude of the EMG represent an activation condition.
Mathematically this correspondence is evaluable as in (1):

(

X l ,l XS,l)
: : -+ (Yl ... Ys)

Xl,16 XS,16

where the matrix XeR16,8represents the 16-bit samples present
at the same time on the 8 EMG channels. The first column ofX
is the EMG sample dedicated to the first muscle. The Trigger
system converts them into a I-D vector yeR8. The generic Yi
element represent the Boolean status of the first column of X.
The Boolean status starts when the detection of the contraction
occurs, i.e. when the magnitude of the signal level overcomes
the learned baseline. This block is realized exploiting the
dynamic thresholding algorithm proposed in our previous works
[19, 21]. As widely stated in [19, 21], the EMG is stored in M
sample shift-registers, which realizes 1 sec lenght acquisition
(about 500 samples). The average of the samples in the M shift
register contributes to define the threshold. Similarly, the last N
samples (~250ms ofacquisition, and then N=128) ofthe Mones
(withN~M) are used to define a local average. The local average
is compared with the threshold. The I-bit EMG signal goes '1'
whenever the local average is larger than the dynamic threshold.
Similarly to [19, 21], four co-contraction signals are also
generated. They consist in a square waveform that goes'1' when
both agonist-antagonist I-bit signals are both high. Once the 1­
bit signal is generated downstream the ith ''Trigger system", 8
dedicated computing blocks (one for each muscle) extract the
muscular indexes, in order to recognize the cardinal PD
abnormality in walking pattern. These blocks compose the
"Indexes Extraction Unit" (Fig. 1) and are realized with counters
driven by the system clock. The Indexes Extraction Unit
generates a total of32 parameters from the 8 trigger signals and
4 co-contraction ones. They are: (i) 4 agonist-antagonist muscles
co-contractions, (ii) 4 numbers of co-contractions during a
second of acquisition (512 samples), (iii) 8 contractions, (iv) 8
relaxation times and (v) 8 step duty cycles. The first two
muscular indexes, allow compiling the UPDRS-III section
related to instability. The last three parameters (contraction,
relaxation and duty cycle) contribute to UPDRS Section III and
N. They allow the evaluation of the bradykinesia degree (i.e.
slowness or abnormal muscular hyperactivity) and the Pisa
Syndrome implications. In addition, they allow to objectively

151



assessing motor fluctuations In long period and the drug
treatment impact.

III. THE QGA SYSTEM LEVEL DESIGN
This proposed QGA platform algorithm has been

implemented by using VHDL coding in Quartus II software
environment. The adopted hardware board is Altera Cyclone V
SE 5CSEMA5F31 C6N FPGA. The design plans 8 input bio­
signals and 32 outputs. The inputs, coming from signal
conditioning circuits and level shifter [22]. The 32 outputs
values are functionally distributed on the available GPIO pins
and, at the same time, made available in real time on four 7­
segment dedicated display. The output parameters are: (i) 4 co­
contraction time values defined by 11 bit (2ms time resolution ­
500sps) (ii) 4 co-contraction/s defined by 3 bit (lco-contr.ls
resolution), (iii) 8 contractions and 8 relaxation times of 11 bit
(iv) 8 duty cycles with 7 bit (1 % resolution). The global system
clock is set by an embedded PLL to 8.19209MHz driven by a
50MHz oscillator. A 500Hz clock manages both the ADC
sampling rate for the input EMG data and the increment of the
dedicated muscular counters. All the 8 EMG branches operate
in parallel on FPGA [22]. Two global signals have been used as
asynchronous Reset and Enable.

A. Dynamic Thresholding FPGA Implementation
The Trigger System implementation is proposed unaltered

w.r.t. [22]. The acquired EMG samples are squared and then are
used to feed two VHDL based finite state machines (FSM)
designed to realize the global average, or threshold and the local
one. These two FSM uses 2 dedicated RAM (512 samples and
128 samples for the Threshold and the local average,
respectively) in a FIFO functionality to store the new arrived
EMG data sample at the first address, and to pop out the last
sample, previously inserted. This last sample is subtracted and
the new sample is added to refresh the sum, before to divide the
value for the register length. For instance, the sum obtained by
the Threshold FSM is divided by (512)10, while the Local
Average FSM is divided by (128)10 The FSMs overwrite the
RAM word with the new data. Finally, a 64-bit comparator
evaluates the Local Average w.r.t. the Threshold magnitude.
The comparator provides a I-bit EMG Trigger, used for the
muscular computing.

B. The MIs Computing Branch on FPGA
Fig. 2 schematizes the operation process of a single muscle

dedicated computing implementation. Eight similar branches
are present in the architecture, one for each monitored muscle.
It operates serially with the Trigger System block, analyzing the
Trigger I-bit signal. As shown in Fig.2, when the Trigger
goes '1' a counter, named Contra. Counter is enabled to
count and, thus, starts increasing its value by (2)10 (due to the
sampling rate), every time a CLK_500Hz positive edge
occurs. Relaxation Counter operates with similar
modality, but is fed by the Trigger'. When the step is
over, both the counters makes available the reached value
upstream a canalization system made up by the Parallel Input
Parallel Output (PIPO) register.

Fig. 2. Functional block diagram ofa single Muscular Index extraction unit

Indeed, the Contra Time loop counter is not reset (because
the Trigger signal work as a count enable), allowing the value
to be available in parallel with Relax Time. The progressive
bit parallel sum realizes the Step Time. When the second
Trigger positive edge arrives all the extracted indexes are
first stored in a sequence of parallel DFF which constitute the
Parallel In (PI) and then canalized to the output (PO) by using
2 pulses driven by the 1 bit Reg EN signal. Furthermore, a
delayed version (two 8MHz Clk pulses) of Reg EN is used
to resets the Contra and Relaxation Counters,
allowing the data transfer before the asynchronous reset. After
the Reg EN pulse on PO section, all the useful values
(Contra Time and Step Time) are simultaneously
statically present downstream from the PO, while the circuit
upstream the PI section, is now reset and able to acquire. In
other words, this approach isolates the counting section,
generating a static calculation section for the duty cycle (DC).
In the DC section, the acquired Contra Time is first
multiplied for (100)10 and then divided by the Step Time.
The quotient in output represents the integer value of the DC
(7-bit representation). The remaining of the divider block is
defined as a binary subtraction between Step Time and
Contra Time. It is also multiplied with (100)10 and, thus,
divided for the Step Time. Ifthe quotient is higher than (50)10
the DC is increased by one, otherwise it is left unaltered. This
process halves the maximum error in DC assessment from 1%
to 0.5%. Agonist and antagonist muscle triggers together
contribute, through an AND gate, to generate the square co­
contraction waveform. Then, similarly to
Contra. /Relaxation Counters, the co-contractions
time is evaluated (CoCon Time) and returns its value when
the step - in which the co-contraction is contained - end.

IV. RESULTS
This section is dedicated to the evaluation of the

implemented QGA solution responses during a clinical walking
test. A quantitative comparison between the PD parameters and
Controls ones is here proposed, aiming to emphasize the system
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Fig. 3. QGA platform extracted co-contraction time in a sample of 100 co­
contractions: (a) probability density function ofco-contraction time in PO (red)
and Controls (blue); (b) a statistical representation (Matlab boxplot) of co­
contraction time values w.r.t. the evaluated muscle pair. Controls in blue, and PO
in red.

TABLE I. PO MUSCULAR IMPLICATIONS
L L R R L L R R

REC DIC TIB GAS TIB GAS REC DIC
Cocont. 266±88 260:1:90 128±72 336±186(ms), p:I:o

CocontrJs 1.53±O.66 1.1±0.09 1.1±20 l±O.16
Contraction 482 434 554 386 386 382 528 420

(ms), p.:I:o ±138 ±198 ±260 ±72 ±150 ±270 ±232 ±282
Relax (ms) 338 382 362 596 632 572 336 536

p:I:o ±204 ±156 ±132 ±138 ±298 ±206 ±174 ±88

DC(%) 58 53 60 40 38 40 61 44
±6 ±4 ±6 ±3 ±10 ±8 ±6 ±8

TABLE TI. CONTROLS MUSCULAR IMPLICATIONS

L L R R L L R R
REC DIC TIB GAS TIB GAS REC DIC

Cocont. 268±44 140±56 100±42 246±26(ms), p.:I:o
CocontrJs 0.68±O.05 0.25±O.12 0.25±O.08 0.59±O.05

Contraction 353 509 574 382 560 444 328 494
(ms), p.:I:o ±128 ±198 ±208 ±170 ±254 ±110 ±142 ±182

Relax (ms) 982 788 632 868 950 980 982 812
p:I:o ±498 ±361 ±282 ±392 ±266 ±230 ±438 ±368

DC(%) 26 39 48 31 37 31 25 38
±3 ±5 ±6 ±2 ±7 ±5 ±3 ±8

Fig. 4. Co-contraction time in 20s of task time. The y-axis ofboth subplots are
normalized to the interval 0-50Oms in order to emphasize the difference between
PO and Controls values in magnitude and number ofco-contractionsls.

ability in disease recognition. The subjects (n. 2 PD subjects
under Levodopa and n.2 Controls) are asked to perform the 10­
meter walk protocol [3] maintaining a natural and fluid walk in
an in straight path of 10m for 4 times (40m total). The test is
repeated for 10 times, wearing the EMG wireless sensors. Each
test is interspersed by 10 min ofresting state.
A. Experimental Results
The results are reported in Table I and II for PD and Controls,
respectively. The tables report, starting from the top: the typical
co-contraction time, the co-contraction/s, the activation/relax
time and DC during a single step. All the time indexes are
expressed as mean ± std. The results in tables quantify the clear
differences between PD subjects and healthy Controls in terms

ofwalking patterns. The features extracted and discussed in the
following, can be easily used to diagnose or monitor the PD.
The main results achieved are reported in the following:
1. Typical co-contraction times show an increase of 58ms

(average value on all the four muscles couples) between PD
and Controls. The greater incidence ofco-contraction events
concerns the right leg with ~t=+120ms on R.Gast and R.
Tib, as well as a differece of90ms on R. Bic - R. Rect. The
co-contraction times are higher in PD than in healthy
subjects during gait. The incidence on the right leg can be
attributed to a trunk flexion in that direction.

2. The number of co-contraction/s is, on average (on all the 4
evaluated pairs), 1.17 co-contractions/s for the PD subjects.
Differently, it reaches, on average, 0.44 co-contractions/s
for Controls. Clearly, co-contractions are more frequent in
PD than the healthy subjects during gait.

3. Considering the single muscle-based indexes, PD subjects
shows contractions time that cover the 48.56% of the step
time length. The healthy subjects returns a value of33.62%.
The PD outlines muscular hyperactivity.

4. The PD step duration is typically higher than the Control
ones, due to the slow short-stepped trend ofthe PD [2]. The
mean step time in PD subject (under Levodopa short-term
effects - State ON ofthe treatment) is about 1047ms, while
the Controls returns a value of 977 IDS.

Fig. 3. shows the co-contraction time extracted by the QGA
platform in a sample of 100 co-contractions. In particular, Fig.
3.a outlines with an histogram based PDF, the occurrence of
particular co-contraction time values in PD (red) and Controls
(blue). It is notable the shift of the PD linked PDF to higher co­
contraction time values, according to the Table I and II. Fig.
3.b shows a boxplot, statistical representation of co-contraction
time values, referred to all the evaluated muscle pair.
Experimental results show that only the L.Rectus and Biceps
pair does not provide a good discrimination between the groups.
Fig.4 shows two acquisition of the same duration (20s) related
to a PD and Controls 10-meter walks. On the y-axis are drawn
the co-contraction time values with a normalized range
between 0-500ms. It allows to emphasize the difference
between PD and Controls values in magnitude and number of
co-contractions/so

v. CONCLUSION

In this paper, we have described the FPGA implementation
of a QGA platform for the extraction of muscular implications
features in ordinary motor action, such as gait. The platform has
been used for PD recognition comparing datasets obtained by 2
subjects affected by PD and 2 healthy one (control group). The
proposed architecture is wearable, wireless, and able to define
the real-time modulation of muscular indexes to characterize
the gait. The system is fully based on EMG acquisition,
obtained by 8 nodes positioned on Gastrocnemius, Tibialis,
Rectus and Biceps Femoralis of both the legs. The system
exploits an algorithm for the dynamic thresholding of the
signals, extracting muscular indexes [22]. The experimental
results highlight the validity of the proposed solution to
quantify PD symptoms: (i) the step time in PD is about lOOms
higher than in controls, according with [2]; (ii) a muscular
hyperactivity is detected, in Parkinson patients, according with
[17]; (iii) the number of co-contractions during a walking task,
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is higher in PD than in Control group [1]. The solution aims to
be a diagnostic tool for the early detection ofthe disease, as well
as a useful clinical support tool for monitoring the therapy
impact. Future perspectives include the design and fabrication
of an Application Specific Integrated Circuit (ASIC) [23-30],
the use of biocompatible and flexible electronics in order to
increase the wearability degree of the system [31, 32] and the
optimization of the wireless network [33-36].
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