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Abstract—Current research on Internet of Things (IoT) mainly
focuses on how to enable general objects to see, hear, and smell
the physical world for themselves, and make them connected
to share the observations. In this paper, we argue that only
connected is not enough, beyond that, general objects should
have the capability to learn, think, and understand both physical
and social worlds by themselves. This practical need impels us
to develop a new paradigm, named Cognitive Internet of Things
(CIoT), to empower the current IoT with a ‘brain’ for high-
level intelligence. Specifically, we first present a comprehensive
definition for CIoT, primarily inspired by the effectiveness of
human cognition. Then, we propose an operational framework
of CIoT, which mainly characterizes the interactions among five
fundamental cognitive tasks: perception-action cycle, massive
data analytics, semantic derivation and knowledge discovery,
intelligent decision-making, and on-demand service provisioning.
Furthermore, we provide a systematic tutorial on key enabling
techniques involved in the cognitive tasks. In addition, we also
discuss the design of proper performance metrics on evaluating
the enabling techniques. Last but not least, we present the
research challenges and open issues ahead. Building on the
present work and potentially fruitful future studies, CIoT has the
capability to bridge the physical world (with objects, resources,
etc.) and the social world (with human demand, social behavior,
etc.), and enhance smart resource allocation, automatic network
operation, and intelligent service provisioning.

Index Terms—Cognitive Internet of Things, massive data an-
alytics, semantic, knowledge discovery, decision-making, service
provisioning, cognitive radio network

I. INTRODUCTION

A. Background and Motivation

The Internet of Things (IoT), firstly coined by Kevin Ashton
as the title of a presentation in 1999 [1], is a technological
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revolution that is bringing us into a new ubiquitous connec-
tivity, computing, and communication era. The development
of IoT depends on dynamic technical innovations in a number
of fields, from wireless sensors to nanotechnology [2]. For
these ground-breaking innovations to grow from ideas to
specific products or applications, in the past decade, we have
witnessed worldwide efforts from academic community, ser-
vice providers, network operators, and standard development
organizations, etc (see, e.g., the recent comprehensive surveys
in [3]–[5]). Technically, most of the attention has been focused
on aspects such as communication, computing, and connectiv-
ity, etc, which are indeed very important topics. However, we
argue that without comprehensive cognitive capability, IoT is
just like an awkward stegosaurus: all brawn, no brains. To
fulfill its potential and deal with growing challenges, we must
take the cognitive capability into consideration and empower
IoT with high-level intelligence. Specifically, in this paper,
we develop an enhanced IoT paradigm, i.e., Brain-Empowered
Internet of Things or Cognitive Internet of Things (CIoT), and
investigate the involved key enabling techniques.

Before gonging deep into the new concept CIoT and its
enabling techniques, let’s first share two interesting application
scenarios that will probably come into our daily life in future:

Application scenario 1: Let’s imagine that it’s Friday, after
five days’ hard work, I’d like to relax myself and watch a
TV Soap Opera tonight. When time goes to the midnight,
I become more and more sleepy and finally fall asleep on
my sofa. Generally, I will wake up late on Saturday and feel
very tired since I do not sleep well with the TV noise, the
uncomfortable sofa and the fluctuating temperature all night
long. Consequently, I have a dream that one day the TV, the
sofa, and the air conditioner in my room could individually
or cooperatively sense my movement, gesture, and/or voice,
based on which they analyze my state (e.g., ‘sleepy’ or ‘not
sleepy’), and make corresponding decisions by themselves to
comfort me, e.g., if I am in the state of ‘sleepy’, the TV itself
gradually lowers or even turns off the voice, the sofa slowly
changes itself to a bed, and the air conditioner dynamically
adjusts the temperature suitable for sleep.

Application scenario 2: Living in a modern city, traffic
jams harass many of us. With potential traffic jams into
consideration, every time when the source and the destination
is clear, it is generally not easy for a driver to decide what
the quickest route should be, especially when the driver is
fresh to the city. Among many others, the following scheme
may be welcome and useful for drivers: Suppose that there
are a city of crowdsourcers, such as pre-deployed cameras,
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(a) Application scenario 1. (b) Application scenario 2.

Fig. 1. Motivational and illustrative application scenarios.

vehicles, drivers, and/or passengers, intermittently observe the
traffic flow nearby and contribute their observations to a data
center. The data center effectively fuses the crowdsourced
observations to generate real-time traffic situation map and/or
statistical traffic database. Then, every time when a driver
tells his/her car the destination, the car will automatically
query the data center, deeply analyze the accessed traffic
situation information from the data center and meanwhile other
cars/drivers’ potential decisions, and intelligently selects the
quickest route or a few top quickest routes for its driver.

Just like the aforementioned examples, you may be familiar
with a lot of other blueprints of “intelligent life” and look
forward to that the dreams could become true soon. But things
are not that simple as they look like. Just as a sportscar without
engine is only a gorgeous waste, the IoT without a ‘brain’ is
not enough to bring the expected convenient and comfortable
life to us. These observations motivate us to develop the new
paradigm Cognitive Internet of Things (CIoT).

But, first and foremost, what do we mean by Cognitive
Internet of Things? Before responding to this question, it is
in order that we first address the meaning of the related term
“cognition.” Referring from the well-known books [6]–[9], it
is more appropriate to refer to “cognition” as an “integrative
field” rather than a “discipline” since the study on “cogni-
tion” integrates many fields that are rooted in neuroscience,
cognitive science, computer science, mathematics, physics,
and engineering, etc. Specifically, in this paper, the authors
take the operational process of human brain as the reference
framework for cognition [9], and offer the following definition
for cognitive internet of things:

Cognitive Internet of Things (CIoT) is a new network
paradigm, where (physical/virtual) things or objects are in-
terconnected and behave as agents, with minimum human
intervention, the things interact with each other following a
context-aware perception-action cycle, use the methodology
of understanding-by-building to learn from both the physical
environment and social networks, store the learned semantic
and/or knowledge in kinds of databases, and adapt themselves
to changes or uncertainties via resource-efficient decision-
making mechanisms, with two primary objectives in mind:

• bridging the physical world (with objects, resources, etc)
and the social world (with human demand, social behav-

ior, etc), together with themselves to form an intelligent
physical-cyber-social (iPCS) system;

• enabling smart resource allocation, automatic network
operation, and intelligent service provisioning.

B. Historical Notes

The history of Internet goes back to the development of
communication between two computers through a computer
network in the late 1960s [10]. Since then, the evolution
of the Internet has passed three main phases: Internet of
Computers, Internet of People (mainly via social networking),
and Internet of Things (including computers, people and any
other physical/virtual objects).

As mentioned above, the term ‘Internet of Things’ was
firstly coined by Kevin Ashton in 1999 [1]. Then, in 2001
the MIT Auto-ID center presented their Internet of Things
(IoT) vision [11]. Later, in 2005 IoT was formally introduced
as the theme of the seventh in the series of International
Telecommunication Union (ITU) Internet reports [2]. In 2008,
the first international conference on the internet of things was
held in Zurich [12]. In 2009, China government advocated
the idea of “Sensing China” and Wuxi city became one
of the leading centers of IoT-related research and industry
in China [13]. At the same year, IoT European Research
Cluster (IERC) presented a document of IoT strategic re-
search roadmap on future research and development until
2015 and beyond 2020 [14], and one year later, published
a comprehensive document on the vision and challenges for
realizing the IoT [15]. In the past couple of years, the IoT has
gained significantly increasing attention from academia as well
as industry, comprehensive surveys can be found in [3]–[5].
Briefly, so far IoT is a very broad paradigm and many visions
(e.g., “Internet oriented visions,” “Things oriented visions,”
and “Semantic oriented visions” [3]) coexist.

Unlike (conventional) IoT, the research on Cognitive In-
ternet of Things (CIoT) is very limited. In [16], a cognitive
management framework is presented to empower the IoT
to better support sustainable smart city development, where
cognition mainly refers to the autonomic selection of the
most relevant objects for the given application. In [17], CIoT
is viewed as the current IoT integrated with cognitive and
cooperative mechanisms to promote performance and achieve
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intelligence, where the cognitive process is made up of a three-
layer cognitive ring. Alternatively, in this paper we coin the
CIoT by integrating the operational process of human cogni-
tion into the system design, and we also provide systematic
discussions on the key enabling techniques for the fundamental
cognitive tasks involved in the research and development of
CIoT.

Another related topic is Cognitive Radio Networks (CRN),
which was firstly proposed by Joseph Mitola III in 1999 [18]
and recoined by Simon Haykin in 2005 from a signal pro-
cessing perspective [19], and since then the research on CRN
has been one of the hottest topics in the field of wireless
communications (see, e.g., [20]–[24]). One common point of
CIoT and CRN is that both of them benefit from the recent
advances in cognitive science [6]–[9]. The differences between
CIoT and CRN are much more than the common. CRN is well-
known as a promising paradigm to improve the utilization of
radio electromagnetic spectrum, by allowing unlicensed radios
to opportunistically access the idle spectrum licensed to the
primary radios [18]–[25]. CRN is in essence a radio system
with the objective to improve wireless network throughput.
However, CIoT generally consists of (massive) heterogeneous
general objects, not just radios, with various objectives for
different applications. Moreover, the technical research on
CIoT should not focus on specific applications, instead, it
should be general enough to support as many applications as
possible, and consequently face much more unique challenges,
which will be discussed in detail in the following sections.

C. Purpose of this Paper

The original motivation of the concept ‘Internet of Things’
was explained by Kevin Ashton as follows [1]:

“Today computers-and, therefore, the Internet-are almost
wholly dependent on human beings for information ... The
problem is, people have limited time, attention and accuracy
... We need to empower computers with their own means of
gathering information, so they can see, hear and smell the
world for themselves...”

The primary purpose of this paper is to build on Kevin
Ashton’s visionary insights and enhance them by empower
general objects to learn, think, and understand physical and
social worlds by themselves, by effectively integrating the
operational process of human cognition into the design of
IoT and presenting detailed expositions of cognitive processing
techniques that lie at the heart of Cognitive Internet of Things.

D. Organization and Potential Applications

The reminder of this paper is organized as follows. Section
II presents an overview of CIoT. Section III-V sequentially
address the key enabling techniques for the fundamental cog-
nitive tasks. Section VI provides discussion on the design of
performance evaluation metrics for CIoT. Section VII presents
the research challenges and open issues and Section VIII
concludes the paper.

The work in this paper can be applied to many practical
applications, e.g., the two application scenarios (i.e., smart TV
and intelligent transportation) described in Section I-A. Taking

the second application scenario as an example, the framework
of CIoT developed in this Section can be applied to build
the architecture of an intelligent transportation system, and
the enabling techniques introduced in Section III-V can be
embedded to CIoT companies’ products, such as the software
or Apps.

II. COGNITIVE INTERNET OF THINGS: AN OVERVIEW

A. From Internet of Things to Cognitive Internet of Things

Currently, one of the most distinguished characteristics of
Internet of Things is that: with the increasing inter-connectivity
among general things or objects, a number of interesting
services or applications are emerging. However, so far many
of the existing Internet of Things applications are still de-
pendent highly on human beings for cognition processing.
This observation serves as one of the primary motivations of
this paper to introduce ‘Cognitive Internet of Things’, where
general objects behave as agents, and interact with physical
environment and/or social networks, with minimum human
intervention. Briefly, Cognitive Internet of Things enhances
the current Internet of Things by mainly integrating the human
cognition process into the system design. The advantages are
multi-fold, e.g., saving people’s time and effort, increasing
resource efficiency, and enhancing service provisioning, to just
name a few.

B. Framework of CIoT and Fundamental Cognitive Tasks

Fig. 2 presents a framework of CIoT. Generally, CIoT serves
as a transparent bridge between physical world (with general
physical/virtual things, objects, resources, etc.) and social
world (with human demand, social behavior, etc.), together
with itself form an intelligent physical-cyber-social (iPCS)
system. From a bottom-up view, the cognitive process of the
iPCS system consists of four major layers:
• Sensing control layer has direct interfaces with physical

environment, in which the perceptors sense the environ-
ment by processing the incoming stimuli and feedbacks
observations to the upper layer, and the actuators act so
as to control the perceptors via the environment.

• Data-semantic-knowledge layer effectively analyzes the
sensing data to form useful semantic and knowledge.

• Decision-making layer uses the semantic and knowledge
abstracted from the lower layer to enable multiple or
even massive interactive agents to reason, plan and select
the most suitable action, with dual functions to sup-
port services for human/social networks and stimulate
action/adapation to physical environment.

• Service evaluation layer shares important interfaces with
social networks, in which on-demand service provision-
ing is provided to social networks, and novel performance
metrics are designed to evaluate the provisioned services
and feedback the evaluation result to the cognition pro-
cess.

With a synthetic methodology learning-by-understanding
located at the heart, the framework of CIoT includes five
fundamental cognitive tasks, sequentially, Perception-action
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Perception/Sensing
(Large-scale, heterogeneous 

perceptors/sensors)

Data Analytics
(Heterogeneous/nonlinear/high-

dimensional/parallel data 
processing...)

Physical World

Cyber World

Social World

Decision-Making
(Cognitive selection, reasoning, 

planning...)

Performance Evaluation
(QoS/QoE/QoD/QoI, resource-

efficiency)

Service Provisioning
(Sensing-as-a-service, … 
everything-as-a-service)

Action/Adaptation

Semantic Derivation and 
Knowledge Discovery

(Context, ontology, association 
analysis, outlier analysis...)

Learning-by-
Understanding

Service Evaluation Layer 

Decision-Making Layer

Data-Semantic-
Knowledge Layer

Sensing Control Layer

Social Networks
(Human demand, social behavior)

Physical Environment
(Things, objects, resources)

Fig. 2. Framework of Cognitive Internet of Things (CIoT).

cycle, Massive data analytics, Semantic derivation and knowl-
edge discovery, Intelligent decision-making, and On-demand
service provisioning. Briefly, perception-action cycle is the
most primitive cognitive task in CIoT with perception as
the input from the physical environment and action as the
output to it. On the other hand, on-demand service provi-
sioning directly supports various services (e.g., Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), Sensing-as-
a-Service (SaaS), and more broadly Everything-as-a-service
(EaaS) [26]) to human/social networks, which has been inves-
tigated recently (see, e.g., [27]–[29]). In the following sections,
we will focus on the key enabling techniques involved in the
other three fundamental cognitive tasks.

III. MASSIVE DATA ANALYTICS IN COGNITIVE INTERNET
OF THINGS

The future CIoT will be highly populated by large numbers
of heterogeneous interconnected embedded devices, which are
generating massive data in an explosive fashion. The data we
collect may not have any value unless we analyze, interpret,
understand, and properly exploit it. Taking the application
scenario 2 introduced in Section I-B as an example, the traffic
data is collected from massive crowdsourcers, including pre-
deployed cameras, vehicles, drivers, and passengers, which are
generally noisy, corrupted, heterogeneous, high-dimensional,
and nonlinear separable. To exploit the value of the massive

data, the development of effective algorithms on massive data
analytics is urgently needed.

As shown in Fig. 3, in this section we propose a systematic
tutorial on the development of effective algorithms for mas-
sive data analytics, which are grouped into four classes: 1)
heterogeneous data processing, 2) nonlinear data processing,
3) high-dimensional data processing, and 4) distributed and
parallel data processing.

Organized Data

Massive Data Analytics

––Heterogeneous data processing

––Nonlinear data processing

––High-dimensional data processing

––Distributed and parallel data processing

... ...

Raw Sensing Data

Massive, noisy, corrupted, heterogeneous, high-dimensional, and nonlinear separable...

...

Massive

Heterogeneous 

sensors

Fig. 3. The framework of massive data analytics in CIoT.
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A. Heterogeneous Data Processing

In practical CIoT applications, the massive data are gen-
erally collected from heterogeneous sensors (e.g., cameras,
vehicles, drivers, and passengers), which in turn may provide
heterogeneous sensing data (e.g., text, video, and voice).
Heterogeneous data processing (e.g., fusion, classification)
brings unique challenges and also offers several advantages
and new possibilities for system improvement.

Mathematically, random variables that characterize the data
from heterogeneous sensors may follow disparate probability
distributions. Denote zn as the data from the n-th sensor and
Z := {zn}Nn=1 as the heterogeneous data set, the marginals
{zn}Nn=1 are generally non-identically or heterogeneously
distributed. In many CIoT applications, problems are often
modeled as multi-sensor data fusion, distribution estimation or
distributed detection. In these cases, joint probability density
function (pdf) f(Z) of the heterogeneous data set Z is needed
to obtain from the marginal pdfs {f(zn)}Nn=1.

For mathematical tractability, one often chooses to assume
simple models such as the product model or multivariate
Gaussian model, which lead to suboptimal solutions [30]. Here
we recommend another approach, based on copula theory,
to tackle heterogeneous data processing in CIoT. In copula
theory, it is the copulas function that couples multivariate joint
distributions to their marginal distribution functions, mainly
thanks to the following theorem:

Sklar’ Theorem [31]: Let F be an N -dimensional cumula-
tive distribution function (cdf) with continuous marginal cdfs
F1, F2, ..., FN . Then there exists a unique copulas function C
such that for all z1, z2, ..., zN in [−∞,+∞]

F (z1, z2, ..., zN ) = C
(
F1(z1), F2(z2), ..., FN (zN )

)
. (1)

The joint pdf can now be obtained by taking the N -order
derivative of (1)

f(z1, z2, ..., zN )

=
∂N

∂z1∂z2 ...∂zN
C
(
F1(z1), F2(z2), ..., FN (zN )

)
= fp(z1, z2, ..., zN )c

(
F1(z1), F2(z2), ..., FN (zN )

)
, (2)

where fp(z1, z2, ..., zN ) denotes the product of the marginal
pdfs {f(zn)}Nn=1 and c(·) is the copula density weights the
product distribution appropriately to incorporate dependence
between the random variables. The topic on the design or se-
lection of proper copula functions is well summarized in [32].

B. Nonlinear Data Processing

In CIoT applications, such as multi-sensor data fusion,
the optimal fusion rule can be derived from the multivariate
joint distributions obtained in (2). However, it is generally
mathematically intractable since the optimal rule generally
involves nonlinear operations [33]. Therefore, linear data
processing methods dominate the research and development,
mainly for their simplicity. However, linear methods are often
oversimplified to deviate the optimality.

In many practical applications, nonlinear data processing
significantly outperforms their linear counterparts. Kernel-
based learning (KBL) provides an elegant mathematical means

to construct powerful nonlinear variants of most well-known
statistical linear techniques, which has recently become preva-
lent in many engineering applications [34].

Briefly, in KBL theory, data x in the input space X is
projected onto a higher dimensional feature space F via a
nonlinear mapping Φ as follows:

Φ : X → F , x 7→ Φ(x). (3)

For a given problem, one now works with the mapped
data Φ(x) ∈ F instead of x ∈ X . The data in the input
space can be projected onto different feature spaces with
different mappings. The diversity of feature spaces provides
us more choices to gain better performance. Actually, without
knowing the mapping Φ explicitly, one only needs to replace
the inner product operator of a linear technique with an
appropriate kernel k (i.e., a positive semi-definite symmetric
function),

k(xi,xj) := 〈Φ(xi),Φ(xj)〉F , ∀xi,xj ∈ X . (4)

The most widely used kernels can be divided into two
categories: projective kernels (functions of inner product, e.g.,
polynomial kernels) and radial kernels (functions of distance,
e.g., Gaussian kernels) [34].

C. High-Dimensional Data Processing

In CIoT, massive data always accompanies high-
dimensionality. For example, images and videos observed
by cameras in many CIoT applications are generally very
high-dimensional data, where the dimensionality of each
observation is comparable to or even larger than the number
of observations. Moreover, in kernel-based learning methods
discussed above, the kernel function nonlinearly maps the data
in the original space into a higher dimensional feature space,
which transforms virtually every dataset to a high-dimensional
one.

Mathematically, we can represent the massive data in a
compact matrix form. Many practical applications have ex-
perimentally demonstrated the intrinsic low-rank property of
the high-dimensional data matrix, such as the traffic matrix
in large scale networks [35] and image frame matrix in video
surveillance [36], which is mainly due to common temporal
patterns across columns or rows, and periodic behavior across
time, etc.

Low-rank matrix plays a central role in large-scale data
analysis and dimensionality reduction. In the following, we
provide a brief tutorial on using low-rank matrix recovery
and/or completion1 algorithms for high-dimensional data pro-
cessing, from simple to complex.

1) Low-rank matrix recovery with dense noise and sparse
anomalies: Suppose we are given a large sensing data matrix
Y, and know that it may be decomposed as

Y = X + V, (5)

1Matrix completion aims to recover the missing entries of a matrix, given
limited number of known entries, while matrix recovery aims to recover the
matrix with corrupted entries.
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where X has low-rank, and V is a perturbation/noise ma-
trix with entry-wise non-zeros. We do not know the low-
dimensional column or row space of X, not even their di-
mensions. To stably recover the matrix X from the sensing
data matrix Y, the problem of interest can be formulated as
classical principal component analysis (PCA) [36]:

min
{X}

||X||∗ subject to ||Y −X||F ≤ ε, (6)

where ε is a noise related parameter, || · ||∗ and || · ||F stands
for the nuclear norm (i.e., the sum of the singular values) and
the Frobenious norm of a matrix.

Furthermore, if there are also some abnormal data A
injected into the sensing data matrix Y, we have

Y = X + V + A, (7)

where A has sparse non-zero entries, which can be of arbitrary
magnitude. In this case, we do not know the low-dimensional
column and row space of X, not know the locations of the
nonzero entries of A, and not even know how many there are.
To accurately and efficiently recover the low-rank data matrix
X and sparse component A, the problem of interest can be
formulated as the following tractable convex optimization [35]:

min
{X,A}

||X||∗ + λ||A||1

subject to ||Y −X−A||F ≤ ε, (8)

where λ is a positive rank-sparsity controlling parameter, and
|| · ||1 stands for the l1-norm (i.e., the number of nonzero
entries) of a matrix.

2) Joint matrix completion and matrix recovery: In prac-
tical CIoT applications, it is typically difficult to acquire
all entries of the sensing data matrix Y, mainly due to i)
transmission loss of the sensing data from the sensors to the
data center, and ii) lack of incentives for the crowdsourcers to
contribute all their sensing data.

In this case, the sensing data matrix Ỹ is made up of noisy,
corrupted, and incomplete observations,

Ỹ := PΩ(Y) = PΩ(X + A + V), (9)

where Ω ⊆ [M ] × [N ] is the set of indices of the acquired
entries, and PΩ is the orthogonal projection onto the linear
subspace of matrices supported on Ω, i.e., if (m,n) ∈ Ω,
PΩ(Y) = ym,n; otherwise, PΩ(Y) = 0. To stably recover the
low-rank and sparse components X and A, the problem can
be further formulated as [37]

min
{X,A}

||X||∗ + λ||A||1

subject to ||PΩ(Y)− PΩ(X + A + V)||F ≤ ε. (10)

The problems formulated in (6), (8), and (10) show the
fundamental tasks of the research on “matrix completion and
matrix recovery” for high-dimensional data processing, which
is receiving growing attention ranging from mathematicians
to engineers (see e.g., [35]–[38]). To efficiently solve the
problems in (6), (8), and (10), existing algorithms mainly
include augmented Lagrange multipliers (ALM) algorithm
and accelerated proximal gradient (APG) algorithm, which

have been explained in [38] in detail. Readers can tailor the
theoretical results in [35]–[38] and references therein to their
specific CIoT applications of interest.

D. Parallel and Distributed Data Processing

So far, all the data processing methods introduced above
are in essence centralized and suitable to be implemented at
a data center. However, in many practical CIoT applications,
where the objects in the networks are organized in an ad hoc
or decentralized manner, centralized data processing will be
inefficient or even impossible because of single-node failure,
limited scalability, and huge exchange overhead, etc. Now,
one natural question comes into being: Is there any way to
disassemble massive data into groups of small data, and trans-
fer centralized data processing into decentralized processing
among locally interconnected agents, at the price of affordable
performance loss?

In this subsection, we argue that alternating direction
method of multipliers (ADMM) [39], [40] serves as a promis-
ing theoretical framework to accomplish parallel and dis-
tributed data processing. Suppose a very simple case with a
CIoT consisting of N interconnected smart objects. They have
a common objective as follows

min
x
f(x) =

N∑
i=1

fi(x), (11)

where x is an unknown global variable and fi refers to the
term with respect to the i-th smart object. By introducing local
variables {xi ∈ Rn}Ni=1 and a common global variable z, the
problem in (11) can be rewritten as

min
{x1,...,xN ,z}

N∑
i=1

fi(xi)

subject to xi = z, i = 1, ..., N. (12)

This is called the global consensus problem, since the
constraint is that all the local variables should agree, i.e.,
be equal. The augmented Lagrangian of problem (12) can be
further written as

Lµ(x1, ...,xN , z,y)

=

N∑
i=1

(
fi(xi) + yTi (xi − z) +

µ

2
||xi − z||2F

)
. (13)

The resulting ADMM algorithm directly from (13) is the
following:

xk+1
i := argminxi

(
fi(xi) + ykTi (xi − zk) +

µ

2
||xi − zk||2F

)
(14)

zk+1 :=
1

N

N∑
i=1

(
xk+1
i + 1/µyki

)
(15)

yk+1
i := yki + µ(xk+1

i − zk+1). (16)

The first and last steps are carried out independently at
each smart object, while the second step is performed at a
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fusion center. Actually, when the smart objects are multi-hop
connected, the second step can be replaced by

zk+1
i :=

1

|Ni|
∑
i∈Ni

(
xk+1
i + 1/µyki

)
, (17)

where Ni denotes the one-hop neighbor set of the i-th object
and | · | is the cardinality of a set. Eq. (17) means that the
second step can also be carried out at each smart object by
fusing the local data from one-hop neighbors.

This is a very intuitive algorithm to show the basic prin-
ciple of ADMM. ADMM serves as a good general-purpose
tool for optimization problems arising in the analysis and
processing of massive datasets in a parallel and distributed
manner. Apart from the intuitive ADMM algorithm for global
consensus problem, more advanced topics include (but not
limited to) [39], [40]:
• Developing ADMM algorithms for distributed large-scale

model fitting, where each update in subproblems (14)-
(16) reduces to a model fitting problem on a smaller
dataset. These subproblems can be solved using any
standard algorithm suitable for small to medium sized
problems. In this sense, ADMM builds on existing al-
gorithms for single machines, and so can be viewed as
a modular coordination algorithm that coordinates a set
of simpler algorithms to collaborate to solve much larger
global problems together than they could on their own.

• Implementation of ADMM algorithms in a MapReduce
framework, where each iteration of ADMM can easily
be represented as a MapReduce task: The parallel local
computations are performed by Maps, and the global
aggregation is performed by a Reduce. MapReduce is
a popular programming model for distributed processing
for very large datasets [41].

IV. SEMANTIC DERIVATION AND KNOWLEDGE
DISCOVERY IN COGNITIVE INTERNET OF THINGS

With massive data analytics, tremendous perceived data
about physical world, cyber world, and social world in CIoT
are well processed into an organized manner. However, as
CIoT envisions trillions of objects to be connected and func-
tion cooperatively, it is still not feasible to utilize these ana-
lyzed data for decision-making directly due to both complexity
and inefficiency. As one can imagine, only if the objects
within CIoT are able to understand correctly and reason
properly can they behave appropriately. For instance, the signal
lamp in future smart transportation system may be able to
understand how many vehicles and passengers are waiting
at the intersection, whether there is an ambulance among
them, which directions they are heading, and how long have
they been waiting. These kinds of information are taken into
consideration by the lamp, so as to decide how to change the
transportation signal would be the most effective and fairest
option. Besides, this signal lamp may figure out a few patterns
after serving couple of months, such as the average time for
20 adult passengers to pass is about 30 seconds, or a bus
always runs faster than a truck. This knowledge can not only
be utilized by the lamp in future decision, but also be exported
to the ones in social world.

Fig. 4. The framework of semantic derivation and knowledge discovery.

Therefore, to make the objects in CIoT understand and
be aware, it is necessary to enable them to automatically
derive the semantic from analyzed data. Besides, based on the
analyzed data and semantic, some valuable patterns or rules
can be discovered as knowledge as well, which is a necessity
for everyday objects in CIoT to be, or appear to be intelligent,
as illustrated in Fig. 4.

A. Semantic Derivation in CIoT

Generally, semantic refers to the meaning of any (set of)
object, situation, symbol, language, etc., and semantic deriva-
tion in CIoT is defined as the process of deriving semantic by
adopting various kinds of semantic technologies from analyzed
data. In this subsection, we introduce and discuss several key
concepts in semantic derivation, i.e., context, ontology, and
semantic standardization.

1) Context in CIoT: To date, there is no standard definition
of context. A well known definition for context is provided by
Abowd et al. [42] as follows:

“Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between a
user and an application, including the user and applications
themselves.”

After massive data analytics, tremendous perceived data
about physical world, cyber world, and social world are well
organized. Once we put these analyzed data in such a way
that they represent the situation of an entity, they are viewed
as the context in CIoT. The context can be location, identity,
time, activity, and so on. For example, the crowdsourced ob-
servations on the city road are perceived data. After analyzing,
these data are organized and used to construct real-time traffic
situation map and/or statistical traffic database, which are/is
identified as context that characterizes the traffic situation of
the city.

Although context in CIoT contains the semantic desired by
the devices, it still needs to be further processed. One of the
reasons is that in CIoT, the sources of context are massive
and heterogeneous. As a result, one identical situation can be
expressed in plenty of contexts from different sources, which
in fact contains the same semantic. It promotes the difficulty
of understanding the meanings for everyday devices. Since
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CIoT is envisioned to be capable of combining information of
different contexts, it is necessary to apply effective semantic
technologies to obtain the semantic from different contexts.
Among others, ontology is treated as one of the most important
component in semantic technologies, and will be discussed
hereafter.

2) Ontology in CIoT: In the existing literatures (see,
e.g., [4] and [43]), it is established that one of the most
appropriate formats to manage context is ontology. In philos-
ophy, an ontology is a theory about the nature of existence, of
what types of things exist; as a discipline ontology studies
such theories. In artificial intelligence and Semantic Web
researches, the term of ontology refers to a document or file
that formally defines the relations among terms. In CIoT, the
definition of ontology is adopted as Studer et al. [44] have
defined:

“An ontology is a formal, explicit specification of a shared
conceptualization. A conceptualization refers to an abstract
model of some phenomenon in the world by having identified
the relevant concepts of that phenomenon.”

Ontology offers an expressive language to represent the
relationships and context, and has provided a solution to
identify the same semantic came from different contexts in
CIoT. For example, take identity as the context type in smart
transportation, the contexts obtained by different objects might
be: the highest buildings nearby, the most symbolic one,
the one around corner, or the one with ATM machines in
it. As a matter of fact, it is highly possible that all these
contexts indicate the same semantic (meaning), which is the
construction as headquarter of bank of communications. Note
that by using various kinds of semantic technologies (whose
extensive discussion falls out of the scope of this article) such
as ontology, the semantic is derived from contexts comprised
by analyzed data.

3) Semantic Standardization in CIoT: Undoubtedly, seman-
tic standardization is an important enabler for the success of
semantic derivation in CIoT paradigm, since it may effectively
increase the semantic inter-operability and extendibility. CIoT
supports interactions among massive heterogeneous sources
of data and contexts through standard interfaces and models
to ensure a high degree of semantic interoperability among
diverse systems [14]. Although many different semantic stan-
dards may coexist, the use of ontology based ones will enable
mapping and cross-referencing between them, in order to
enable information share/exchange.

In CIoT, semantic standards play an increasingly important
role with every everyday objects connected. Its status is
emphasized with two big changes occurred in CIoT: one is
massive and heterogeneous sources in physical world, the
other is tremendous and personalized application demands in
social world. As a result, the objects are required to share
and/or exchange semantic information continuously. Semantic
standards make it possible for the objects to communicate the
meanings with each other efficiently with minimum ambiguity.

Besides, semantic standardization can draw from, as well as
serve for the intersected research field of CIoT and CRN. Stan-
dards regarding spectrum allocation, nodes selection, transmit
power control, and communication protocols will ensure that

the objects connected in CIoT/CRN can share the valuable
radio spectrum with each other harmoniously. As greater
reliance is placed on CIoT as the global infrastructure for
processing information, it will be essential to deploy and
further develop semantic standardization in future.

B. Knowledge Discovery from Analyzed Data in CIoT

As aforementioned in Section I-A, one of the major char-
acteristics of CIoT compared to classic IoT is the emphasis
on high-level intelligence. It is not accomplished in any
separate part of CIoT, and should be considered throughout
all the stages of design, development, implementation, and
evaluation.

To achieve intelligence for the objects in CIoT, the most im-
portant way is to realize knowledge discovery from analyzed
data, and then apply it in the following. In CIoT, knowledge
is actually a broad concept that includes the general principles
and natural laws related to every object. For example, the
behavior (even thinking) patterns of human in social world,
the correlations and functional mechanisms among all the
components of cyber world, and the dynamic characteristics
and common laws of physical world, and so on.

In general, knowledge is valid, certain, and potentially use-
ful [45]. It is also consolidated, contextualized, and more stable
in time than data, context, or semantic in CIoT. As previous,
take the smart transportation as an example. The crowdsourced
observations on the street are regarded as raw data, the real-
time traffic situation map and/or statistical traffic database
are/is identified as analyzed data (context), the meaning of
whether it is jammed on the way to destination currently is
semantic, and the rules about that the average time for 20 adult
passengers to pass is about 30 seconds, or a bus always runs
faster than a truck are viewed as the knowledge in CIoT.

It is recognized that tremendous techniques from areas such
as artificial intelligence, machine learning, pattern recogni-
tion, database technology, etc., can be applied to discover
knowledge from analyzed data in CIoT. In this article, several
knowledge discovery techniques which are well established in
the above listed disciplines are introduced as follows [46].

1) Association Analysis: One of the feasible knowledge
discovery techniques is association analysis. It is very useful
for knowledge discovery from analyzed data, as there are many
association types existing in CIoT.
• Multilevel associations involve semantic at different ab-

straction levels (such as the relation between street, city,
and country understood by the objects in CIoT). To avoid
achieving commonsense knowledge at high abstraction
levels as well as avoid achieving trivial patterns at low or
primitive abstraction levels, it is important to develop ef-
fective methods using multiple minimum support thresh-
olds to discover this kind of association, with sufficient
flexibility for easy traversal among different abstraction
spaces.

• Multidimensional associations involve more than one
dimension (e.g., rules that relate how much time it costs
for a passenger passing a street to width of the street
and/or the passenger’s age. Here, time, street width, and
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age are different dimensions). As the sources in CIoT are
heterogeneous, the analyzed data obtained by different
kinds of objects usually focus on different aspects. Tech-
niques for analyzing such kind of associations should be
chosen according to the difference in how they handle
repetitive predicates.

• Quantitative association rules involve numerical at-
tributes or measures which have an implicit ordering
among values (e.g., time, street width, or age as men-
tioned before). The quantitative attributes can be dis-
cretized into multiple intervals, and then be treated as
nominal data in the discovery of this kind of association
rules.

2) Clustering Analysis: Clustering analysis, as one of the
classic knowledge discovery techniques, is the process of
partitioning a set of analyzed data into subsets. Each subset is
a cluster, such that the analyzed data in a cluster is similar to
one another, yet dissimilar to the ones in other clusters. The
set of clusters resulting from a cluster analysis can be referred
to as a clustering. In CIoT, different clustering methods may
generate different kinds of clusters on the same set of analyzed
data. A simple example is that, the clusters formed when
trying to count the number of vehicles and the number of
passengers separately, are different from the clusters formed
when the vehicles and passengers are partitioned by their
heading directions. Since the partitioning is performed in cyber
world rather than social world, clustering analysis is very
useful to lead to the discovery of previously unknown groups
within the analyzed data.

3) Outlier Analysis: Another useful knowledge discovery
technique is outlier analysis. In CIoT, some of the objects
may not comply with the general behavior or action model like
others. These objects are considered as outliers. As the threats
regarding security and privacy are extremely crucial in CIoT
(such as falsifying the identity as an ambulance to pass the
street early, or making credit card fraud to evade the payment
for vehicles), outlier analysis plays an important role to keep
CIoT from being compromised. To be specific, outliers may be
detected using distance measures where objects that are remote
from any cluster are considered as outliers, or using reputation
mechanism where the reputation of one object is calculated
based upon its neighbors’ opinion or its historical behavior.
After the outliers are differentiated from the normal ones, they
would be discarded from CIoT to keep a pure environment.

Besides, CIoT also provides comprehensive reasoning
mechanisms based upon ontology [47], which allows knowl-
edge discovery from the derived semantic when it is neces-
sary. Furthermore, the knowledge discovery process should
be highly interactive. Thus, it is important to build flexible
interfaces with social world, facilitating the user’s interaction
with the system in cyber world of CIoT. For instance, a
user may like to first access to the derived semantic or
discovered knowledge, evaluate its correctness and utility, and
then modify or just regenerate it. Interactive discovery should
allow the requests coming from social world to dynamically
refine the discovery process, while taken the current situation
of physical world into account. Knowledge that has been
discovered as well as the input from social world should

also be incorporated into the following knowledge discovery
process as guidance. In addition, we should point out that
the influence of knowledge is quite far-reaching [48], such
as the influence of facilitation in data analytics, the influence
of expectation in semantic derivation, and the influence of
supplementation in decision-making, to name just a few.

V. INTELLIGENT DECISION-MAKING FOR COGNITIVE
INTERNET OF THINGS

Generally, decision-making in CIoT includes reasoning,
planing and selecting. For reasoning and planing, the key
concerns are analyzing the collected data and inferring useful
information, which belong to data analysis in essence. To avoid
illegibility, we refer to decision-making as selecting in this
article. The task of selecting is common in CIoT, e.g., selecting
the path in the smart traffic systems, choosing the channels
for wireless transmission, and selecting the optimal service
when there are multiple services simultaneously available.
To summarize, selecting can be defined as the process of
choosing an action from the action set. Motivated by the
learning ability in cognitive radio networks [19], we study
cognitive selecting in CIoT, which is characterized by having
the ability to intelligently adjust the selecting based on the
history information.

Methodically, three kinds of cognitive selecting have been
studied in the literature [49]: Markovian decision process,
multi-bandit armed problem and multi-agent learning. In com-
parison, the first two kinds are mainly for single decision-
maker while the third one is for multiple decision-makers.
Since it is expected that there are a large number of decision-
makers (human or machine) in CIoT, we focus on multi-
agent learning. Since the selections of the decision-makers
are interactive, we can formulate the multiple decision-making
system as a game and then study multi-agent learning ap-
proaches. Specifically, we establish a framework for intelligent
decision-making in CIoT, study intelligent decision-making in
large-scale CIoT, and investigate the learning approaches with
uncertain, dynamic and incomplete information.

A. A Framework for Intelligent Decision-Making in CIoT

We establish a framework for intelligent decision-making
in CIoT, which is shown in Fig. 5. Each decision-maker has
semantic information and/or knowledge from the environment.

Decision-maker 

Semantic 
information 

Information from 
other decision-makers

Decision 
output

Information from 
other decision-makers

Decision 
output

Interactions among 
decision-makers

Knowledge

Decision-maker 

Knowledge Semantic 
information 

Fig. 5. The framework of intelligent decision-making in CIoT.
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Note that semantic information is generally generated by
semantic derivation, while knowledge can be obtained from
knowledge discovery or be given from social world in advance.
In addition, it may have information about other decision-
makers if information exchange is available. However, if
the information exchange is resource-consumed or even not
available in some scenarios, a decision-maker does not have
information about others. Using the information from the
environment and others and taking into account its service
demand, a decision-maker performs the cognitive selecting and
outputs the decision result.

Since there are multiple decision-makers in CIoT, the se-
lections of the decision-makers are interactive. To capture
the interactions among multiple decision-makers, one would
formulate the problems of cognitive selecting as game models,
which were originally studied in economy and have been suc-
cessfully applied into several engineering fields. To get a better
understanding of game models, we briefly present the game
model. Formally, a game is denoted as G = {N , An, un},
where N is the set of players, An is the selection set of player
n and un is its utility function. Due to the feature of distributed
and autonomous decision-making in CIoT, non-cooperative
game models can characterize the interactions among decision-
makers well. In a non-cooperative game, each player maxi-
mizes its individual utility function and Nash equilibria are
the well-known stable solutions for non-cooperative games.
A pure strategy Nash equilibrium is a selection profile such
that if and only if no player can improve its utility function
by deviating unilaterally. Other concepts of stable solutions
in non-cooperative games are correlated equilibria [50] and
Bayesian Nash equilibria. For more analysis of game models,
refer to [51].

Technically, there are two important issues for using game-
theoretic learning for CIoT [52], [53]:

• Designing utility function. It is emphasized that a game
model only addresses the interactions among multiple
decision-makers, whereas it does not guarantee the per-
formance. In some worse cases, the selfish nature of
players may lead to inefficiency and dilemma, which is
known as tragedy of commons [54]. Thus, one should
carefully design the utility functions such that some
metrics can be improved, e.g., the aggregate quality of
experience (QoE), fairness and resource utilizing effi-
ciency. Moreover, the designed utility function should
admit some stable solutions, which are important for
practical applications.

• Achieving the stable solutions. With the multiple
decision-making problem in CIoT now formulated as
game models, learning procedures are needed to converge
to the desirable stable solutions. In particular, appropriate
approaches are desirable for solving different information
constraints, e.g., the network may be static or dynamic,
the system parameters may be known or unknown, the
information about the environment and others may be
complete or incomplete.

The interactive range

Fig. 6. An illustrative example of local interactions in CIoT.

B. Intelligent Decision-Making in Large-Scale CIoT

An interesting feature of CIoT is that there are always large
number of spatially distributed decision-makers. Moreover, the
selection of a decision-maker only has direct impact on its
nearby decision-makers; that is, the decisions in CIoT are
local interactive. Examples of local interactions are given by:
the vehicles in the smart traffic systems only affecting other
vehicles in proximity and a sensor contending for resources
(channel, energy and time) only with its neighbors. An illustra-
tive example of local interactions in CIoT is shown in Fig. 6.
The interactive range is context-dependent. There may be over-
lapping in the interactive ranges, which is determined by the
network topology; moreover, when all other decision-makers
are located in the interactive range of each decision-maker, the
local interaction becomes ordinary global interaction.

The feature of local interaction makes the corresponding
game models different. Specifically, the game is called spatial
game, which is denoted as Gl = {N ,Jn, An, un}, where N
is the set of players, Jn is the player set in the interactive
range of n, An is the selection set of player n and un is
its utility function. In global interactive games, the utility
function is determined by the selection profiles of all players,
i.e., the utility function is expressed as un(an, a−n), where
a−n is the selection profiles of all other players except n. In
comparison, the utility function in spatial game is expressed
as un(an, aJn

), where aJn
is the selection profiles of players

in the interactive range of n.

It is seen that spatial game models are more suitable for
large-scale CIoT. However, due to the spatially distribution
of players, spatial game is generally hard to analyze. The
main reasons are: 1) although the direct interactions are
local, there exists inherent mutual interaction among any two
arbitrary players, 2) the number of all players may be huge,
3) the interactive neighbors of players are different. Thus, to
make the game-theoretic approaches feasible in large-scale
CIoT, some efforts are needed. One promising approach is
introducing local cooperation into spatial games. Specifically,
although global information exchange among all players is
not possible in large-scale CIoT, local information in the
interactive range is feasible. Based on this, the player behaves
altruistically by taking its interactive neighbors into account. It
was shown in [55] that local cooperation leads to near-optimal
optimization.
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Fig. 7. The illustrative diagram of learning with uncertain, dynamic and
incomplete information in CIoT.

C. Decision-Making with Uncertain, Dynamic and Incomplete
Information

In this subsection, we investigate information constraints
in CIoT, which are important for decision-making problems.
Specifically, we study intelligent decision-making with uncer-
tain, dynamic and incomplete information. The presented three
information constraints are common in CIoT. Taking the smart
traffic systems as an example, the arrival of vehicles is random,
the congestion level of a path is dynamic and a sensor may
have partial information for an event and have no information
about others sensors.

To deal with the above information constraints, the op-
timization metrics should be carefully designed. Generally,
there are two optimization metrics with uncertain, dynamic and
incomplete information. The first is to maximize the expected
payoff, i.e. max E[rn(t)], where rn(t) is the random payoff
after each play. The second is to minimize the outage prob-
ability, i.e., min Pr{rn(t) > ηn}, where ηn is the threshold
for achieving certain service. To illustrate, one may want to
minimize the expected traveling time from home to the office,
or minimize the probability that the traveling time is large than
thirty minutes.

To solve the uncertain, dynamic and incomplete information
constraints, learning is a promising approach. The illustrative
diagram of learning is shown in Fig. 7. The ideas are as
follows: 1) for a given selection profile (an(t), a−n(t)), each
player gets a random payoff rn(t), which is jointly determined
by the selection profile and the environment, 2) the players
employ a rule to update its next selection based on the current
selection and payoff, i.e., an(t+ 1) = F [an(t), rn(t)], 3) this
procedure is repeated until some stopping criterion is met. It
is noted that the proposed learning scheme is autonomous and
fully distributed, since it only relies on the individual history
information of a player; moreover, its convergence property
can be analyzed by the theories of Markovian process and
stochastic approximation [56].

VI. PERFORMANCE EVALUATION METRICS IN COGNITIVE
INTERNET OF THINGS

Evaluating the performance of CIoT service is a challenging
task, since a lot of considerations and factors are involved. In

Profit dimension Cost dimension

Data layer:  QoD

Information layer: QoI

User layer:  QoE

Device Utilization Efficiency

Computational Efficiency

Energy Efficiency

Storage Efficiency

Fig. 8. Considered metric structure.

order to fully cover the issue, we broadly divide the metrics
into two dimensions: profit and cost. The profit dimension
corresponds to appealing results in CIoT, while the cost
dimension considers the cost efficiency aspect. The overall
structure of considered metrics is presented in Fig. 8.

A. Profit dimension

As shown in Fig. 8, we expect to characterize the profit
dimension from the following three layers: data layer, informa-
tion layer and user layer. Corresponding to these three layers,
we use three metrics quality of data (QoD), quality of infor-
mation (QoI) and quality of experience (QoE), respectively.

1) Data layer-QoD: The data layer metric aims to evaluate
the quality of sensed data, the process of data acquiring and
the possible data distribution at the Perception/Sensing stage.
Data plays a fundamental role in the CIoT cycle and evaluating
its quality is desirable.

In IoT, the acquired data may not meet system require-
ment resulted from the following factors. Firstly, the data is
commonly noisy in practice, due to the environment noise
and sensing devices’ deviation and limited sensing accuracy.
The sensing accuracy and deviation may vary from device
to device. Secondly, the data may be corrupted by malicious
data. Thirdly, the data can be incomplete since not all data
can be collected considering the limited number of sensor
devices and constrained sensing cost. Furthermore, even the
data is accurate and complete, it can be outdated for demand.
In response to above considerations, we propose a new metric,
quality of data (QoD). The QoD consists of data accuracy, data
truthfulness, data completeness and data up-to-dateness [57].
Apparently, the data accuracy reflects the precision of collected
data. The data truthfulness indicates the reliability degree of
the data resource. The data completeness corresponds to the
ratio of collected data amount to the amount of all required
data. The data up-to-dateness reflects the validity of data to the
decision making, i.e., if the data is too late to assist decision-
making, it is meaningless. The four aspects jointly determine
the overall quality of data.

2) Information layer-QoI: Since CIoT is marked with the
intelligent decision-making, where information plays a key
role in functional Cycle of CIoT, the quality of information in
decision-making needs to be evaluated. We treat the informa-
tion as the input to decision making and resort to the concept
of quality of information (QoI) in [64]. We believe that QoI
is a satisfactory metric at present, as it tries to concern the
information that meets decision maker’s need at some place,
location, social setting and specific time. Existing QoI metric
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Fig. 9. QoE in user layer.

is defined as

QoI = Q ∗ P ∗R ∗A ∗D ∗ T ∗ V, (18)

where Q denotes quantity, P denotes precision, R denotes
recall, A denotes accuracy, D denotes detail, T denotes
timeliness, V denotes validity. All values are normalized into
[0, 1] with 1 representing the corresponding best case.

In the above metric, quantity represents how much useful
information the decision maker has obtained for a specific
task. If all needed information is available, Q = 1. Precision
here may refer to the proportion of relevant information to
all information gathered by sensors, networks or services.
On the other hand, recall refers to the proportion of relevant
information without the assistant from sensors, networks or
services. Accuracy represents the accuracy degree of infor-
mation to decision maker’s requirement. Note that quantity,
precision, recall and accuracy jointly characterize the quality
of the information quantity provided. Detail characterizes the
complete degree of the information to the decision maker.
Timeliness is used to measure the decision maker’s timeline
along which the information is to be employed. We denote
the time delay as the gap between the instant the information
available and the instant the information employed. Then, the
timeliness can be treated as inversely proportional to the time
delay. If the information is available before the decision-maker
using it, the timeliness is 1. Validity reflects the trueness of the
provided information. We may find that the QoD and QoI share
some similar properties. However, the involved objectives are
different, that is, QoD is used for data quality evaluation, while
the QoI is used for information quality evaluation.

3) User layer-QoE: QoE is defined by the International
Telecommunication Union (ITU) as “the overall acceptability
of an application or service, as perceived subjectively by
the end user” [59]. Since IoT mainly concerns applications
for human, we believe the ideal of QoE is suitable for
measuring user profit in IoT applications. While existing QoE
in communications and networking is mostly derived from
communication quality provisioning [60], neglecting the role
of upper layer computation resource and application quality.
Therefore, we extent the QoE concept and derive a new QoE
framework as shown in Fig. 9(a).

In the proposed framework, QoE is evaluated from factors
in four levels. Specially, level 1 “Access” focuses on the
basic Internet connection ability of application related things
and objects, since without the Internet connection, the IoT
almost losses its spirit. Upon the access ability, level 2 turns
to the communication capability to guarantee the running
of application. Clearly, different applications or traffic may
impose diverse communication capabilities. Both level 1 and
level 2 capture the impact of communication on QoE, which
generally corresponds to existing QoE modeling methods. On
the other hand, level 3 turns the focus to computation ability,
which brings the computation resource, the new emerging
resource from cloud computing, into consideration. Note that
this is important for computation-intensive applications in
CIoT. Finally, applications directly deliver the service to
human. For example, whether the user interface is friendly
and whether the service is custom for human can greatly affect
human’s perception. Thus, “application” constitutes level 4.

Define the overall performance of the above five levels
as service provisioning, different service provisioning level
to QoE mappings can reflect users’ heterogeneous demands
to some extent. As shown in Fig. 9(b), the different curves
indicates users’ diverse elasticity [61] [62] or sensibility to
service provisioning.

B. Cost dimension

There is “no free lunch” in that for every gain we make in
practice there is a price to be paid. Hence, we also consider
the cost dimension metric in terms of resource efficiency.
In particular, the resource efficiency embodies four types as
follows.
• Device Utilization Efficiency: Hardware resource, espe-

cially device resource is commonly constrained for two
reasons. On one hand, some devices, for example, the
spectrum analyzer, are expensive. On the other hand,
even for some relatively cheap sensors, ideally dense
deployment is unrealistic. Therefore, given limited device
resource, maximizing the utilization or exploring the ca-
pability of devices is indispensable. The device utilization
efficiency evaluates the degree of utilization efficiency
given limited devices resource. For example, given the
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same amount of carbon dioxide sensors, increasing the
sensors’ sample points on the geographic area by moving
sensors can increase the gathered data amount, compared
with static sensors deployment cases. Correspondingly,
the sensors’s utilization efficiency is improved in the
moving sensors case.

• Computational Efficiency: Computation and decision
making in CIoT incur computational load. The computing
resource will become scarce when a large number of users
with various computation intensive tasks are involved
in CIoT. Although the cloud computing paradigm can
relieve the computing resource scarce problem, improv-
ing the computational efficiency is still a fundamental
requirement.

• Energy Efficiency: The energy consumption in CIoT may
occur at all cognitive tasks from perception to decision-
making, action/adaptation and service provisioning. Note
that besides the conventional energy consumption con-
siderations in communication systems such as cellular
network, additional energy is needed to support massive
and ubiquitous wireless access for connected things,
considerable computation and storage ability. In CIoT,
the number of connected things on the global will be
numerous, resulting in a considerable consumption in
energy. Therefore, there is a urgent demand to improve
the energy efficiency in IoT. The energy efficiency metric
has to be able to reflect overall energy utilization level
incorporating communication, computation, storage, etc.,
in order to provide quantified information to reflect
energy consumption of certain configurations, to compare
energy consumption performance of different applications
and solutions, to set research and development targets on
energy efficiency [63].

• Storage Efficiency: Storage cost is another important as-
pect of cost, as the storage and update of data, information
and knowledge rely on physical storage in CIoT. With the
increasing larger amount of information and data in the
emerging big data era, the storage demand will increase
in CIoT, and the storage problem is becoming a new
challenge. Storing the largest amount of data with the
least physical storage and without performance loss to the
service is always preferred. Thus, the storage efficiency
evaluates the ability to store and manage data given fixed
amount of physical storage space.

VII. RESEARCH CHALLENGES AND OPEN ISSUES

CIoT has truly drawn a beautiful and exciting future, though
current researches and developments are still far away from
that vision. Several major research challenges and open issues
include (but not limited to):
• In practical CIoT applications, it is much more challeng-

ing to process the obtained massive sensing data that
can be of mixed characteristics, including heterogeneity,
high-dimensionality, and nonlinear separability, etc.

• For different applications in large-scale CIoT applica-
tions, the game models and the multi-agent learning
algorithms should be carefully designed. In particular,

the local interaction and the uncertain, dynamic and
incomplete information constraints should be taking into
account for decision-making.

• In most existing multi-agent learning algorithms, the
players update their strategies based on the history action-
payoff information. This procedure may take long time
to converge since the players need to explore all the pos-
sible selections. In CIoT, some new knowledge-assisted
learning technologies should be developed to increase the
converging speed and achieve better performance.

• Developing effective semantic technologies and knowl-
edge discovery techniques that are more suitable for CIoT
applications is still a fundamental task.

• Most of current studies on QoE are limited on single
user case, there is lack of study on system-level QoE,
especially for large scale CIoT systems with massive
users.

• Generic approaches in CIoT research mainly focus on
abstracting common techniques involved in various appli-
cations. However, generic approaches cannot be directly
used for each specific situation. To apply the generic ap-
proaches for specific situations, more practical constraints
should be further considered.

• Last but not least, more attention should be focused on
building the bridge from theory to practice. For example,
how and where might the theoretical studies in CIoT
research actually be applied? What does it mean for the
company implementing a smart city?

VIII. CONCLUDING REMARKS

A new network paradigm, named Cognitive Internet of
Things (CIoT), was developed in this paper to empower the
current IoT with a ‘brain’ for high-level intelligence, where
general objects can not only see, hear, and smell the physical
world for themselves, but also learn, think, and understand
physical and social worlds by themselves. Inspired by human
cognition process, we first presented a comprehensive defini-
tion for CIoT. Based on this definition, we further provided
an operational framework of CIoT, which characterizes the
fundamental cognitive tasks. Then, we addressed the key
enabling techniques involved in the cognitive tasks in detail. In
addition, we also discussed the design of proper performance
evaluation metrics and the research challenges and open issues
ahead.

Finally, we envision that the presented research is offered
as a mere baby step in a potentially fruitful research direction.
We hope that this article, with interdisciplinary perspectives,
will stimulate more interests in research and development of
CIoT, to enable smart resource allocation, automatic network
operation, and intelligent service provisioning.
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