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Cross-view Semantic Segmentation for Sensing
Surroundings

Bowen Pan1,∗, Jiankai Sun2,∗, Ho Yin Tiga Leung2, Alex Andonian1, and Bolei Zhou2

Abstract—Sensing surroundings plays a crucial role in human
spatial perception, as it extracts the spatial configuration of
objects as well as the free space from the observations. To
facilitate the robot perception with such a surrounding sensing
capability, we introduce a novel visual task called Cross-view
Semantic Segmentation as well as a framework named View
Parsing Network (VPN) to address it. In the cross-view semantic
segmentation task, the agent is trained to parse the first-view
observations into a top-down-view semantic map indicating the
spatial location of all the objects at pixel-level. The main issue of
this task is that we lack the real-world annotations of top-down-
view data. To mitigate this, we train the VPN in 3D graphics
environment and utilize the domain adaptation technique to
transfer it to handle real-world data. We evaluate our VPN on
both synthetic and real-world agents. The experimental results
show that our model can effectively make use of the information
from different views and multi-modalities to understanding
spatial information. Our further experiment on a LoCoBot robot
shows that our model enables the surrounding sensing capability
from 2D image input. Code and demo videos can be found at
https://view-parsing-network.github.io.

Index Terms—Semantic Scene Understanding, Deep Learning
for Visual Perception, Visual Learning, Visual-Based Navigation,
Computer Vision for Other Robotic Applications

I. INTRODUCTION

RECENT progress in semantic understanding enables
machine perception to segment a scene precisely into

meaningful regions and objects [1], [2]. These semantic seg-
mentation techniques have benefited many automation appli-
cations, like autonomous driving [3]. Though the semantic
segmentation network can recognize semantic content in a
static image, it is still far from enough to facilitate robots to
sense in an unknown environment and navigate freely there.
One important reason is that the parsed first-view semantic
mask is still at pure image-level without providing any spa-
tial information about the surroundings. To perceive spatial
configuration from pure image input, an intuitive approach
is to explicitly train networks to infer the top-down-view
semantic map which directly contains the spatial configuration
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Fig. 1: Top-down-view semantics is predicted from the first-view real-
world observations in the cross-view semantic segmentation. Input
observations from multiple angles are fused. Notice that the result in
this figure is generated without training on real-world data.

information of the surrounding environment. Based on the
top-down-view semantic map we can then infer the position
coordinates and functional properties of surrounding regions
and objects.

To enable machines to capture the spatial structure of the
surroundings from 2D images, we explore a new image-based
scene understanding task, Cross-View Semantic Segmentation.
Different from the standard semantic segmentation predicting
the labels of each pixel in the input image, the cross-view
semantic segmentation aims at predicting the top-down-view
semantic map from a set of first-view observations (see Fig. 1).
The resulting top-down-view semantic map, as a 2.5D spatial
representation of the surrounding, indicates the spatial layout
of the discrete objects such as chair and human, as well as
the stuff classes floor and wall. Note that although there is a
huge literature of 3D methods to reconstruct environments [4],
our method has its unique advantages. For example, robot
perception systems based on 3D sensors involve expensive
cost not only in sensor setup but also in computational
power. Instead, the top-down-view map from the cross-view
semantic segmentation can facilitate the robot to understand
its surroundings in a lightweight and efficient way. In many
situations such as free space exploration for mobile robots
where the height information is not that essential, the 2D top-
down-view semantic map would be sufficient to provide spatial
information with much less computation cost.

One challenge in cross-view semantic segmentation is the
difficulty of collecting the top-down-view semantic annota-
tions. Recently, simulation environments such as House3D [5]
and CARLA [6] have been proposed for training navigation
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agents. In these environments, cameras can be placed at
any location in the simulated scene while the observations
in multiple modalities can be extracted. Thus, we leverage
the simulation environments to acquire cross-view annotated
data. To reduce the domain gap between the synthetic scenes
and the real-world scenes, we transfer the models trained in
the simulation environment to the real-world scenes through
domain adaptation.

In this work, we propose a novel framework with View
Parsing Network (VPN) for cross-view semantic segmentation
using simulation environments and then transfer them to real-
world environments. In VPN, a view transformer module is
designed to aggregate the information from multiple first-view
observations with different angles and different modalities. It
outputs the top-down-view semantic map with a spatial layout
of objects. We evaluate the proposed models on the indoor
scene of the House3D environment [5] and the outdoor driving
scene of the CARLA environment [6]. Furthermore, to show
the cross-view semantic task helps visual navigation, we have
demonstrations of real robot.

Our main contributions are as follows: (1) We introduce
a novel task named cross-view semantic segmentation to
facilitate robots to flexibly sense the surrounding environment.
(2) We propose a framework with View Parsing Network
which effectively learns and aggregates features across first-
view observations with multiple angles and modalities. (3) We
further apply the domain adaptation technique to transferring
our model so that it can work in real-world data while without
any extra annotations.

II. RELATED WORK
A. Semantic Segmentation and Semantic Mapping

Deep learning networks for semantic segmentation [7] are
designed to segment the image pixel-wise within one-view.
Image datasets with pixel-wise annotations such as CityScapes
[3] are used for the training of semantic segmentation net-
works. There is also a huge literature about semantic mapping
in robotics domain [1], [2], [8], [9], which provides the seman-
tic abstraction of the environment and a way to communicate
with robots.

B. Layout estimation and view synthesis

Estimating layout has been an active topic of research
(i.e. room layout estimation [10], free space estimation [11],
and road layout estimation [12], [13]). Most of the previous
methods use annotations of the layout or geometric constraints
for the estimation, while our proposed framework estimates
the top-down-view map directly from the image, without the
intermediate step of estimating the 3D structure of the scene.
On the other hand, view synthesis has been explored in many
works [14], [15]. They focus on generating realistic cross-
view images while cross-view segmentation aims at parsing
semantics across different views.

C. Learning in Simulation Environments

Given that current graphics simulation engines can render
realistic scenes, recognition algorithms can be trained on data

pulled from simulation engines (i.e., for visual navigation
models [16]). Several techniques have been proposed to ad-
dress the domain adaptation issue when models trained with
simulated images are transferred to real scenes [17]. Rather
than working on the task of visual navigation directly, our
work aims at parsing the top-down-view semantic map from
the first-view observations. The resulting top-down-view map
will further facilitate visual navigation.

III. CROSS-VIEW SEMANTIC SEGMENTATION

A. Problem Formulation

The objective of cross-view semantic segmentation is as
follows: given the first-view observations as input, the algo-
rithm must generate the top-down-view semantic map. The
top-down-view semantic map is a map captured by a camera
at a certain height from the top-down view with the annotations
of the semantic label of each pixel. The input first-view
observations are a set of images with different modalities. They
are captured at N different angles by the robot’s camera (with
360/N degrees apart).

B. Framework of the View Parsing Network

Fig. 2 illustrates two stages of our framework. In the first
stage, we propose View Parsing Network (VPN) to learn and
aggregate features from multiple first-view observations in the
simulation environment. In VPN, first-view observations are
first fed into the encoder to extract first-view feature maps. For
each modality, VPN has a corresponding encoder to process
it. All of these first-view feature maps from different angles
and different modalities are transformed and then aggregated
into one top-down-view feature map in the View Transformer
Module. Then the aggregated feature map is decoded into a
top-down-view semantic map. Details of how to transform
and aggregate these first-view feature maps can be found
in Sec. III-D. In the second stage of our framework, we
transfer the knowledge which VPN learns from the simulation
environment to the real-world data. We slightly modified the
domain adaptation algorithm proposed by [17] to fit our cross-
view semantic segmentation task and our VPN architecture.
More details of this part will be revealed in Section III-C.

Pipeline. As shown in Fig. 2, from one spatial position in a
3D environment, we first sample N×M first-view observations
from N angles and M modalities (here N = 6,M = 2 in Fig. 2)
in even angles so that all-around information is captured.
The first-view observations are encoded by M encoders for
M corresponding modalities respectively. These CNN-based
encoders extract N ×M spatial feature maps for their first-
view input. Then all of these feature maps are fed into the
View Transformer Module (VTM). VTM transforms these
view feature maps from first-view space into the top-down-
view feature space and fuses them to get one final feature map
which already contains sufficient spatial information. Finally,
we decode it to predict the top-down-view semantic map using
a convolutional decoder.

View Transformer Module. Although the encoder-decoder
structure gets huge success in the classical semantic seg-
mentation area [7], our experiment (cf. Table III) shows that
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Fig. 2: Framework of the View Parsing Network for cross-view semantic segmentation. The simulation part shows the architecture and
training scheme of our VPN, while the real-world part demonstrates the domain adaptation process for transferring VPN to the real world.

it performs poorly in the cross-view semantic segmentation
task. We conjecture that it is because in standard semantic
segmentation architecture the receptive field of the output
spatial feature map is roughly aligned with the input spatial
feature map. However, in cross-view semantic segmentation,
each pixel on the top-down-view map should consider all input
first-view feature maps, not just a local receptive field region.

After thinking about the flaws of the current semantic
segmentation structure, we design the View Transformer Mod-
ule (VTM) to learn the dependencies across all the spatial
locations between the first-view feature map and the top-down-
view feature map. VTM will not change the shape of input
feature map, so it can be plugged into any existing encoder-
decoder type of network architecture for classical semantic
segmentation. It consists of two parts: View Relation Module
(VRM) and View Fusion Module (VFM). The diagram at the
central of Figure 2 illustrates the whole process: The first-
view feature map is first flattened while the channel dimension
remains unchanged. Then we use a view relation module R
to learn the relations between the any two pixel positions in
flattened first-view feature map and flattened top-down-view
feature map. That is:

ft [i] = Ri( f [1], ..., f [ j], ..., f [HW ]), (1)

where i, j ∈ [0,HW ) are the indices of top-down-view feature
map t ∈ RHW×C and first-view feature map f ∈ RHW×C re-

spectively along the flattened dimension, and Ri models the
relations between the ith pixel on top-down-view feature map
and every pixel on first-view feature map. Here we simply use
multilayer perceptron (MLP) in our view relation module R.
After that, the top-down-view feature map is reshaped back to
H×W×C. Notice that each first-view input has its own VRM
to get the top-down-view feature map t i ∈ RH×W×C based on
its own observations. To aggregate the information from all
observation inputs, we fuse these top-down-view feature map
t i by using VFM. More details of VFM and VRM will be
introduced in Sec. III-D.

C. Sim-to-real Adaptation

To generalize our VPN to real-world data without the real-
world ground truth, we implement the sim-to-real domain
adaptation scheme shown in Fig. 2 to narrow the gap. This
scheme contains the following pixel-level adaptation and out-
put space adaptation.

Pixel-level adaptation. To mitigate the domain shift, we
adopt the pixel-level adaptation on the real-world inputs to
make them look more like the style of the simulation data.
Semantic mask is an ideal mid-level representation without
texture gap while including sufficient information and it is
easy to transfer. This process can be formulated as follows:

{IS}= MReal→Synthetic(PRGB→Mask({IR})), (2)
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TABLE I: Results on House3D cross-view dataset with different modalities and view numbers.

3D Geometric Baseline X-Fork(RGB) in [15] RGB VPN Semantic VPN Depth VPN

Networks PA mIoU PA mIoU PA mIoU PA mIoU PA mIoU

1-view model 31.3% 2.4% 38.0% 1.5% 55.8% 6.5% 59.6% 13.2% 56.9% 7.6%

2-view model 46.8% 7.2% 40.0% 1.9% 70.1% 14.8% 75.7% 25.9% 70.2% 15.6%

4-view model 63.2% 22.8% 39.5% 2.0% 80.3% 27.2% 888555...000% 40.6% 77.3% 22.0%

8-view model 67.6% 27.1% 43.9% 1.8% 888111...222% 222888...555% 84.7% 444111...000% 888222...111% 222999...999%

TABLE II: Results of cross-modality learning for VPN. Here we
compare the results with the inputs from 4 views.

Method Pixel Accuracy mIoU

RGB VPN 80.3% 27.2%

Depth VPN 77.3% 22.0%

Semantic VPN 85.0% 40.6%
R+D (late fusion) 81.2% 27.3%

R-D VPN 82.8% 31.2%

D+S (late fusion) 83.5% 33.9%
D-S VPN 888666...333% 43.2%

S+R (late fusion) 84.3% 35.7%
S-R VPN 85.1% 42.3%

D+S+R (late fusion) 84.3% 29.4%
D-S-R VPN 86.2% 444333...666%

where IR, IS are the real RGB image and synthetic-style se-
mantic mask respectively, PRGB→Mask is the existing semantic
segmentation model which parses the real-world RGB into
semantic mask, and MReal→Synthetic is the semantic category
mapping process where we construct the concept mappings
between the real world and the simulation environment.

Output space adaptation. Beyond the pixel-level transfer
on input data, we also devise an adversarial training scheme
in structured output space based on the method proposed
in [17]. Here the generator G is a view parsing network
generating the top-down-view prediction P, which is initialized
by the weights of a VPN trained on the semantic data in the
simulation environment as we illustrated before. During the
training phase, we first forward a group of input images from
the source domain {Is} to G and optimize it with a normal
segmentation loss Lseg. Then we use G to extract the feature
map Fi (after the softmax layer) of the images from the target
domain {It} and use discriminator to distinguish whether Ft
is from the source domain. The loss function to optimize G
can be written as follows:

L ({Is},{It}) = Lseg({Is})+λadvLadv({It}), (3)

where Lseg is the cross-entropy loss for semantic segmenta-
tion, Ladv is designed to train the G and fool the discriminator
D . The loss function for the discriminator Ld is a cross-
entropy loss for binary source & target classification.

D. Network configuration

View encoder and decoder. To balance efficiency and per-
formance, we use ResNet-18 as the encoder. We remove the

TABLE III: Ablation study of View Transformer Module.

Modality VPN w/o VTM VPN
1-view Pix. Acc. mIoU Pix. Acc. mIoU

RGB 53.9% 6.3% 555555...888% 666...555%

Depth 55.7% 6.5% 555666...999% 777...666%

Semantic 57.4% 10.0% 555999...666% 111333...222%
8-view Pix. Acc. mIoU Pix. Acc. mIoU

RGB 60.5% 8.7% 888111...222% 222888...555%

Depth 43.8% 2.5% 888222...111% 222999...999%

Semantic 47.6% 6.5% 888444...777% 444111...000%

last Residual Block and the Average Pool layer so that the
resolution of the encoding feature map remains large, which
better preserves the details of the view. We employ the pyramid
pooling module used in [7] as the decoder.

View Transformer Module. For each view relation module,
we simply use the two-layer MLP. We choose this because
two-layer MLP doesn’t bring too much extra computation so
that we can keep our model following the lightweight-and-
efficient rationale. Input and output dimensions of the VRM
are both HIWI , where HI and WI are respectively the height
and width of the intermediate feature map. As for the view
fusion module, we just add all the features up to keep the
shape consistent.

Sim-to-real. For the generator G , we use the architecture
of the 4-view VPN. For the discriminator D , we adopt the
same architecture in [17]. It has 5 convolution layers, each
of which is followed by a leaky ReLU with the parameter
0.2 (except the last layer). We use HRNet [18] pretrained on
CityScapes dataset [3] to extract the semantic mask from real-
world images.

IV. EXPERIMENTS

We first go through the overview of the cross-view segmen-
tation datasets in Section IV-A. Then we show the performance
of VPN on synthetic data of the House3D and CARLA
environment in Section IV-B. Finally in Section IV-C, we
demonstrate the real-world performance of our VPN which
is trained in the simulation environment.

A. Benchmarks

Here we introduce two synthetic cross-view datasets,
House3D cross-view dataset and Carla cross-view dataset, and
one real-world cross-view dataset, nuScenes dataset.
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House3D cross-view dataset. Each data pair contains 8 first-
view input images captured from 8 different orientations with
45 degrees apart. Additionally, each data pair comes with
the top-down-view semantic mask captured in the ceiling-
level height. To be complete, we store the input image with
multiple modalities including the RGB images, depth maps,
and semantic masks. The training set contains 143k data pairs
from 342 scenes while the validation set contains 20k data
pairs from 68 scenes.

NuScenes dataset. Each data sample contains in
NuScenes[19] first-view RGB images from 6 directions
(Front, Front-right, Back-right, Back, Back-left, Front-left) in
different modalities. We select 919 data samples without the
top-down-view mask for unsupervised training and 515 data
samples with the binary top-down-view mask for evaluation.

CARLA cross-view dataset. To build the synthetic source
domain dataset, we extract 28,000 data pairs with top-down-
view annotations and different input modalities from 14 driv-
ing episodes in CARLA. Each data pair contains 6 first-view
input image sets captured from the same 6 directions.

B. Evaluation

We present VPN performances on the synthetic data of
House3D cross-view and CARLA cross-view datasets.

Metrics. We report the results of cross-view semantic seg-
mentation using two commonly used metrics in semantic
segmentation: PIXEL ACCURACY (PA) which characterizes
the proportion of correctly classified pixels, and MEAN IOU
(MIOU) which indicates the intersection-and-union between
the predicted and ground truth pixels.

Baselines. Two methods are included as the comparison
baselines: (1) 3D geometric method. With the observed depth
and RGB images, we can reconstruct the 3D points cloud
with the voxel-level semantic label. (2) Cross-view synthesis.
We also compare with the architecture used in cross-view
image synthesis literature [15], which adopts a conditional
GAN called X-Fork to generate aerial images from street-view
images.

1) Results of VPNs: We present the results of our VPN
for cross-view semantic segmentation in House3D, including
the ones of single-modality and multi-modalities VPN respec-
tively. To better evaluate our VPN, we impose an upper bound
that we perform segmentation using top-view RGB images
directly as inputs, where we get the performance of 91.4%
pixel acc. and 41.2% mIoU. We also show the comparison
with the geometric baseline and the ablation study of View
Transformer Module.

Single-modality VPN. We show the House3D results of
single-modality VPN with different modalities and different
numbers of views in Table I. We can see that as VPN receives
more views, the segmentation results improve rapidly. We also
plot some qualitative results by our VPNs in Fig. 4. On Carla
dataset, we achieve the performance of 84.7% pixel acc. and
33.2% mIoU with a 6-view RGB-input model.

Multi-modalities VPN. We demonstrate the results of multi-
modalities VPN in Table II to show that our VPN can effec-
tively synthesize information from multiple modalities. We set

the late-fusion baseline to compare with our multi-modalities
VPN, which simply averages the softmax outputs of each
single-modality VPN to obtain the final results. We find that
the Depth-Semantic VPN achieves the best performance and
makes a great improvement. This may be because semantic
mask and depth map are two complementary information.
However, the Semantic-RGB combination does not bring too
much improvement. The reason can be that, for this cross-view
semantic segmentation task, semantic input contains most of
the useful information in the RGB.

Importance of View Transformer Module. We further eval-
uate our model in Table III to show the importance of the
view transformer module. The baseline network is a classic
encoder-decoder architecture used in the standard semantic
segmentation, in which the encoder and the decoder are the
same as our VPN. It simply sums up the feature maps from
different views and then feeds it to the decoder. Our VPN
easily outperforms the baseline and, in some multi-view cases,
the baseline model does even worse than single-view one due
to the bad fusion strategy.

Comparing with baseline. Table I shows that our VPN can
easily outperform the 3D geometric method. 3D Geometric
method is very easy to fail when there are obstacles. In
Fig. 4, we can see that the 3D geometric method is unable
to reconstruct the objects which can not be directly observed,
even after filling the holes, such as the desk behind the chairs
shown in the figure. As for X-Fork, we can see that the
original generator performs badly in our cross-view semantic
segmentation task. This is because X-Fork doesn’t have a
necessary module to transform the first-view feature map into
the top-down-view space. The ablation study in Table III
shows a similar issue that there is a significant performance
drop when VPN doesn’t contain the VTM.

C. Results of sim-to-real adaptation
After we train and test our VPNs in the simulation environ-

ment, we transfer our model to the real-world data. We first
train a 6-view semantic VPN model on the predicted semantic
masks in CARLA simulator and then transfer it to nuScenes
dataset by using an unsupervised domain adaptation process
as depicted in Section III-C. We provide the qualitative results
in Fig. 3, from which we can see that our VPN can roughly
segment various road shapes like crossroads and also sketch
the relative locations of surrounding objects such as cars and
buildings. As shown in Table IV, we evaluate the quantitative
results of real-world performance by using binary drivable-
area ground truth.

TABLE IV: Results in real world.

Method Pix. Acc. Mean Acc. mIoU

Before Adaptation 72.6% 61.4% 28.0%

After Adaptation 777888...888% 666555...222% 333111...999%

V. EXPLORATION WITH TOP-DOWN-VIEW MAP
When exploring an unknown space our humans head to the

regions which they have not visited. This intuition reflects that
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Considering that the geometric method requires semantic mask and
depth map, we use the 4-view Depth-Semantic VPN to predict the
top-down-view semantic map to fairly compare these two methods.

exploration requires the agent to identify free space as well as
remember which areas it has not visited yet. To achieve this
goal, we make the agent able to identify the free space by
training it to predict the top-down-view free-space map.

Top-down-view free-space map. We train the VPN to predict
top-down-view free-space map. Different from the semantic
map, free-space map has only two categories, obstacle and
free space, which are denoted by 0 1 respectively.

State map. Due to the ideal assumption made above, by
memorizing the previous actions it has executed, the agent
can easily build the state map which contains the information
of the already-visited positions. We label the unvisited pixels
as 0 and the already-visited pixels as 1 on the state map.

Exploration algorithm. We detail the navigation policy
decision algorithm in Algorithm 1. At each time step t, we
make the action at and update the agent with the next top-
down-view free-space map Tt+1 and state map St+1. In both the
top-down-view free-space map and the state map, we assume
that the agent is always at the center of the map.

A. Result and comparison

To demonstrate that VPN can help navigation, we com-
pare it with the following baselines for exploration. Random
walk: Random walk agent randomly chooses one action from
Forward, Back, Right-forward and Left-forward, at each time
step. Top-down-view navigation with ground truth (GT): By
planning on the ground truth top-down-view free-space map
with Algorithm 1, we can obtain the upper-bound performance
of our method. The difference is that in our case the top-
down-view free-space map is predicted by VPN, rather than
the ground truth. Imitation learning (IL) without top-down-
view: A reactive CNN network learns to imitate the expert

Algorithm 1 Exploration decision policy at time t
Input: A top-down-view free-space map Tt and a state map

St at time step t, where Tt ,St ∈ {0,1}L×L.
Output: Policy action at , where at ∈ {Forward, Back, Left-

forward, Right-forward, Done}.
1: Ut ← Tt

⋂
¬St ; at ← Done; ds←+∞

2: Dt ← computeDistMap(Ut )
3: for a in {Forward, Back, Left-forward, Right-forward} do
4: d =execute(a)
5: if ds > d then
6: ds← d; at ← a
7: end if
8: end for
9: return at

computeDistMap(): Compute the shortest distance of each map
pixel to the unvisited free-space region.
execute(): Return the shortest distance of the pixel to which
the agent transit if execute the action a.

exploration trajectories given the first-view observations. The
trajectories are generated by the baseline above with a top-
down-view ground truth map. Network inputs are 4 first-view
depth images. We also input the state map to indicate the
already-visited area. We extract 729 trajectories for the training
set and 121 trajectories for the validation set to train the
navigation agent. Each trajectory contains 150 states which
are all labeled with expert policy.

TABLE V: Comparison on exploration.

Method Coverage Area

Random walk 260.3 ± 82.7

IL w/o top-down-view 443.8 ± 340.6

Top-down-view navigation 673.8 ± 349.8

Top-down-view navigation with GT 1070.8±326.2

We run the algorithm directly on our predicted top-down-
view map. For testing all the methods, we start the episode
by initializing the state maps from zero, indicating that all
free space is yet to be visited. Coverage Area is defined to
measure exploration performance. We randomly choose 100
starting points on a scene map. For each starting point, we
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Fig. 6: Our experiments are conducted on a LoCoBot mobile robot
in the PyRobot platform. (a) We show a picture of the LoCoBot
robot. (b) We show our test environment and the target specified by
a semantic token (e.g. bench). (c) We show the process that parses
the instruction and calculate the target coordinates.

let the agent explore the space for 300 steps and compute the
coverage area. Then final results are obtained by averaging
the coverage area of these 100 episodes. Table V plots the
exploration result for different methods and Fig. 5 shows
some sample trajectories. We can see that equipped with the
predicted top-down-view map from our VPN, the agent can
efficiently explore the environment.

VI. REAL ROBOT EXPERIMENT

To verify the performance of our model in the real-world
robotic environment, we conduct a semantic navigation exper-
iment by using a LoCoBot mobile robot [20] (cf. Fig. 6a).
In this task, the robot is required to identify and reach the
target specified by a semantic token. For instance, given the
instruction “go to the bench”, the robot has to move to the
target which is shown in Fig. 6b. Similar settings are also
used in [16]. At the initial location, the robot takes 8 RGB
images (45 degrees apart) using its head camera. Then it uses
the existing semantic segmentation technique to obtain the
semantic mask of each RGB image. After that, it predicts
the top-down-view semantic map with our VPN. Finally, it
parses the instruction and calculates the centroid coordinates
of all “bench” pixels (cf. Fig. 6c). Our real robot experiment
shows that though the model is trained in a simulator it
exhibits reasonable robustness when we randomly set the
initial location and change the layout of surrounding objects.

VII. CONCLUSION

In this work, we propose the cross-view semantic segmen-
tation task to sense the environment and a neural architecture
design View Parsing Network (VPN) to address that. Based

on the experimental results, we demonstrate that VPN can
be applied to mobile robots to facilitate the surrounding
awareness through a lightweight and efficient top-down-view
semantic map. In many situations where the height information
of objects is not essential, VPN could be a good alternative
compared to the traditional 3D-based methods which are costly
on both data memory and computation.
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