
1
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Abstract—Reversible computation has been recognised as a
potential solution to the technological bottleneck in the future of
computing machinery. Rolf Landauer determined the lower limit
for power dissipation in computation and noted that dissipation
happens when information is lost, i.e., when a bit is erased.
This meant that reversible computation, conserving information
conserves energy as well, and as such can operate on arbitrarily
small power. There were only a few applications and use cases
of reversible computing hardware. Here we present a novel
reversible computation architecture for time reversal of waves,
with an application to sound wave communications. This energy
efficient design is also a natural one, and it allows the use of
the same hardware for transmission and reception at the time
reversal mirror.

Index Terms—reversible computation, circuit design, wave time
reversal, wireless communications

I. INTRODUCTION

THE majority of computation we perform is irreversible:
addition of two numbers, or logical AND of two bits both

destroy the information about the inputs. In a computation
paradigm which prioritises saving memory resources, losing
information is a consequence of using a register for something
else as soon as its current content is used for the last time.
The arithmetic units are often designed so that the result
replaces one of the input operands, and this is considered an
important save in resources. Somewhat paradoxically, the call
for reversibility and preservation of information through the
computation process also comes from the resource optimiza-
tion perspective.

Thermodynamics of computation explains the mechanisms
of energy use and dissipation in computing systems. Landauer
[1] established an important lower limit for computation
energy dissipation: the erasure of one bit takes a fraction
of a joule, energy proportional to the working temperature
of the system (with the proportionality coefficient equal to
the product of the Boltzmann constant and natural logarithm
of two). This lower limit follows from the equivalence of
thermodynamical and informational entropy and, at the time,
it was significantly lower than the limits imposed by techno-
logical (semiconductor) constraints. With the advancement of
semiconductor industry, the limits of devices became closer
to Landauer’s limit. Landauer’s limit bounds bit erasure:
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operations that do not erase information (bits) do not have
a lower bound in thermodynamical-informational sense. This
fact qualifies information-conserving computation as a poten-
tial solution for the future of general computing in the post-
Moore law era.

The concept of reversible computation, reversible logic
gates and circuit design have been a topic of research since
Bennett’s pioneering work [2] on applying Landauer’s ideas
to hardware. However, there have been almost no applications
of reversible circuits to real world problems, no interfaces
with the nature and other technology. In this paper, we
present a case for employing reversible computation in wave
time reversal, using acoustic underwater communication as a
working example.

The case of acoustic communications based on wave time
reversal is a good ground for reversible computation. Every-
thing is reversible: the communication scheme reversing the
carrier wave toward the original source and the environment
obeying reversible Euler equation. Here we show how the
computation performing all of it can be reversible as well.
Of course, wave time reversal is not limited to acoustic
communication, as it is the basis of a beamforming approach
for RF communications. Hence, our contribution is relevant to
multiple wireless communications paradigms. Our motivation
for presenting the reversible hardware solution for wave time
reversal as a contribution to communications stems from
here: a solution for time-reversal massive MIMO would be
an adaptation of the one presented here, and same holds
for optical communications based on time reversal. In this
manner, digital signal processing in communications would
be ready for the post-Moore age of reversible and/or quantum
computing. Time-reversal based communications implemented
with this circuitry then have both the potential of immense
energy efficiency and a chance to become the natural solution
for the physical layer of quantum networks of the future.

We begin by revisiting the mechanism of wave time reversal,
followed by a presentation of reversible computation and
motivation of its use. We discuss the possible design options
employing reversible hardware for time reversal and show
design results. We conclude with a discussion of the proposed
solution, future research and the wider effect of reversible
hardware introduction in wireless communications.

II. REVERSIBILITY OF WAVES AND COMPUTATION

It is not a coincidence that we chose wave time reversal for
the demonstration of an efficient reversible hardware applica-
tion. As this section will show, the wave time reversal and
reversible computation both rely on keeping the information
about backtracking known, to run backwards. They share the
same philosophy and a common foe.
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Fig. 1. The wavefront distorted by heterogeneities comes from a point source
and is recorded on the cavity elements. In the next step the recorded signals
are time-reversed and re-emitted by the elements. The time-reversed field
back-propagates and refocuses exactly on the initial source.[3]

A. Wave Time Reversal

Both, reversing waves and reversing computation are
plagued with the scale destroying reversibility. While at the
microscale the elementary components of the system are obey-
ing reversible laws (be it simple computational operations, be
it equations of motion), their ensembles lose the reversibility
at the macroscale. Loschmidt’s thought experiment with a
deamon capable of reversing all velocities of particles in a
gas and hence reversing the behaviour of the ensemble asks
for too much information and ability on the deamon’s side, but
it is a worthy goal to pursue: how can we reverse a propagating
wave so it ends up converging at its original source?

The solution based on time reversal mirrors (TRMs) [4]
performs this regardless of the complexity of the medium
as if time were going backwards, and has been implemented
with acoustic, electromagnetic and water waves. It requires the
use of emitter–receptor antennas positioned on an arbitrary
enclosing surface. The wave is recorded, digitized, stored,
time-reversed and rebroadcasted by the same antenna array.
If the array intercepts the entire forward wave with a good
spatial sampling, it generates a perfect backward-propagating
copy.

The principle of wave time reversal builds upon the exact
nature of the wave equation, and its solution being a continu-
ous function of three spatial and one temporal dimension, i.e.
described over a hypervolume with four variables, bounded
by a hypersurface with three variables. This boundary can
either be observed as composed of three spatial dimensions
or of two spatial and one temporal dimension . Depending on
the choice of the boundary description, we have two different
approaches to time reversal, dubbed “à la Huygens” (named
after Huygens integral theorem) and “à la Loschmidt” (named
after Loschmidt’s deamon). [3]

1) The time-reversal mirror approach ‘à la Huygens’: In
this approach, represented in the Fig. 1, a transient wavefield
originating from the initial source is radiated throughout a
heterogeneous medium closed in a cavity bounded by a two-
dimensional surface. This surface is populated with sensing
and recording devices keeping the information about the
wavefield and its normal derivative. This process continues

until the incoming field vanishes along the boundary. This
recording suffices for the recovery of the wavefield, as we
will soon see.

Out of the two solutions of the wave equation (wave
operator obeys time-reversal symmetry), the causal one is
radiated from the source, and we aim to radiate the anti-causal
one from the boundary. The collected samples are hence time-
reversed and rebroadcasted by the same antenna array that has
collected them.

This new wave satisfies a homogeneous wave equation with
the time-reversed boundary conditions without the original
source. Hence it is not enough to time-reverse the wavefield on
the boundary, as the original source needs to be reversed into
a sink. While returning to the original source, the re-emitted
wave does appear to converge, but as it cannot stop on its
own, after the collapse it continues to propagate in divergent
manner. To compensate this diverging field, we either use an
active source at the focusing point canceling the field, or a
passive sink as a perfect absorber. [5]

So far, we assumed the idealised case where the entire
surface of the boundary is covered with transceivers, which
requires a large number of hardware components. This re-
quirement can be dropped, and the execution of the reversal
can be simplified. One way is locating the TRM in the far field
of the source and of the medium heterogeneities. This halves
the quantity of data to be stored, as the normal derivative
remains proportional to the field and does not have to be
recorded at all. In addition to this, it was experimentally
shown that TRM consisting of a small number of elements
(time-reversal channels) functions on a limited angular area
as well, when it uses complex environments to appear wider
than it is. The resulting refocusing quality does not depend
on the TRM aperture. In that regard, observe the following
experiment setup.[6] A point-like transducer is separated from
a TRM by a large distance (much larger than the wavelength)
and by a multiple scattering medium (forest of steel rods) and
shown in Fig. 2. After emitting a short pulse from the source,
the sensors at the TRM collect the impulse response. The
spread of these impulse responses is two orders of magnitude
higer than the initial pulse duration as the multi-scattering
medium is highly diffusive. As explained before, in the next
step the responses are flipped in memory and re-transmitted
from the TRM. The impulse duration, reconstructed at the
original source is the same as the original; the spatial spread
is a level of magnitude smaller (i.e. more coherent) when the
propagation happens in the complex medium, than in the case
of free space propagation.

2) The instantaneous time mirror approach ‘à la
Loschmidt’: Going back to Loschmidt’s demon able to
turn the direction of particles instanteneously, if one decides
to imitate it, unlike the Huygens case, the measurements
of the incoming wavefield have to be performed at one
specific time in the whole volume. At that point a new set
of initial conditions is imposed, in which the sign of the
time derivative is reversed, and the resulting wave is the
time-reversed original.

Examine a case of a bath of fluid, placed on a shaker
to control its vertical motion. After emitting a pulse from a
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Fig. 2. Time-reversal experiment through a diffusive medium [3]

point on the fluid surface, at the chosen time instant a vertical
downwards acceleration is applied to the bath, an impulsive
change of wave celerity which can be described by a delta
function in time. While the propagation of the initial outwards
propagating wave is not affected, a new contribution emerges:
a backwards converging circular wave packet. Just like in the
Huygens case, this wave packet focuses at the original source
and proceeds diverging afterwards. While the result is the
same, we note that in this case no transceivers or memory
elements were used: the information is stored in the medium
itself.

The Bridge to Computing

Among time reversal studies that have followed the develop-
ment of these concepts one creates a link between computation
and time reversal in waves [7]. A dissipative chaotic system
consisting of a drop bouncing on a vibrated liquid bath,
exchanging information with the waves it forms, can be
reversed. The elementary motions performed by the system are
equivalent to writing, storing, reading and erasing operations
of a Turing machine. The bouncing drop reads information
as it backtracks, at the same time it is erasing the read
information. In the next section, we investigate computational
systems which use an equivalent principle to perform useful
calculations and save power.

B. Reversible Hardware

Landauer famously concluded that “the information is
physical” and brought together Shannon’s and Boltzmann’s
views on entropy. [1] Digital computation that does not lose
information (erase bits of information), does not have to
dissipate power. When we delete a bit, the information that was
stored there physically moves to the environment in form of
heat, a direct display of Boltzmann’s thermodinamical entropy.
None of it would have to be dissipated from the entropical
perspective if the erasure was not performed.

Observe a digital circuit consisting of logical gates: e.g. a
single AND gate with its two inputs and one output. Its output
is one when both inputs are one simultaneously; otherwise it is
zero. Hence the knowledge about the output is not enough to
tell us the inputs, as three different input combinations collapse
into one output state. If we want to make an information-
preserving gate, it has to have a one-to-one correspondence

between output states and input states. This asks for the same
number of outputs and inputs in such reversible gates.

Two reversible bit operations are bit inversion and swap
of two variables. To make more use of them, we devise
gates controlling these operations according to the state of
other variables. Fig. 3 shows some basic reversible gates as
part of larger reversible circuits: all circuits in the figure are
built using Feynman and Fredkin gates. Feynman gate is a
controlled NOT: the variable with the ⊕ is inverted if and
only if the control input, the variable with • is equal to 1. In a
more general setting of the Toffoli gate, multiple variables can
control a single NOT; in that case the function controlling the
gate is an AND of the control inputs. Similarly, the Fredkin
gate swaps the variables joining in the × if and only if the
variable(s) with • are equal to 1.

These gates enable design of reversible circuits which
perform the usual digital electronics tasks. A full adder [8] and
D-latch [9] are shown in Fig. 3. Additional inputs/outputs are
auxilliary variables–the ancilla bits. In the D-latch example,
the 0 bit and the Feynman gate attached to it are necessary
to copy the latch output for feedback, as reversible circuits do
not allow fan-out (it violates the one-to-one correspondence
requirement).

Most classical computation is irreversible, re-using the
memory by often removing intermediate results. In the past,
most of the dissipation in logic circuits came from imper-
fections of the practical implementation. With the progress of
semiconductor technology, the dissipation levels are approach-
ing those of Landauer’s limit, and reversibility is gaining
importance. As Moore’s law comes to its potential end, and
alternative solutions are sought, one of the candidates being
reversible computing. Irreversible calculations could be easily
embedded in a reversible computation by merely keeping
track of the steps made. To mitigate the need for unbounded
memory, Bennett [2] introduced a trick: if a computation is
made in a reversible circuit in one direction and then in reverse
(computed, and then uncomputed), the memory occupied in
the direct pass is freed in the return pass, and it is available
for a new computation without bit erasures, and entropy is not
increased (the memory after the return pass is back to the state
before the direct pass).

The lack of application for reversible computation in the
classical realm is reversed in the quantum computing domain.
Most quantum computing schemes require reversibility to
operate, so the reversible logic gates are constituent parts of
quantum circuits (and are often referred to as quantum gates).
Reversible computation is not limited to electronics (where
adiabatic circuits are known for several decades [10]) and
quantum computers: (micro)electromechanical systems and
quantum dots are also capable of reversible computation.

III. THE DESIGN

We have seen so far a computational paradigm relying
on reversibility of calculation, and a communication scheme
relying on the reversibility of wave propagation. In this part
of the article, we proceed with designing a TRM based on
reversible hardware. The reversible gates will form the digital
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Fig. 3. Reversible circuits: D-latch, full adder, and logical gates as building
blocks

logic part in the TRM, but the design is more complex than
just digital logic. With Fig. 4 we illustrate the layers of the
design task:

1) The environment is reversible to an extent. In the use
case of acoustic underwater communication, the physics
of wave propagation in water is reversible, but the issues
arise as we lose information in the process: parts of
the wave might end up reflected to unreachable parts
of the environment if the observed space is not ergodic,
guaranteeing all parts of the environment to be visited
by the wave components. The hardware in contact with
the environment are the microphones and speakers, i.e.
sensors and actuators.

2) The analog computation part of the TRM loses informa-
tion. It comprises of anti-alias filters before analog-to-
digital conversion (ADC), filters after digital-to-analog
conversion (DAC), amplifiers accompanying the filters
and the converters themselves, at the transition to the
digital domain. We analyse these components in Section
III-A.

3) Finally, the digital computation part of the TRM is
reversible and no increase in entropy is necessary. This
part entails writing in memory and unwriting, in the
fashion of Bennett’s trick, enabling reuse of memory
for the next incoming wave, while not increasing the
entropy. It may include a transform into frequency
domain and digital filtering, and we discuss these options
as well in Section III-B.

Fig. 4. The classical (top) and the reversible solution (bottom) for the classical
time reversal chain.

A. Analog processing

Analog processing is the lossy, inherently irreversible bridge
between two domains which exhibit reversibility: the physics

of wave propagation and the digital signal processing chain
we introduce. Our main goal at this point is to make the
mechanisms in this part of the processing chain bidirectional,
so that they can be used both for the inputs and the outputs.
However, we are interested in saving as much information as
we can, so we investigate the information loss in this part of
the chain as well.

1) Bidirectional amplification and AD/DA conversion:
From the information-preserving perspective, ideal amplifica-
tion is not an interesting process. However, the real amplifier
is an imperfect device with a limited bandwidth and it loses
signal information and introduces changes in the signal shape.
It requires additional energy for the signal, hence we have
to allocate a non-zero energy budget for this part of the
computation. At the same time, the analog to digital and digital
to analog converters both modify the signal they convert due to
finite resolution and sampling rates, losing information about
the original signal. However, the idea of the single device
performing as both an ADC and a DAC depending on the
direction exists both in academia and industry, with a large
number of patents describing these bi-directional devices. [11]
In our proposed solution, we assume that the bi-directional
converters are bundled with bi-directional amplifiers [12].
We note the complexity of structure and switching in these
devices.

2) The information-increasing filter: A part of analog to
digital conversion is the anti-aliasing filter. Filtering, in the
most common interpretation, removes a part of the signal
and hence loses information about the original signal. How-
ever, the anti-aliasing filter is employed to prevent significant
information loss due to spectrum overlaps in the analog-to-
digital conversion, and hence in this situation represents an
information gain and may be re-interpreted in the context
of useful, relevant information [13]. To avoid confusion, we
may consider the anti-aliasing filter as a part of the analog-to-
digital converter and as such, implement it in the bi-directional
fashion.

3) One-bit reversal: The conversion is additionally simpli-
fied in the one-bit solution [14] where the receivers at the mir-
ror register only the sign of the waveform and the transmitters
emit the reversed version based on this information. It is a spe-
cial case of analog-to-digital and digital-to-analog conversion
with single bit converters. The reduction in discretisation levels
also means simplification of the processing chain and making
its reversal (bi-directivity) even simpler. The question of the
information loss is not straightforward: while the information
about the incoming wave is lost in the conversion process
(and the loss is maximal due to minimal resolution), spatial
and temporal resolution are not significantly degraded.

This scheme can also be called “one-trit” reversal: there are
three possible states in the practical implementation: positive
pressure, negative pressure, and ’off’. Reversibility and multi-
valued logic were going hand in hand from the beginning:
binary reversible logic is just a special case of multi-valued
reversible logic. Hence, this scheme is readily implementable
in reversible logic as well.
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B. Digital processing

With the functionalities reversible gates presented in Section
II-B can offer when combined into logical circuits, building a
digital signal processing chain for wave time reversal becomes
the matter of combining circuits into more complex structures,
akin to traditional circuit design. The idea we show here
can easily be translated into any scheme of modulation-
demodulation, coding-decoding, which are often seen in com-
munications hardware and software. While fully functional and
directly applicable, our time reversal signal processing chain
is a proof of concept for reversible communications signal
processing of arbitrary complexity.

1) Time domain reversal: The first, straightforward way of
performing time reversal of a digitally sampled wave is storing
it in memory and reading the samples in the reverse order (last
in, first out, LIFO), analoguous to storing the samples on the
stack. The design of registers in reversible logic is a well-
explored topic [9] and both serial and parallel reading/writing
can be implemented. In the sense of already presented circuits,
we have seen a design for the D-latch (Fig. 3): a combination
of latches makes a flip-flop, and a series of flip flops makes
a register (and a reversible address counter). In the case of
wave time reversal, this is important to know, as the two
possible variants of wave time reversal can be interpreted as
two variants of memory writing:

1) Wave reversal à la Loschmidt is a large register being
loaded in parallel with wave data;

2) Wave reversal à la Huygens is a large register being
loaded serially with wave data.

In the case of a localized time reversal mirror (all samples
at the same place) m bits from the ADC are memorised
at the converter’s sample rate inside a k × m bit register
matrix (where k is the number of samples to be stored for
time reversal). In the receiving process, the bits are stored,
in the transmission process they are unstored, returning the
memory into the blank state it started from (uncomputation).
We utilise Bennett’s trick and lose information without the
entropic penalty: the information is kept as long as it is
relevant.

2) Frequency domain reversal: When additional signal
processing, e.g. filtering or modulation is performed, it is
convenient to reverse waves in frequency domain: there,
time domain reversal is achieved by phase conjugation, i.e.
changing the sign of the signal’s phase. The transition from
time to frequency domain (and vice versa) in digital domain is
performed by the Fast Fourier Transform (FFT) and its inverse
counterpart. These procedures are inherently reversible and
information-preserving, and their implementation in reversible
digital circuits asks for a network of reversible adders (and
reversible multipliers, again comprised of adders) [8], and we
have already seen an implementation of a reversible adder
in Fig. 3. The necessary phase conjugation is an arithmetic
operation of sign reversal, again perfectly reversible and with
a known implementation. The additional signal processing can
be performed reversibly as well: one example is the filtering
process done through filter banks and wavelet transforms. It
remains reversible as all components of signals are preserved,

if nothing then as the remainder [15]. Both the reversible
wavelet computation and reversible Fast Fourier Transform use
the lifting scheme.
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Fig. 5. Information loss in (a) digital and (b) analog part of the system. Units
are omitted as the particular aspects of implementation are not relevant for the
illustration of effects. Plot (a) is obtained by counting operations, plot (b) by
simulation of back-scattering, both originating from theoretical calculations.

IV. DISCUSSION AND CONCLUSIONS

We have presented the components to be used in the
implementation: where possible (in the digital domain) we use
reversible circuits, otherwise we use bidirectional components.
What is the gain of the new implementation? As already
suggested, the loss of information is directly related to the
dissipation of energy in the system, so let us observe how
does our solution fare in this regard.

Fig. 5(a) is a comparison of the bit erasures in different
implementations of the digital circuitry: frequency domain
(FFT) and time domain reversal performed by irreversible
circuits, compared to reversible implementations. The num-
ber of erasures changes depending on two parameters: bit
resolution of the ADC and the waiting time–the length of
the interval in which samples are collected before reversal
starts, equivalent to the number of digitised samples. The
increase in both means additional memory locations and
additional dissipation for irreversible circuits. The irreversible
FFT implementation has an additional information loss caused
by additional irreversible circuitry compared to the irreversible
time domain implementation. Our implementation has no
bit erasures whatsoever. The price that is paid reflects in
the larger number of gates used in the circuit: the number
of gates has only spatial consequences, information-related
energy dissipation is zero thanks to information conservation.
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Having no bit erasures means theoretical decrease in energy
consumption proportional to the number of bits erased by the
state of the art irreversible implementations–multiplied by the
number of processing chains serving multiple transceivers, it is
clear that this quantity, as small as it may seem in the case of a
single transceiver, is indeed significant, especially in the near
future where the Landauer limit becomes the dominant bound
in semiconductor component power dissipation. As the circuits
in our solution perform arithmetical and logical operations in
the same vein as irreversible circuits in the state of the art
implementations, the performance of the two solutions is the
same in terms of results (the components are validated at the
level of logical circuits).

On the other hand, in Fig. 5(b) we see the information
loss in the analog part of the system, and we differentiate
two typical environments, the chaotic cavity and the complex
medium. The chaotic cavity is an ergodic space with sensi-
tive dependence on initial conditions for waves. In such an
environment there is little to no loss in the information if the
waiting time is long enough and the ADC resolution is high
enough. The complex medium is one with a large number of
scatterers; In such media, the difference is caused by some
of the wave components being reflected backwards by the
scattering environment, hence not reaching the TRM. Again,
more information is retained with the increase in the ADC
resolution. However, as reported in [14], the information loss
from low-resolution ADC use does not affect the performance
of the algorithm. The analog part of the scheme remains a
topic of our future work, as it leaves space for improvements
of the scheme.

When the first prototype of a reversible FFT chip was
introduced [8], it was shown that the implementation based on
8-bit adders and 11-bit multipliers requires 40,000 transistors.
As the idea of information and energy conservation in com-
putation allows for very dense packing (no heat dissipation to
limit the density), this order of magnitude for our solution is
acceptible (the rest of the circuitry we introduce in the chain
needs two or three orders of magnitude fewer transistors),
and if we opt for no frequency domain processing, i.e. just
using memory, we can perform the task with less than 1,000
transistors.

In this first application of reversible hardware to a physical
process we have demonstrated the complementary nature of
wave reversal and computational reversal which can be put to
use. Our implementation of wave time reversal using reversible
hardware carries the promise of reduced power consumption,
and it also fits in the bigger picture: in this vision of the future,
all computation is reversible, no matter if it is performed on
classical or quantum basis.

This solution is just the first step in the proliferation
of reversible computation in communications. The inherent
reversible properties of communications, including but not
limited to channel reciprocity and transmitter-receiver duality,
make communications technology an area with a lot of poten-
tial in reversible computation. With the inevitable penetration
of quantum-based techniques in communications, this link
with reversible computation grows stronger and needs to be
thoroughly investigated.
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