
	6	 COMPUTER	 Published by the IEEE Computer Society	 0018-9162/14/$31.00 © 2014 IEEE

SPOTLIGHT ON TR ANSACTIONS

This installment of Computer’s series highlighting the work published
in IEEE Computer Society journals comes from IEEE Transactions on
Software Engineering.

D on’t you just hate it
when you find an error
in your design and
then have to work out

where it came from? What caused
it? Is it a minor modeling error? Or
more fundamentally, does it result
from an inconsistent design or even
a requirements error? These issues
have bedeviled designers and pro-
grammers alike since the days of
the ENIAC. With today’s increasingly
complex designs and composite
systems, identifying and correcting
design errors early and accurately is
more critical than ever.

In a recent article in IEEE Transac-
tions on Software Engineering (vol.
39, no. 11, 2013, pp. 1531–1548), Al-
exander Reder and Alexander Egyed
from Johannes Kepler University,
Linz, Austria, bravely tackle this
problem. They’ve produced a major
advance in inconsistency analysis—
moving beyond just identifying a
design inconsistency to accurately
showing designers where the incon-
sistency originates.

Their work starts from the prem-
ise that visualizing an inconsistency
in a design tool ought to also involve

visualizing its cause, a novel concept
not previously explored in software
engineering design. Understanding
the cause is vital in formulating a
suitable repair, whether manual or
automated. And to understand the
cause, it must be understood that
behind an inconsistency is a design
rule—a constraint—that the design
violated. Inconsistency is defined in
how the various parts of the design
rule contributed to the inconsis-
tency and identifying which model
element in the design influenced
those parts. To do so, the authors
present an equally novel approach
for computing the cause of design
model inconsistencies by looking at
inconsistencies from two angles: the
syntactic structure of design rules to
understand the expected results of
their parts and the validation results
to determine where the validated
results match the expected results.
The cause of an inconsistency is
then the set of model elements that
contributed to validations that didn’t
match expectation.

The authors rigorously evaluate
this novel technique and support-
ing prototype tool plug-in using

a correctness measure (based on
causes being complete and mini-
mal), an effectiveness measure
(based on scalability and deter-
mining the full set of causes for an
inconsistency), and a performance
measure (based on computational
scalability). They show that their
technique can determine the full
set of expressions that cause model
consistency problems both accu-
rately and scalably.

Given the prevalence of models
well beyond software engineering,
anyone interested in modeling tools,
model inconsistency checking and
resolution, and holistic and effective
evaluation of engineering research
should read this paper.

John Grundy is dean of the School of
Software and Electrical Engineering,
Swinburne University of Technol-
ogy. Contact him at jgrundy@swin.
edu.au.

Determining the
Cause Design Model
Inconsistencies
John Grundy, Swinburne University of Technology

For more news on IEEE CS transactions,
sign up for the newsletter at
www.computer.org/newsletters.

r8tra.indd 6 7/24/14 3:11 PM

