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Abstract—Deep learning methods have revolutionized speech
recognition, image recognition, and natural language processing
since 2010. Each of these tasks involves a single modality in
their input signals. However, many applications in the artificial
intelligence field involve multiple modalities. Therefore, it is of
broad interest to study the more difficult and complex problem of
modeling and learning across multiple modalities. In this paper,
we provide a technical review of available models and learning
methods for multimodal intelligence. The main focus of this re-
view is the combination of vision and natural language modalities,
which has become an important topic in both the computer vision
and natural language processing research communities.

This review provides a comprehensive analysis of recent works
on multimodal deep learning from three perspectives: learning
multimodal representations, fusing multimodal signals at various
levels, and multimodal applications. Regarding multimodal rep-
resentation learning, we review the key concepts of embedding,
which unify multimodal signals into a single vector space and
thereby enable cross-modality signal processing. We also review
the properties of many types of embeddings that are constructed
and learned for general downstream tasks. Regarding multimodal

fusion, this review focuses on special architectures for the
integration of representations of unimodal signals for a particular
task. Regarding applications, selected areas of a broad interest
in the current literature are covered, including image-to-text
caption generation, text-to-image generation, and visual question
answering. We believe that this review will facilitate future
studies in the emerging field of multimodal intelligence for related
communities.

Index Terms—Multimodality, representation, multimodal fu-
sion, deep learning, embedding, speech, vision, natural language,
caption generation, text-to-image generation, visual question
answering, visual reasoning

I. INTRODUCTION

S
IGNIFICANT progress has been made in the field of

machine learning in recent years based on the rapid

development of deep learning algorithms [1]–[6]. The first

major milestone was a significant increase in the accuracy of

large-scale automatic speech recognition based on the use of

fully connected deep neural networks (DNNs) and deep auto-

encoders around 2010 [7]–[17]. Shortly thereafter, a series of

breakthroughs was achieved in computer vision (CV) using

deep convolutional neural network (CNN) models [18] for

large-scale image classification around 2012 [19]–[22] and

large-scale object detection around 2014 [23]–[25]. All of

these milestones have been achieved for pattern recognition

with a single input modality. In natural language processing
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(NLP), recurrent neural network (RNN) based semantic slot

filling methods [26] have achieved state-of-the-art for spoken

language understanding. RNN-encoder-decoder models with

attention mechanisms [27], which are also referred to as

sequence-to-sequence models [28], have achieved superior

performance for machine translation in an end-to-end fashion

[29], [30]. For additional NLP tasks with small amounts of

training data, such as question answering (QA) and machine

reading comprehension, generative pre-training has achieved

state-of-the-art results [31]–[33]. This method transfers param-

eters from a language model (LM) pre-trained on a large out-

of-domain dataset using unsupervised training or self-training,

which is followed by fine-tuning on small in-domain datasets.

Although there have been significant advances in vision,

speech, and language processing, many problems in the ar-

tificial intelligence field involve more than one input modal-

ity, such as intelligent personal assistant systems that must

understand human communication based on spoken words,

body language, and pictorial languages [34]. Therefore, it is

of broad interest to study modeling and training approaches

across multiple modalities [35]. Based on advances in image

processing and language understanding [36], tasks combining

images and text have attracted significant attention, including

visual-based referred expression understanding and phrase

localization [37]–[39], as well as image and video captioning

[40]–[45], visual QA (VQA) [46]–[48], text-to-image gen-

eration [49]–[51], and visual-and-language navigation [52].

In these tasks, natural language plays a key role in helping

machines in “understanding” the content of images, where

“understanding” means capturing the underlying correlations

between the semantics embedded in languages and the visual

features obtained from images. In addition to text, vision can

also be combined with speech to perform audio-visual speech

recognition [53]–[55], speaker recognition [56]–[58], speaker

diarization, [59], [60], as well as speech separation [61], [62]

and enhancement [63].

This paper provides a technical review of the models and

training methods used for multimodal intelligence. Our main

focus is the combination of CV and NLP, which has become

an important area for both of these research communities that

covers many different tasks and technologies. To provide a

structured perspective, we have organized this technical review

according to three key topics: representations, fusion, and

applications.

• Learning representations for input data is a core problem

in deep learning. For multimodal tasks, collecting parallel

data across different modalities can be a difficult task.

Leveraging pre-trained representations with the desired
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properties, such as properties suitable for zero-shot or

few-shot learning, is often an effective solution to this

issue. Both supervised and unsupervised training-based

multimodal representation learning methods are reviewed.

• Fusing the representations of different modalities is a

core problem in any multimodal task. Unlike previous

studies that have classified related work based on the

stage in which fusion occurs within a procedure, we

classify related work according to the actual operations

used during fusion, such as attention mechanisms and

bilinear pooling, because it is difficult to classify recent

complex approaches based on stages.

• Three types of applications are reviewed: image caption-

ing, text-to-image generation, and VQA. These applica-

tions provide examples of how representation learning

and fusion can be applied to specific tasks, as well as a

representation of the current development of multimodal

applications, particularly those integrating vision with

natural languages. Visual reasoning methods are also

discussed.

The remainder of this paper is organized as follows.

Section II reviews recent progress in terms of developing

representations for single or multiple modalities. Section III

introduces commonly used fusion methods with a focus on

attention mechanisms and bilinear pooling. Section IV in-

troduces applications, including caption generation, text-to-

image generation, VQA, and visual reasoning, followed by a

summary and our outlook regarding potential future research

directions.

II. REPRESENTATIONS

Deep learning, as a special area within representational

learning, focuses on the use of artificial neural networks

(ANN) with many hidden layers to discover suitable repre-

sentations or features from raw data automatically for specific

tasks [64]. Representation learning has great value in practice

since better representations can often simplify subsequent

learning tasks. Over the past decade, it has become feasible to

learn effective and robust representations for single modalities,

such as text [31]–[33], [65]–[72] or images [19]–[25], based on

the availability of large amounts of data and the development

of deep learning. Although multimodal representations are

attracting increasing attention, they still remain a challenging

problem due to the complex cross-modal interactions and

possible mismatches between training and test data in each

modality.

In this section, commonly used types of single-modal rep-

resentations, such as text and images, are reviewed. These

representations often serve as cornerstones for learning multi-

modal representations. Next, both supervised and unsupervised

methods for learning a joint representation space for multiple

modalities are introduced. To enable models to handle data

samples with missing modalities, the zero-shot learning prob-

lem can be solved to increase the similarity of representational

spaces across the involved modalities. Finally, inspired by the

success of adapting pre-trained LMs to downstream tasks in

NLP, methods that leverage large unimodal datasets to improve

the learning of multimodal representations are also discussed.

A. Unimodal Embeddings

A distributed representation is a vector that distributes

information related to a concept with multiple elements,

indicating that elements can be tuned separately to allow

more concepts to be encoded efficiently in a relatively low-

dimensional space [68]. Such representations can be compared

to symbolic representations, such as one-hot encoding, which

uses an element with a value of one to indicate the presence

of a concept locally and values of zero for other elements. In

deep learning, the term “embedding” often refers to a mapping

from a one-hot vector representing a word or image category

to a distributed representation of real-valued numbers.
1) Visual representations: Image embeddings can be ac-

quired as output values from the final CNN layers in models

that classify images into categories, such as AlexNet [19],

VGGNet [20], GoogLeNet [22], and ResNet [21]. AlexNet,

GoogLeNet, and ResNet were the winners of the 2012, 2014,

and 2015 ImageNet Large Scale Visual Recognition Competi-

tion for image classification, respectively [73], [74]. Alterna-

tively, features with more direct relationships to semantics can

be used as visual embeddings, such as convolutional features

and associated class labels from selected regions identified by

object detection models. Models using this approach include

the region-based CNN (R-CNN) [23], Fast R-CNN [24], and

Faster R-CNN [25]. It should be noted that these models

are only a few examples and do not cover all popular CNN

structures.
2) Language representations: Text embeddings can be de-

rived from a neural network language model (NNLM) [69],

which estimates the probability of a text sequence by factor-

izing the sequence into word probabilities using a chain rule

for probability. RNN-based NNLMs, such as long short-term

memory (LSTM) or gated recurrent unit (GRU) LMs [75],

[76], facilitate the use of information from all past words

stored in a fixed-length recurrent vector when predicting a

current word. In addition to NNLMs, the continuous bag-

of-words model, skip-grams, and global vectors (GloVe) are

other commonly used methods for word embeddings [70],

[77]. A series of deep structured semantic models (DSSMs)

have been proposed since 2013 for sentence-level embedding

learning based on the optimization of semantic similarity-

driven objectives using various neural network structures in

pseudo-Siamese network settings [65]–[67], [78]–[81].

Recently, to accomplish downstream natural language un-

derstanding tasks with small amounts of training data, many

studies have focused on learning general text embeddings by

predicting word probabilities using NNLMs with complex

structures based on large text corpora. Embeddings from

language models [31] use combined embeddings from multiple

layers of bidirectional LSTMs for forward and backward

propagation. Generative pre-training [32] and bidirectional

encoder representations for transformers (BERT) [33] use the

decoder and encoder components of transformer models to

estimate the probability of a current subword unit. Besides the

word and subword levels, text embeddings can also be learned

on the phrase, sentence, and paragraph levels [28], [82].
3) Vector arithmetic for word and image embeddings: It is

well known word embeddings can capture both syntactic and
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semantic regularities. A famous example showed that the op-

eration vector(“King”)−vector(“Man”)+vector(“Woman”) re-

sults in a vector closest to the vector(“Queen”), where vector(·)

denotes the representation of a word learned by an RNN LM

[83]. A similar phenomenon has also been observed for vision

embeddings. When using a generative adversarial network

(GAN) [84], it has been shown that the operation vector(“Man

with glasses”)−vector(“Man”)+vector(“Woman”) results in

vector(“Woman with glasses”) [85], where vector(·) refers

to the representation of an image. This result indicates that

GANs can capture image representations that disentangle the

concept of gender from that of wearing glasses. These findings

regarding both text and image representations have encouraged

additional studies on joint representations of these two modali-

ties. Additional details regarding GAN-based image generation

can be found in Section IV-B.

4) Speaker representations: Despite speech-related studies

are not the focus of this paper, a brief discussion on speaker

representation is presented here since it is broadly used in

many downstream tasks nowadays [86]–[97]. The i-vector

approach estimates a vector for every speaker using factor

analysis [98]. Speaker-specific vectors can be jointly trained

with the DNN acoustic models [99], [100]. Speaker embed-

dings can also be derived as the outputs from the penultimate

layer of a DNN trained to classify the training set speakers

at frame level, namely the d-vectors [101]. Alternatively, the

model can be trained to discriminate speakers at utterance

level using a statistical pooling layer or a self-attentive layer

[102]–[104], and x-vector is the first of such approaches.

The training set for x-vectors is often augmented to include

different background noises and channels etc., which helps to

disentangle the concept of the speaker’s voice characteristics

from the others. Privacy-preserving is an important issue for

speech product in practice, secure binary embeddings can be

used to estimate speaker embeddings without exposing the

speaker data [105], [106].

B. Multimodal Representations

Although significant progress has been made in terms of

learning representations for vision or languages, it is theoreti-

cally insufficient to model a complete set of human concepts

using only unimodal data. For example, the concept of a

“beautiful picture” is grounded in visual representation, so it

can be difficult to describe this concept using natural language

or other non-visual approaches. Therefore, it is important to

learn joint embeddings to leverage the complementarity of

multimodal data to represent such concepts more accurately.

1) Unsupervised training methods: Joint embeddings for

multimodal data can be learned by simply reconstructing raw

inputs using multiple streams of deep Boltzmann machines or

auto-encoders with shared layers acting as a shared represen-

tation space [107]–[109]. Alternatively, based on the develop-

ment of methods for single modalities, a shared representation

space can be constructed by mapping pre-trained represen-

tation spaces for the involved individual modalities into a

common space. For example, Fang et al. proposed a deep

multimodal similarity model (DMSM) [110] as an extension

of the text modal DSSM to learn embedding representations

of text and images in a unified vector space. The simple

fusion of word and image embeddings was accomplished

using addition or concatenation [109], [111]. The similarity be-

tween textual and visual embeddings can be increased through

training [112]. In a recent study, the correlation and mutual

information between embeddings of different modalities were

maximized [113], [114]. Similarly, the distances between word

embeddings can be modified according to the similarities

between their visual instantiations [115], which are determined

by clustering abstract scenes in an unsupervised manner.

Other studies have correlated image regions/fragments with

sentence fragments or attribute words to generate fine-grained

multimodal embeddings [116] by calculating the alignments

between images and sentence fragments automatically. Wu et

al. unified the embeddings of concepts at different levels, in-

cluding objects, attributes, relationships, and full scenes [117].

The stacked cross attention network was proposed to learn

fine-grained word and image-object aligned embeddings for

image-text matching [118]. Additionally, the deep attentional

multimodal similarity model (DAMSM) was proposed [51]

as an extension of DMSM with attention models to measure

the similarity between image sub-regions and words as an

additional loss function for text-to-image generation.

2) Supervised training methods: Supervised training can be

used to improve the learning of multimodal representations.

Representations can be factorized into two sets of indepen-

dent factors: multimodal discriminative factors for supervised

training and intra-modality generative factors for unsupervised

training [119]. Discriminative factors are shared across all

modalities and are useful for discriminative tasks, whereas

generative factors can be used to reconstruct missing modal-

ities. Based on detailed text annotations, some researchers

have proposed learning word embeddings from their visual co-

occurrences (ViCo) when considering natural scene images or

image regions [120]. The concept of ViCo is complementary

to GloVe text embedding in that it more accurately represents

similarities and differences between visual concepts that are

difficult to obtain from text corpora alone. Multiple super-

vised training tasks have been applied to different layers of

vision-language encoders [121]. The order of training tasks

is determined based on the concept of curriculum learning to

increase the complexity of training objectives in a step-by-step

manner.

3) Methods for zero-shot learning: Zero-shot learning is

often applied to vision-related tasks based on the difficulty

of acquiring sufficient labelled images for training for all

possible object categories. However, not all types of mul-

timodal representations are suitable for zero-shot learning

because certain representations may require pairwise data from

different modalities simultaneously. Here, we review methods

that rely on additional language sources to overcome this issue.

Deep learning-based zero-shot learning begins by developing

a linear mapping layer between different pre-trained em-

beddings [122], [123]. The deep visual-semantic embedding

model was constructed using skip-gram text embeddings and

AlexNet visual features. This model allows both types of pre-

trained models to be jointly trained through a linear mapping
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layer [123]. This model was subjected to large-scale test

with 1000 known classes and 2000 unknown classes. Better

representations could be learned for one-shot and few-shot

image retrieval when correlated auto-encoders were used to

reconstruct the representations for each modality [124]. A

recent work used word labels related and unrelated to a target

class to derive visual embeddings from a pre-trained VGG

network as positive and negative visual priors, which were

used as the inputs for another model to achieve the semantic

image segmentation of new object classes that were unseen

in the training set [125]. Rich information sources can be

used for multiple modalities, including words selected from

Wikipedia articles and features derived from multiple CNN

layers [126]. Rather than using direct text attribute inputs,

sentence embeddings generated by recurrent models can be

used as a text interface for zero-shot learning to achieve

enhanced results [127].

4) Transformer-based methods: Transformers are prevalent

sequence-based encoder-decoder models that are formed by

stacking many blocks of feedforward layers with multi-head

self-attention models, whose parameters are shared temporally

[128]. Compared to RNN-based encoder-decoder models [27],

such models can provide superior performance on long se-

quences based on the removal of the first-order Markovian

assumption imposed on RNNs. BERT, which is the encoder

component of a transformer pre-trained on a large text corpus

as a masked LM, is a standard choice for text embeddings for

downstream tasks. Therefore, it is natural to generalize text-

only BERT to cover images and derive pre-trained bimodal

embeddings.

A straightforward method for extending unimodal BERT

to bimodal applications is to include new tokens to indicate

visual feature inputs, such as those proposed in [129]–[133].

Additionally, the transformer model can be modified by in-

troducing an extra encoder or attention structures for visual

features [134]–[136]. Additional details regarding modified

structures can be found in Section III-B. Furthermore, a

recent NLP study suggested that multitask learning can im-

prove the generalization ability of BERT representations [137].

Therefore, most of the aforementioned bimodal BERT-based

models adopt multitask training to improve their performance

on downstream tasks, such as VQA, and image and video

captioning etc.

III. FUSION

Fusion is a key research topic in multimodal studies, which

integrates information extracted from different unimodal data

sources into a single compact multimodal representation.

There is a clear connection between fusion and multimodal

representations. We classify an approach into the fusion cat-

egory if it focuses on architectures for integrating unimodal

representations for a particular task. Fusion methods can be

divided based on the stage in which fusion occurs during

the associated procedures. Because early and late fusion can

suppress either intra- or inter-modality interactions, recent

studies have focused on intermediate methods that allow fusion

to occur on multiple layers of a deep model.

This section presents a review of intermediate fusion not

only because it is more flexible but also because the boundaries

between stages are less clear based on the use of unimodal

features derived from pre-trained backbone models. Three

types of methods that are mainly used to fuse text with im-

age features are considered, namely, simple operation-based,

attention-based, and tensor-based methods.

A. Simple Operation-based Fusion

In deep learning, vectorized features from different informa-

tion sources can be integrated using simple operations, such

as concatenation or weighted sums, which often have few or

no associated parameters because the joint training of deep

models can adapt layers for high-level feature extraction to

adjust to the required operations.

• Concatenation can be used to combine either low-level

input features [138]–[140] or high-level features extracted

by pre-trained models [140]–[142].

• For weighted sums with scalar weights, an iterative

method that requires the pre-trained vector representa-

tions to have the same number of elements arranged in an

order that is suitable for element-wise addition has been

proposed [143]. This can be achieved by training a fully

connected layer for dimension control and reordering for

each modality.

A recent study [144] employed neural architecture search with

progressive exploration [145]–[147] to find suitable settings

for a number of fusion functions. Each fusion function was

configured in terms of which layers to fuse and whether to

use concatenation or a weighted sum as the fusion operation.

B. Attention-based Fusion

Attention mechanisms are widely used for fusion. Attention

mechanisms often refer to the weighted sum of a set of vectors

with scalar weights that are dynamically generated by a small

“attention” model at each time-step [148], [149]. Multiple

glimpses (output heads) are often used to generate multiple

sets of dynamic weights for summation, which can preserve

additional information by concatenating the results derived

from each glimpse. When applying attention mechanisms to

an image, image feature vectors that are relevant to different

regions are weighted differently to produce an attended image

vector.

1) Image attention: An LSTM model for text question

processing was extended by incorporating an image attention

model conditioned on previous LSTM hidden states, whose

inputs were concatenations of the current word embedding and

attended image feature [150]. The final LSTM hidden state

was used as a fused multimodal representation to predict an

answer for pointing and grounded VQA. The attention model

for an RNN-based encoder-decoder model was used to assign

attention weights to image features for image captioning [151].

Additionally, for VQA, an attention model conditioned on both

images and query feature vectors was applied to pinpoint im-

age regions that were relevant to the answer [152]. Similarly,

stacked attention networks (SANs) have been proposed to use
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multiple layers of attention models to query an image multiple

times to infer an answer progressively and simulate a multi-

step reasoning procedure [153]. In each layer, a refined query

vector is generated and sent to the next layer by adding the

previous query vector to the attended image vector produced

using the current attention model. A spatial memory network

is a multi-hop method for VQA that aligns words to image

regions in a first hop and assigns image attention based on

entire questions in a second hop to derive an answer [154].

A dynamic memory network is augmented to use separate

input modules to encode questions and images. This type

of network uses attention-based GRUs to update episodic

memory iteratively and retrieve required information [155].

The bottom-up and top-down attention method (Up-Down),

as its name suggests, simulates the human visual system

using a combination of two visual attention mechanisms [156].

The bottom-up attention mechanism proposes a set of salient

image regions identified by a Faster R-CNN and the top-down

attention mechanism performs concatenation of visual and

linguistic features to estimate attention weights and produce an

attended image feature vector for image captioning or VQA.

The attended image feature vector can be fused with linguistic

features again by computing an element-wise product. Com-

plementary image features derived from different models, such

as ResNet and Faster R-CNN, can be used for multiple image

attention mechanisms [157]. Furthermore, the inverse of image

attention, which generates attended text features from image

and text inputs, can be used for text-to-image generation [51],

[158].

2) Symmetric attention for images and text: In contrast to

the aforementioned image attention mechanisms, co-attention

mechanisms use symmetric attention structures to generate not

only attended image feature vectors but also attended language

vectors [159]. Parallel co-attention uses a joint representation

to derive image and language attention distributions simulta-

neously. In contrast, alternating co-attention has a cascaded

structure that first generates an attended image vector using

linguistic features and then generates an attended language

vector using the attended image vector.

Similar to parallel co-attention, a dual attention network

(DAN) estimates attention distributions for images and lan-

guages simultaneously to derive attended feature vectors [160].

Such attention models are conditioned on both features and

memory vectors related to relevant modalities. This is a key

difference compared to co-attention because memory vectors

can be iteratively updated at each reasoning step using repeated

DAN structures. Memory vectors can be either shared for

VQA or modality-specific for image-text matching. Stacked la-

tent attention (SLA) improves SANs by concatenating original

attended image vectors with values from earlier layers in the

attention model to retain latent information from intermediate

reasoning stages [161]. A parallel co-attention like twin-stream

structure is also included to assign attention to both image and

language features, which facilitates iterative reasoning using

multiple SLA layers. Dual recurrent attention units implement

a parallel co-attention structure using LSTM models for text

and images to assign attention weights to each input location in

representations obtained by convoluting image features using

a stack of CNN layers [162]. To model high-order interactions

between modalities, the high-order correlations between two

data modalities can be computed as the inner product of two

feature vectors and used to derive attended feature vectors for

both modalities [163].

3) Attention in a bimodal transformer: As mentioned in

Section II-B4, the bimodal extensions of BERT rely on dif-

ferent tokens to indicate whether a vector is a word or image

fragment. Attention models then fuse images with words in

bimodal input sequences [129]–[133]. OmniNet uses a gated

multi-head attention model in each decoder block to fuse vec-

tors from other modalities with those produced for the current

modality by the previous layers in each block [136]. LXMERT

uses independent encoders to learn intra-modality features

for each modality and a cross-modality encoder on a higher

level to learn cross-modality features using additional cross-

attention layers [134]. ViLBERT extends BERT to include two

encoder streams to process visual and textual inputs separately.

These features can then interact through parallel co-attention

layers [134].

4) Other attention-like mechanisms: The gated multimodal

unit is a method that can be viewed as assigning attention

weights to images and text based on gating [164]. This

method computes a weighted sum of visual and textual feature

vectors based on dimension-specific scalar weights generated

dynamically by a gating mechanism. Similarly, element-wise

multiplication can be used to fuse visual and textual represen-

tations. These fused representations are then used to create the

building blocks for a multimodal residual network based on

deep residual learning [165]. A dynamic parameter prediction

network uses a dynamic weight matrix to transform visual

feature vectors, whose parameters are dynamically generated

by hashing text feature vectors [166].

C. Bilinear Pooling-based Fusion

Bilinear pooling is a method that is often used to fuse visual

feature vectors with textual feature vectors to create a joint

representation space by computing their outer product, which

facilitates multiplicative interactions between all elements in

both vectors. This method is also referred to as second-

order pooling [167]. In contrast to simple vector combination

operations (assuming each vector has n elements), such as

a weighted sum, element-wise multiplication, or concatena-

tion, which result in n- or 2n-dimensional representations,

bilinear pooling generates an n
2-dimensional representation

by linearizing the matrix generated by the outer product into

a vector, meaning this method is more expressive. Bilinear rep-

resentations are often linearly transformed into output vectors

using a two-dimensional weight matrix, which is equivalent

to using a three-dimensional tensor operator to fuse two input

feature vectors. Each feature vector can be extended with an

extra value of one to preserve single-modal input features in

the bilinear representation when calculating an outer product

[168]. However, based on its high dimensionality (typically

on the order of hundreds of thousands to a few million

dimensions), bilinear pooling often requires the decomposition

of weight tensors to allow the associated model to be trained

properly and efficiently.
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1) Factorization for bilinear pooling: Because bilinear rep-

resentations are closely related to polynomial kernels, vari-

ous low-dimensional approximations can be used to acquire

compact bilinear representations [169]. Count sketches and

convolutions can be used to approximate polynomial kernels

[170], [171], leading to multimodal compact bilinear pooling

(MCB) [172]. Alternatively, by imposing low ranks on weight

tensors, multimodal low-rank bilinear pooling (MLB) fac-

torizes three-dimensional weight tensors for bilinear pooling

into three two-dimensional weight matrices [173]. Specifically,

visual and textual feature vectors are linearly projected onto

low-dimensional modality-specific factors by two input factor

matrices. These factors are then fused using element-wise

multiplication, followed by linear projection using the third

matrix for output factors. Multimodal factorized bilinear pool-

ing (MFB) modifies MLB with an extra operation to pool

element-wise multiplication results by summing the values

within each non-overlapping one-dimensional window [174].

Multiple MFB models can be cascaded to model high-order

interactions between input features, which is referred to as

multi-modal factorized high-order pooling (MFH) [175].

MUTAN, which is a multimodal tensor-based Tucker de-

composition method, uses Tucker decomposition [176] to

factorize the original three-dimensional weight tensor oper-

ator into a low-dimensional core tensor and the three two-

dimensional weight matrices used by MLB [177]. Core tensors

model the interactions across modalities. MCB can be con-

sidered as MUTAN with fixed diagonal input factor matrices

and a sparse fixed core tensor, while MLB can be considered

as MUTAN with the core tensor set to the identity tensor.

Recently, BLOCK, which is a block-based super-diagonal

fusion framework, was proposed to perform block-term de-

composition [178] to compute bilinear pooling [179]. BLOCK

generalizes MUTAN as a summation of multiple MUTAN

models to provide richer modeling of the interactions between

modalities. MUTAN core tensors can be arranged as super-

diagonal tensors, similar to the submatrices of a block diagonal

matrix. Furthermore, bilinear pooling can be generalized to

more than two modalities, such as using outer products to

model the interactions among representations for video, audio,

and language [168], [180].

2) Bilinear pooling and attention mechanisms: Bilin-

ear pooling can be combined with attention mechanisms.

MCB/MLB fused bimodal representations can be used as input

features for an attention model to derive an attended image

feature vector, which is then fused with a textual feature vector

by using MCB/MLB again to form a final joint representation

[172], [173]. MFB/MFH can be used for alternating co-

attention to learn joint representations [174], [175]. A bilinear

attention network (BAN) uses MLB to fuse images and text

to produce a bilinear attention map representing an attention

distribution, which is then used as a weight tensor for bilinear

pooling to fuse images and text features again [181].

IV. APPLICATIONS

This section discusses selected applications for multimodal

intelligence that combine vision and language, including image

captioning, text-to-image generation, and VQA. Note that

there are other common applications, including text-based im-

age retrieval [118] and visual-and-language navigation [182],

that we have not included in this review owing to space

limitations.

• Image captioning is a task that aims to generate a

natural language description of an image automatically. It

requires a level of image understanding beyond that pro-

vided by typical image recognition and object detection

methods.

• The inverse of image captioning is text-to-image gen-

eration, which generates image pixels according to a

description or keywords provided by humans.

• VQA is related to image captioning. It often takes an

image and a free-form, open-ended natural language

question about the image as inputs and then outputs a

classification result as an answer. Natural language under-

standing is necessary because questions are free in form.

Other capabilities, such as knowledge-based reasoning

and commonsense reasoning, are also important because

questions are open-ended.

• Visual reasoning can be included in all of the aforemen-

tioned tasks. However, only methods related to VQA are

reviewed here.

Detailed task specifications, datasets, and selected work for

each task will be introduced in this section.

A. Image Captioning

Image captioning is a task that requires the generation of a

text description of an image [183]. It is one of the first tasks

involving the multimodal combination of images and text.

We mainly review deep learning-based methods. The image

captioning task can be divided into several sub-tasks, allowing

captions to be generated in a step-by-step manner [40], [110],

[184]. For example, a deep CNN model can be trained to

detect words in images, and then a log-linear language model

can be used to compose words into sentences [110]. Similarly,

image features can be fed into a log-linear language model

to generate sentences [184]. In contrast, exact matching of

objects in images and words in sentences attempts to determine

if an image and sentence match with each other [40].

Similar to RNN-based encoder-decoder methods for ma-

chine translation [27], another approach was proposed to

generate captions from images in an end-to-end manner

using an encoder-decoder architecture [185]–[187]. In this

type of model, a CNN, which is typically pre-trained using

ImageNet [73], encodes an image into a continuous vector,

which is then fed into an RNN/LSTM decoder to generate

captions directly. These types of methods all use the same

basic architecture, but they vary slightly in their choices of

CNN parameters and how image vectors are fed into decoders.

Although this method is powerful and convenient, the encoder-

decoder architecture lacks the ability to capture the fine-

grained relationships between objects in images and words in

sentences. To overcome this issue, the attention-based encoder-

decoder model has been proposed and has become the standard

benchmark for this task [188]. In the attention encoder-decoder
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model, prior to generating the next word, the decoder first

calculates matching scores (attention) with objects in an image

and then considers the weighted image features to generate the

next token. There have been many studies that have attempted

to improve the attention model by incorporating additional

structures. For example, Lu et al. added a gate at every

decoding step to determine if the next word should be gen-

erated using image information [189]. Additionally, detected

words and image features can be combined as inputs for the

decoder network [45], [190]. More recently, many studies have

incorporated extra structures/knowledge from either images

[156] or text [191]. Specifically, an object detector was used

to localize features for an image object and generate captions

based on the localized features [156]. This method improved

upon the previous state-of-the-art model by a wide margin in

terms of a variety of evaluation metrics.

Image captions with rich information can be generated by

incorporating external knowledge. For example, based on a

database of celebrities [192], a the CaptionBot application

was developed to describe the components (such as activities)

of an image, as well as who is related to each component

if the people in the image can be recognized [193]. In

addition to generating factual descriptions of images, other

approaches have been proposed for explicitly controlling the

style [194], semantic content [190], and diversity [195] of

generated captions.

B. Text-to-image Generation

Text-to-image generation, which relies on natural language

to control image generation, is a fundamental problem in com-

puter vision. It is considered to be a difficult problem because

it involves at least two tasks: high-quality image generation

and language understanding. Generated images must be both

visually realistic and semantically consistent with language

descriptions. Deep learning-based text-to-image generation

can be dated back to the use of LSTM for iterative handwriting

generation [196]. This iterative image generation method was

later extended to create the deep recurrent attentive writer

(DRAW) method, which combines an LSTM-based sequential

variational auto-encoder (VAE) with a spatial attention mech-

anism [197]. The alignDRAW method modifies DRAW to use

natural language-based descriptions to synthesize images with

general content [198]. An attention model is used to compute

the alignment between input words and iteratively drawn

patches. GAN-based methods have become the major focus

of more recent text-to-image generation studies, potentially

because the discriminators of GANs can serve as reasonable

criteria for evaluating synthesized images, which is difficult

to achieve using other methods. The following subsection pro-

vides an overview of some GAN-based methods, including the

basic settings and solutions for some important problems, such

as the generation of high-quality images, semantic consistency

between images and text, and the layout control of images etc.
1) GAN-based methods: Compared to VAE, conditional-

GAN (CGAN) can synthesize more compelling images of spe-

cific categories that a human may even mistake for real images

[199], [200]. A GAN model consists of a generator that syn-

thesizes candidates based on input noise and a discriminator

that evaluates the candidates. Adversarial training is employed

to train the generator to capture true data distributions so the

discriminator can no longer discriminate between synthesized

data and real data [84]. CGAN extends the standard GAN

structure by generating additional category labels for both

the generator and discriminator. The GAN-INT-CLS method

facilitates the synthesis of visually plausible 64×64 images by

using embeddings of natural language descriptions to replace

category labels in CGAN [201]. Automatic evaluation of the

quality of text-conditioned images can be less straightforward.

To determine the discriminability of GAN-generated images,

the inception score [202] and Fréchet inception distance [203]

metrics are often used. Multi-scale structural similarity [204]

is used to evaluate the diversity of images. To evaluate whether

a generated image is semantically consistent with an input text

description, R-precision [51] and visual-semantic similarity

[205] are commonly used metrics.

2) Generating high-quality images: Although they basi-

cally reflect the meanings of descriptions, it has been found

that the images produced by GAN-INT-CLS do not contain

fine-grained details or vivid objects. This shortcoming moti-

vated the development of the StackGAN method [206]. Stack-

GAN decomposes image synthesis into more manageable sub-

problems through a sketch-refinement process by stacking two

separately trained CGANs. The first GAN produces 64×64

low-resolution images by sketching the primitive shapes and

colors of objects based on text. The second GAN is then

trained to generate 256×256 images by rectifying defects

and adding compelling details to the low-resolution images

generated by the first GAN. StackGAN++ improves upon

this idea by incorporating an additional GAN to generate

128×128 images between the two GANs discussed above

and training all GANs jointly [207]. To ensure the generated

images semantically match the text precisely, the attentional

GAN (AttnGAN) was proposed. This method also stacks three

GANs targeting different image resolutions [51]. The first

GAN is trained on sentence embeddings, and the next two

GANs are trained on bimodal embeddings produced by at-

tention models fusing word-level features with low-resolution

images. It has been shown that attention mechanisms can

help GANs focus on the words that are the most relevant to

the sub-regions drawn in each stage. In addition to stacking

generators, it has been shown that high-resolution images

can be generated using dynamic memory modules [208]. The

progressive growth of a GAN begins with training a one-

layer generator and one-layer discriminator to synthesize 4×4

images. This method then progressively adds more layers to

both models to increase image resolution up to 1024×1024

[209].

3) Generating semantically consistent images: To improve

the semantic consistency between relevant images and text

features, DAMSM was proposed for AttnGAN [51]. The

hierarchically-nested discriminator GAN (HDGAN) [205]

handles the same problem by leveraging hierarchical repre-

sentations with additional adversarial constraints to discrimi-

nate not only real/fake image pairs but also real/fake image-

text pairs at multiple image resolutions in the discriminator.

Similarly, the text-conditioned auxiliary classifier GAN (TAC-
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GAN) introduces an additional image classification task into

the discriminator [210], while the text-conditioned semantic

classifier GAN (Text-SeGAN) trains classifiers by using re-

gression tasks to estimate the semantic relevance between

images and text [211]. As an analogue to cycle consistency

[212], MirrorGAN was proposed to improve the semantic

consistency between two modalities using an additional image

captioning module [213].

4) Semantic layout control for complex scenes: Despite the

success in the generation of realistic and semantically consis-

tent images for single objects, such as birds [214] or flowers

[215], state-of-the-art text-to-image generation methods still

struggle to generate complex scenes containing many objects

and relationships, such as those in the Microsoft COCO dataset

[216]. In the pioneering work in [217], both text descriptions

and the locations of objects specified by keypoints or bounding

boxes were used as inputs. Later, detailed semantic layouts,

such as scene graphs, were used to replace natural language

sentences with more direct descriptions of objects and their

relationships [218], [219]. Additionally, efforts have been

made to maintain natural language inputs while incorporating

the concept of semantic layouts. Hinz et al. included extra

object pathways in both a generator and discriminator to

control object locations explicitly [220]. Hong et al. em-

ployed a two-stage procedure that first constructs a semantic

layout automatically from an input sentence using LSTM-

based box and shape generators and then synthesizes images

using image generators and discriminators [221]. Because

fine-grained word/object-level information is not explicitly

used for generation, such synthesized images do not contain

sufficient details to make them look realistic. The object-

driven attentive GAN (Obj-GAN) improves upon the two-stage

generation concept using a combination of an object-driven

attentive image generator and object-wise discriminator [158].

At every generation step, the generator uses a text description

as a semantic layout and synthesizes image regions within a

bounding box by focusing on the words that are the most

relevant to the object within that box. Obj-GAN is more

robust and interpretable compared to other GAN methods and

significantly improves object generation quality for complex

scenes.

5) Additional topics: In addition to layouts, other types of

fine-grained control for image generation have been discussed

in the literature. Attribute2Image [222] uses various attributes

for face generation, such as age and gender. This concept

has also been adapted to face editing to remove beards

or change hair colors [223]. The text-adaptive GAN [224]

facilitates the semantic modification of input images of birds

and flowers based on natural language. Lao et al. proposed

to enforce the learning of representation content and styles as

two disentangled variables by using a dual inference mecha-

nism based on cycle-consistency for text-to-image generation

[225]. The success of these methods demonstrates that GANs

are able to learn some semantic concepts as disentangled

representations, as discussed in Section II-A3. Text2Scene is

another noteworthy method that generates compositional scene

representations from natural language in a step-by-step manner

without using GANs [226]. It has been shown that with minor

modifications, Text2Scene can generate cartoon-like, semantic

layout, and real image-like scenes. Dialogue-based interactions

have also been studied to control image synthesis by improving

complex scene generation progressively [227]–[231]. Text-to-

image generation has also been extended to multiple images

or videos, where visual consistency among generated images

is required [232]–[234].

C. Visual Question Answering

1) Task definition: VQA extends text-based QA from NLP

by asking questions related to visual information presented

in an image or video clip. Image-based VQA is often con-

sidered as a visual Turing test, where a system is required

to understand any form of natural language-based questions

and answer them in a natural manner. However, it is often

simplified as a classification task defined in different ways

to focus on different core problems [46], [47], [150], [235],

[236]. Initial works generated questions using templates or

by converting descriptive sentences using syntax trees [235],

[237]. Later studies focused on the use of free-form natural

language questions authored by either humans or powerful

deep generative models, such as GANs and VAEs [47],

[237]–[239]. In contrast to open-ended questions, which are

presented in complete sentence form, possible answers are

often presented as a large set of classes (e.g., 3000 classes)

related to yes/no answers, counts, object classes, and instances

etc. To focus on core understanding and reasoning problems,

VQA can be simplified to classify visual and textual features

into answer-related classes.

Alternatively, VQA can be defined to select outputs among

multiple (e.g., four) choices, where each choice is associated

with an answer presented in the form of a natural language

sentence [150]. This setup can be implemented as a classi-

fication problem based on the features of images, questions,

and answer candidates [172]. There are other types of VQA

task definitions as well, such as the Visual Madlibs dataset,

which requires answering questions using a “fill-in-the-blanks”

system [48]. Furthermore, visual dialogue can be viewed as

the answers to a series of questions grounded in images [240],

[241]. This method extends VQA by requiring the generation

of more human-like responses and the inference of context

based on dialogue history.

2) Common datasets and approaches: The first VQA

data set, which is called DAQUAR, uses real-world images

combined with both template-based and human-annotated

questions [235]. COCO-QA contains more QA pairs than

DAQUAR because it converts image descriptions from the

MS COCO dataset into questions [237]. Such questions are

generally easier to answer because they allow models to rely

more on rough images, rather than logical reasoning. VQA

v1 and v2 are the most popular datasets for VQA. These

datasets consist of open-ended questions with both real and

abstract scenes [47], [242]. A VQA challenge based on these

datasets has been held annually as a workshop since 2016.

Visual7W is a portion of the Visual Genome dataset for

VQA containing multiple choices [150]. It contains questions

related to the concept of “what”, “who”, and “how” for spatial
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reasoning and “where”, “when”, and “why” for high-level

commonsense reasoning. The seventh type of questions in

Visual7W are “which” questions, which are also referred to

as pointing questions. The answer choices for these questions

are associated with the bounding boxes of objects in images.

Approaches designed for these datasets often focus on fusing

image and question vectors with the aforementioned discussed

attention- and bilinear-pooling-based methods, including SAN,

co-attention, Up-Down, MCB, MLB, and BAN etc.

3) Integrating external knowledge sources: Since most of

the VQA questions in the aforementioned datasets focus on

simple counting, color, and object detection problems that do

not require any external knowledge, a possible extension of

these tasks is to include more difficult questions that require

knowledge beyond what the questions entail or what informa-

tion is contained in images. Both knowledge-based reasoning

for VQA and fact-based VQA datasets incorporate structured

knowledge bases, which often require additional steps to query

knowledge bases, meaning the corresponding methods are

no longer trainable in an end-to-end manner [243], [244].

In contrast to structured knowledge bases, outside-knowledge

VQA uses external knowledge in the form of natural lan-

guage sentences collected by retrieving Wikipedia articles

using search queries extracted from questions. Additionally,

an ArticleNet model is trained to find answers in retrieved

articles [245].

4) Discounting language priors: Although significant

achievements have been made, recent studies have pointed

out that common VQA benchmarks suffer from strong and

prevalent priors (e.g., “most bananas are yellow” and “the sky

is mostly blue”), which can often cause VQA models to overfit

statistical biases and tendencies in answer distributions. This

issue largely circumvents the need to understand visual scenes.

Based on the objects, attributes, and relationships provided

by the scene graphs of Visual Genome, a new dataset called

GQA was created to reduce biases by generating questions

using a functional program that controls reasoning steps [246].

New splits for VQA v1 and VQA v2 were generated to

provide different answer distributions for every question in

the training and test sets. These splits are referred to as VQA

under challenging priors (VQA-CP v1 and VQA-CP v2) [247].

Other methods have been proposed to handle biased priors

using adversarial training or additional training-only structures

[248], [249].

5) Additional issues: Another problem that current VQA

methods suffer from is low robustness against linguistic varia-

tion in questions. A dataset called VQA-Rephrasings modifies

the VQA v2 validation set with human-authored rephrasing of

questions [212]. Additionally, a cycle-consistency-based [250]

method was proposed to improve linguistic robustness by en-

forcing consistency between original and rephrased questions,

as well as between true answers and answers predicted based

on original and rephrased questions. Zhang et al. suggested

that attention mechanisms can cause VQA models to suf-

fer from counting object proposals and an additional model

component was proposed as a solution [251]. Additionally, it

is known that current VQA methods cannot read text from

images. A method was proposed to address this problem

by fusing text extracted from images using optical character

recognition [252]. VizWiz is a goal oriented VQA dataset

collected by blind people capturing potentially low-quality

images and asking questions in spoken English. This dataset

includes many text-related questions [253]. To learn rare con-

cepts that humans may talk more likely than the commonsense

knowledge, active learning, which allows a model to seek

labels selectively for more informative examples, has been

applied to VQA to reduce data annotation efforts [254]–[256].

D. Visual Reasoning

This section focuses on the study of a very intriguing

problem called visual reasoning, which focuses on how to

accomplish accurate, explicit, and expressive understanding

and reasoning. Visual reasoning is related to many language-

and vision-based bimodal tasks, such as captioning and text-

to-image generation. However, in this section, we mostly

focus on methods related to VQA because visual reasoning is

particularly important when answering complicated questions.

SANs are often considered as being closely related to implicit

visual reasoning because their stacked structures can be viewed

as performing multiple reasoning steps. Feature-wise linear

modulation was proposed to refine visual features iteratively

using feature-wise affine transformations based on scaling

factors and bias values generated dynamically from textual

features [257]. Multimodal relational networks (MuRel) also

have structures with multiple MuRel cells based on bilinear

pooling, which can be used iteratively [258].

1) Neural module network-based methods: A neural mod-

ule network (NMN) consists of a collection of jointly trained

neural “modules” combined into a deep model for answering

questions [259]. A dependency parser first helps convert

natural language questions into a fixed and rule-based network

format and specifies both the set of modules used to answer

questions and the connections between modules. Next, a deep

model is assembled based on the target question format to

generate answer predictions. SHAPES, which is a synthetic

dataset consisting of complex questions regarding simple

arrangements of ordered shapes, was proposed to focus on the

compositional aspects of questions [259]. A later study trained

a model layout predictor jointly with module parameters by re-

ranking a list of layout candidates using reinforcement learn-

ing. This method is called a dynamic NMN [260]. Modules for

“find” or “relate” operations use attention models to focus on

one or two regions in an input image and make the execution

of assembled deep models similar to running a functional

program [260]. An end-to-end version of the NMN used an

RNN question encoder to convert input questions into layout

policies without requiring the aid of a parser [261]. This work

was based on a relatively new dataset called compositional lan-

guage and elementary visual reasoning diagnostics (CLEVR).

As its name suggests, CLEVR is a synthetic diagnostic dataset

for testing a range of visual reasoning abilities related to

objects and relationships with minimal biases and detailed

annotations describing the type of reasoning each question

requires [262]. Other implementations of the NMN include

the program generator and execution engine method (PG+EE),
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which shares generic designs among certain operations [263];

the stack-NMN, which improves the parser and incorporates

question features into modules [264]; and the transparency-by-

design network, which redesigns some modules from PG+EE

to maintain the transparency of the reasoning procedure [265].

2) Other types of end-to-end reasoning methods: Another

end-to-end approach is the memory, attention, and composition

(MAC) network, which decomposes questions into a series

of attended reasoning steps and performs each step using

a recurrent MAC cell that maintains a separation between

control and memory hidden states. Each hidden state is

generated by an ANN model constructed based on attention

and gating mechanisms [266]. Recently, both deterministic

symbolic programs and probabilistic symbolic models have

been used as execution engines for generated programs to

improve transparency and data efficiency, resulting in the

creation of the neural-symbolic VQA (NS-VQA) and proba-

bilistic neural-symbolic models, respectively [267], [268]. As

an extension of the NS-VQA, the neuro-symbolic concept

learner (NS-CL) uses a neuro-symbolic reasoning module to

execute programs based on scene representations. The NS-CL

can have its program generator, reasoning module, and visual

perception components trained jointly in an end-to-end manner

without requiring any component-level supervision [269]. Its

perception module learns visual concepts based on language

descriptions of objects and facilitates learning new words and

parsing new sentences.

We conclude this section by reviewing the relationship

network (RN), which has a simple structure that uses an ANN

as a function to model the relationships between any pair of

visual and textual features. The resulting output values are

then accumulated and transformed by another ANN [270].

Although the RN simply models relationships without any

form of inductive reasoning, it achieves very high VQA

accuracy on the CLEVR dataset. This inspires a re-thinking

of the connections between correlation and induction.

V. SUMMARY AND PROSPECTS

This paper reviewed the topics of modeling and machine

learning across multiple modalities based on deep learning

with a focus on the combination of vision and natural lan-

guage. We organized many different works from the language-

vision multimodal intelligence field according to three factors:

multimodal representations, fusion of multimodal signals, and

applications of multimodal intelligence. In the section on

representations, both single-modal and multimodal represen-

tations were reviewed based on the key concept of embed-

ding. Multimodal representations unify relevant signals from

different modalities into the same vector space for general

downstream tasks. For multimodal fusion, special architec-

tures, such as attention mechanisms and bilinear pooling, were

discussed. In the application section, three selected areas of

broad interest were presented: image captioning, text-to-image

generation, and VQA. A set of visual reasoning methods for

VQA was also discussed. Our review covered task definition,

dataset specification, development of commonly used methods,

as well as issues and trends. We hope this review will promote

future studies in the emerging field of multimodal intelligence.

In the future, in addition to the aforementioned research

topics, we also want to highlight the following three directions.

A. Multimodal Knowledge Learning

Multiple knowledge bases related to multimodal datasets

have been constructed in recent years, such as MS-Celeb-

1M [271], which benchmarks recognition of one million

celebrities in images and links them to their corresponding

information in freebase [272]. In this area, the automatic

acquisition of commonsense knowledge from multimodal data

can be expected in the near future. Massive amounts of

information, including entities, actions, attributes, concepts,

and relationships, can be learned from massive amounts of

image and video data to construct models covering broad and

structured commonsense knowledge. Such models will provide

great value for applications related to commonsense reasoning.

However, problems that need to be resolved to accomplish this

goal include the following:

• Defining commonsense;

• Constructing multimodal datasets and learning common-

sense knowledge from them efficiently and effectively;

• Determining which tasks to work on to verify the ca-

pabilities of novel algorithms while demonstrating the

importance of commonsense;

• Updating previously learned commonsense knowledge.

B. Multimodal Emotional Intelligence

Advanced emotional intelligence is a cognitive ability

unique to humans. Communication between humans involves

rich emotions and multiple modalities. To construct a highly

anthropomorphic human-computer interaction agent, machines

must understand and generate multimodal emotional content

and empathize with humans. Fundamental research in this

area can not only help us to understand the mechanisms of

cognitive intelligence, but also has great value for many real-

world applications. However, the difficulties of multimodal

emotional intelligence include the following:

• Perceiving and aligning the subtle expression of emotions

in different modalities;

• Ensuring the consistency and rationality of data across all

modalities [273];

• Acquiring the core representations and intensities of

emotions that are potentially modality-invariant [274] .

C. Large-scale Complex Goal-oriented Multimodal Intelligent

Human-computer Interaction System

The intelligentization of service industries is both a large

opportunity and large technical challenge for artificial intel-

ligence. Considering e-commerce as an example, this field

faces challenges related to ultra-large-scale data and complex

human-computer interactions in the full retail chain. These

problems require large-scale, complex, and task-oriented mul-

timodal intelligent human-computer interaction technologies

to serve hundreds of millions of users in a personalized and

highly efficient way. To this end, opportunities exist in terms

of promoting open-source and open-license frameworks for
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multimodal human-computer interaction systems, constructing

large-scale datasets and algorithm verification platforms, and

conducting fundamental research on multimodal intelligence.

Breakthroughs related to techniques in these areas will also

promote the intelligentization of broader service industries.

Regarding the goal of constructing an agent that can per-

ceive multimodal information and use the connections between

different modalities to improve its cognitive ability, research

on multimodal intelligence is still in its infancy. However, it

has already achieved significant progress and become a very

important branch of the development of artificial intelligence.
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[143] J.-M. Pérez-Rúa, V. Vielzeuf, S. Pateux, M. Baccouche, and F. Jurie,
“MFAS: Multimodal fusion architecture search,” in Proc. CVPR, 2019.

[144] B. Zoph and Q. Le, “Neural architecture search with reinforcement
learning,” in Proc. ICLR, 2017.

[145] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, F.-F. Li,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Proc. ECCV, 2018.
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