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Wireless vehicle-to-infrastructure data gathering for robot platooning*

Constantin F. Caruntu1, Cosmin Copot2, Corneliu Lazar1

Abstract— This paper presents firstly the development of the
infrastructure to emulate and verify the behavior of robots
in a platooning scenario based on mOway mobile robots.
Radio Frequency communications and how they are handled
in both ends are the keys in this distributed wireless vehicle-to-
infrastructure (V2I) data gathering implementation. Secondly,
the paper investigates a state-space model predictive control
strategy for platoon guidance using only longitudinal changes
for the automatically controlled robots. The control strategy was
implemented and tested in simulation and in real-time, while
the data gathered through the distributed wireless V2I system
was used to monitor the mobile robots on-line and afterwards
to analyze the behavior of the mobile robot platoon. Studying
robot platooning and the relationship with the communication
issues allows one to understand the dynamics of the platoon
and, therefore, to develop a suitable traffic control strategy.

I. INTRODUCTION

Nowadays, road vehicles are still the most widely used
transportation units worldwide for persons and goods, but
the continuously growing number of vehicles has led to the
increase of traffic flow on highways and city roads. The
result is that there are more and more traffic jams leading to
accidents, causing driving stress and passenger discomfort,
losing the efficiency of vehicles and thus increasing the fuel
consumption and pollution. One solution to these problems
is given by the Automated Highway Systems, which are able
to ensure safe and efficient coordination of vehicles [1].

The rapid growth of connected devices in the world lead to
an exponential growth of opportunities for the automotive in-
dustry to take advantage of this newly available information.
By equipping vehicles with technologies capable of broad-
casting, receiving and processing pertinent data, the impact
on safety, convenience, and mobility is groundbreaking [2].
The connected vehicle market consists of: Vehicle-to-Vehicle
(V2V) communications between two vehicles and Vehicle-to-
Infrastructure (V2I) communications between a vehicle and
a fixed piece of the surrounding infrastructure. Both tech-
nologies rely on Dedicated Short Range Communications to
transmit and receive information in a vehicle. As a natural
result of the primary information broadcasted by the DSRC
modules (vehicle location, speed, and direction), most of the
applications of V2V technologies are focused on collision
avoidance, specifically with other vehicles on the road [2].
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V2I applications have a broader scope, as they tend to be less
immediate or safety-critical. V2I opens up the possibility
for more complex data analysis and for information to be
stored over time. Contrary to V2V, V2I only requires the
infrastructure and the vehicle to be connected, allowing for
useful applications immediately without significant market
penetration of connected vehicles [3].

V2I communications for safety is the wireless exchange
of critical safety and operational data between vehicles and
highway infrastructure, intended primarily to avoid motor
vehicle crashes and enable a wide range of other safety, mo-
bility, and environmental benefits. Preliminary studies show
that an additional 12 percent of potential crash scenarios
could be addressed by V2I safety applications [4]. The vision
for the V2I research is to enable safety applications that
are designed to avoid or mitigate vehicle crashes. In V2I
communications, the infrastructure plays a coordination role
by gathering global or local information on traffic and road
conditions and then suggesting or imposing certain behaviors
on a group of vehicles. The velocities and accelerations of
vehicles and inter-vehicle distances would be suggested by
the infrastructure on the basis of traffic conditions, with the
goal of optimizing overall emissions, fuel consumption, and
traffic velocities. Suggestions to vehicles could be broadcast
to drivers via road displays or directly to vehicles via
wireless connections. Looking further ahead, in some cases
suggestions could be integrated into the vehicle controls and
implemented semi-automatically.

Driving assistant systems with cameras (e.g., mono, stereo,
surround view) and sensors (e.g., radar, ultrasonic) are ex-
pected as a solution for safe driving, congestion prevention
and driving load reduction. A sensor-fusion technology could
be used to identify the obstacles [5]. The ultrasonic sensor
with high sensitivity and low price is used for short distance
detection. For long distance obstacle detection and recogni-
tion a camera could be used. Moreover, the global positioning
system (GPS) and inertial measurement unit (IMU) are used
to measure the vehicles body angle information and current
position information. All these measurements could be trans-
mitted to the infrastructure through V2I communications and
can be used on-line to inform the other vehicles about any
emergency and off-line for complex data analysis.

It is difficult for traditional data collection efforts to
collect accurate and reliable sensor measurements across
large, outdoor environments, e.g., highways and city roads.
Static sensors do not scale well as the hardware requirements
increase quickly with large environments. Even dense static
sensor deployments cannot capture fine-grain measurements,
so they often use interpolation techniques to estimate fine-



Fig. 1. mOway robot

grain variations [6]. With the introduction of autonomous
vehicles, we can opportunistically use them for collecting
sensor measurements about their surroundings. The use of
vehicles for data collection scales much better than the static
sensors in terms of number of measurement locations and
provide better accuracy and reliability. Moreover, using GPS
devices, they can localize themselves continuously with high
accuracy, while adding other sensing devices can improve the
diversity of the collected measurements in order to prevent
the dangerous situations.

Each measurement update can be represented as a time and
value tuple < ti, si >. While in operation, the vehicle can
easily record sensor measurements as well as corresponding
time and location as it moves across the environment. Given
that different sensors update at different rates, one can align
the measurement updates < ti, si > by time-stamp to
identify the best location estimate < ti, xi, yi > for each
sensor measurement < ti, xi, yi, si >.

In this paper, the robot platooning problem is studied
considering the relationship with the communication issues,
which allows to understand the dynamics of the platoon
and, therefore, to develop a suitable traffic control strategy.
As such, firstly the development of the infrastructure to
emulate and verify the behavior of robots in a platooning
scenario based on mOway mobile robots is presented. Radio
Frequency communications and how they are handled in
both ends are the keys in this distributed wireless vehicle-
to-infrastructure (V2I) data gathering implementation. Sec-
ondly, the paper investigates a state-space model predictive
control strategy for platoon guidance using only longitudinal
changes for automatically controlled robots. The control
strategy was implemented and tested in simulation and in
real-time, while the data gathered through the distributed
wireless V2I system was used to monitor the mobile robots
online and afterwards to analyze the behavior of the platoon.

II. SYSTEM DESCRIPTION

The robot considered for this study is a differential
wheeled mOway mobile robot (Fig. 1), which is an au-
tonomous programmable small robot designed mainly to
perform practical mini-robotics applications [7].

A. Hardware description

The mOway mobile robots are equipped with a wide range
of sensors such as temperature, 3-shaft accelerometer, light
intensity sensor, anti collision and infrared line sensors. The

Fig. 2. Overview of the mOway robot

motors are controlled using the Inter-Integrated Circuit (I2C)
protocol. The logical overview configuration of the robot is
illustrated in Fig. 2. As it can be seen in the figure, the robot
is governed by a master Microchip 8-bit PIC micro-controller
(PIC18), which works with a frequency of 4Mhz [7] and has
4KB of RAM and 32 connections [8].

A servo-motor group for each of the two wheels in the
backside is used to drive the robot. The drive system is
illustrated in detail in Fig. 2 in the red rectangle from the
right. The secondary Microchip 8-bit PIC micro-controller
(PIC16) sends the I2C commands (i.e., PWM signals) to
the drive system (i.e., H-bridge) that controls the motors,
while the encoding sticker and infrared sensor are used to
measure the speed of the wheel. An internal proportional
controller with negative feedback from the encoders is used
to control the speed of the robot, keeping it constant on
different terrains.

The robot includes two line tracking sensors (Vishay
CNY70) mounted on the front bottom of the robot. The
emitting light source and the detector are arranged in the
same direction, meaning that the reflective light can be
detected on the spot. There are 3 types of surfaces that the
sensor can detect:
• clear → the infrared light is almost completely reflected
and the sensor registers a low voltage;
• colored → partially reflecting the beam, will register
different levels depending on the color; in this way, colors
can also be identified;
• dark → light is little to not reflected at all and the sensor
registers a high voltage.

The obstacle detection sensor uses infrared light to detect
objects in front of the mOway mobile robot. The sensor has
two emitting sources (Kingbright KPA3010-F3C) and four
receivers (PT100F0MP) placed on both sides in front of the
robot. The output of the receivers are connected to the analog
input of the micro-controller so it can detect the presence
of any object and measure the distance to it. The light
emitter generates a 70us pulse that allows the receivers to
detect obstacles using a filter and an amplifying stage. Once
the signal is processed electronically, the micro-controller
can measure it using an Analog-to-Digital Converter (ADC)
or as a digital input. The measured distance is between



3 cm to 11 cm and the surface color and environment
brightness influences the sensor accuracy. To minimize the
effects of disturbances on the distance reading a blank back
was attached to the mOways as seen in Fig. 1.

The RF modules mounted on the mOways are bidirec-
tional, but there is one particularity: the communication
is half-duplex. According to Tanenbaum [9], a half-duplex
(HDX) system provides communication in both directions,
however they cannot be simultaneous (only one direction
at a time is permitted). The main characteristics of the RF
module are: 2.4GHz working frequency, low consumption
and a transmission speed between 1 and 2 Mbps.

B. RF communications

One of the challenging tasks was to develop a strategy to
use the RFUsb as a MultiPoint-to-Point (MP2P) device [10]
because the default configuration for the mOway communi-
cation system (using the libraries and transmitting without
any data control) lead to the following problems: the data
received was badly structured, many packages were lost and
there was no index parameter to inform if a package was a
transmission or a retransmission.

The first problem to be addressed was the package con-
figuration. Important data to be gathered from the system
were: distance sensor reading (ssr), speed (spd), traveled
distance (km), battery status (batt) and transmission id (id),
which is monitored by the communication protocol, for each
mOway robot. Taking into account that the mOway could
only send 8 bytes at a time, the package structure was defined
as [0, 0, batt, km 2, km 1, ssr, spd, id]. Other data that could
be useful in vehicle platooning would include: acceleration,
heading direction, exact position, future behavior for use in
distributed control strategies [11] and other safety-critical
information, e.g., accidents on the road, blocked roads,
queues at an intersection.

The PC side development was based on a polling tech-
nique to receive the data. The time needed to perform a 1
round poll in every mOway highly scales with the number of
present subjects. To avoid that, a passive (PC side) - active
(mOway side) technique was developed in which the mOway
continuously sends data to the RFUsb module. The sampling
time was too fast and unstable for the RFUsb to process the
data and wait for the next one to arrive. That lead, again,
to package losses and various delays as retransmissions
from every mOway were happening continuously. As such,
instead of changing the mOways, the PC-side application
was redesigned in which buffers were used and threads
called. This way, the minimum time was achieved on actually
processing and storing the package, avoiding being locked
in the process and, therefore, not being able to receive
more data. Although improvements were perceived, this was
not enough as the sampling time from each mOway was
inconsistent and causing overload in the channel. According
to the identification performed, the minimum sampling time
could go as high as 50ms. In order to set the sampling time,
the algorithm in the mOway robots was slightly modified

Fig. 3. Success data transmission for 1 mOway over distance

Fig. 4. Success data transmission for 2 mOways over distance.

so it would accept timed interruptions and then the sending
procedure could be controlled.

After synchronizing the sending by setting an initial pulse
when the system was ready to start, the timers in every
mOway could throw exceptions at the same time. The
packages were transmitted, but the ratio of success deliveries
over the total sending was about 25% to 30%. As such,
this ratio was improved by setting a higher time for the
sending interruptions, while keeping the data sampling at
50ms. As only 8 bytes could be sent at a time, data had to be
narrowed down and the final package had this configuration:
[km 2, km 1, ssr, spd, id, ssr, spd, id].

In the following figures, the success ratio over distance,
number of mOways used in the test bench and total packages
is illustrated. As it can be seen in Fig. 3, the transmission
behavior on the tests for one mOway was almost perfect.

When two mOways were put together, the success rate
dropped immediately from almost 100% to about 60% and as
it can be noticed from Fig. 4 the distance did not influenced
too much the communications.

Finally, a test with 4 mOways was set and the transmission
rate is illustrated in Fig. 5. The success rate dropped from
60% to 50%. The abnormal loss of packages for the tests in
4m presented in Fig. 5 are correlated with a problem of the
transceiver of one robot.

C. mOway robot modeling

The model of the robot was determined using a sequence
of steps response identification experiment illustrated in Fig.
6. The speed of the mobile robot is internally controlled, so
a first order transfer function can be used to represent the
robots dynamics since the robot is a simple process based
on DC motors and only a proportional (P) controller.



Fig. 5. Success data transmission for 4 mOway over distance.
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Fig. 6. Identification experiment.

The resulting transfer function between the reference
speed and the robot position is given by a first order system
plus an integrator [1], [12]

G(s) =
K

s(Ts+ 1)
=

0.22

s(0.04s+ 1)
. (1)

The comparison between the real output of the robot (po-
sition) and the output of the identified model is illustrated
in Fig. 6, the fitting between the two signals being of 94%.
Please note that the input of the process is not a force, but a
reference for the robot speed given as a percentage. At the
same time, the speed is measured in cm/s and has a maximum
of 22 cm/s yielding a gain for the transfer function equal to
0.22.

III. PREDICTIVE CONTROLLER DESIGN

Model based predictive control (MPC) is a control
methodology that uses a process model for calculating on-
line the predictions of the future plant output and based on
that it optimizes the future control actions. Also, constraints
can be taken into account in this optimization. The MPC-
strategy is simple to understand and makes good practical
sense. First, a process model is used to predict the evolution
of the process output as a function of future (intended)
control actions. Secondly, a specified cost index is minimized
over these control actions. This cost typically includes the

Fig. 7. The MPC principle

errors between the desired and predicted process outputs.
The MPC principle is depicted in Fig. 7. Referring to this
figure, the following strategy is followed:
• at each ’current’ moment k, the process output y(k+ i) is
predicted over a time horizon i = 1, ..., hp; the predicted
values are indicated by y(k + i|k) and the value of hp

is called the prediction horizon; the prediction is done by
means of a model of the process and depends on the past
inputs and outputs, but also on the future control scenario
{u(k + i|k), i = 0, ..., hp − 1};
• a reference trajectory {r(k + i|k), i = 1, ..., hp}, evolving
towards the setpoint w is defined over the prediction horizon,
describing how to guide the process output from its current
value y(k) to the setpoint w;
• the control vector {u(k + i|k), i = 0, ..., hp − 1} is
calculated in order to minimize a specified cost function,
e.g., the most simple type of cost function, where the control
effort is not taken in account, is defined as:

hp∑
i=1

(r(k + i|k)− y(k + i|k))2 Minimize−−−−−−→ u(k + i|k). (2)

• the first element u(k|k) of the optimal control vector
is applied to the real process; all other elements of the
calculated control vector are discarded.

As such, at the next sampling time this optimization is
repeated, taking into account the new measurement informa-
tion. This introduces actually the feedback component in the
whole strategy, resulting in a closed-loop configuration.

Consider the discrete-time linear system corresponding to
the model of the mOway mobile robot (1)

z(k + 1) = Adz(k) + Bdu(k), k ∈ Z+, (3)

where z(k) ∈ R2 is the state vector, u(k) ∈ R is the control
input (reference for the mobile robot speed) at the discrete-
time instant k and Ad and Bd are the discrete-time system
matrices.

For the mOway mobile robots, the discrete-time model
(3) was obtained by discretizing model (1) with a sampling
period Ts = 5 ms and is defined by the following system
matrices

Ad =

(
1 0.0287
0 0.2901

)
,Bd =

(
0.0047
0.1570

)
(4)



with z(k) = [x(k) v(k)], where x(k) is the absolute
position and v(k) the speed of the mobile robot at time
instant k.

The predicted state in matrix form has the following
representation

Ẑ(k) = Mz(k) + CU(k), (5)

where

U(k) :=

 u(k|k)
u(k + 1|k)

...
u(k + hp − 1|k)

 , Ẑ(k) :=

 ẑ(k + 1|k)
ẑ(k + 2|k)

...
ẑ(k + hp|k)

 ,

(6)
u(k+ i|k), i = 0, . . . , hp − 1, is the future control sequence
with hp the prediction horizon, ẑ(k + i|k) is the predicted
value of the state vector

ẑ(k + i+ 1|k) =
= Adẑ(k+1|k) + Bdu(k + i|k), i = 0, 1, 2, . . .

(7)

with the initial condition defined by

ẑ(k|k) = z(k), (8)

M =

 Ad
Ad

2

.

.

.

Ad
hp

 ,C =

 Bd 0 · · · 0
AdBd Bd · · · 0

.

.

.

.

.

.
. . .

.

.

.

Ad
hp−1Bd Ad

hp−2Bd · · · Bd

 .

(9)
The predictive control law is computed as

U∗(k) = argmin
U

J(k) (10)

and is based on the minimization of a cost function

J(k) = ẑ(k + hp|k)T Q̄ẑ(k + hp|k)+
hp−1∑
i=0

(
ẑ(k + i|k)TQẑ(k + i|k) + u(k + i|k)TRu(k + i|k)

)
,

(11)

that can be defined in accordance with the future control
sequence U and the predicted state Ẑ and has the following
matrix form

J(k) = UT (k)HU(k) + 2ẐT (k)FT Ẑ(k) + ẐT (k)GẐ(k),
(12)

where

H = CT Q̃C + R̃

F = CT Q̃M

G = MT Q̃M + Q,

(13)

with

Q̃ =


Q 0 · · · 0

0
. . .

...
... Q 0
0 · · · 0 Q̄

 and R̃ =


R 0 · · · 0

0
. . .

...
... R 0
0 · · · 0 R


(14)

where Q,R and Q̄ are positive defined matrices (the matrix
Q can be positive semi-defined) of appropriate dimensions.
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Fig. 8. Simulation: speeds of the mobile robots and distances

If there are no constraints, the solution of the optimization
problem (10) can be obtained as

U∗(k) = −H−1Fz(k) (15)

and according to the receding horizon principle only the first
control command in U is actually applied to the process and
is defined as

u(k) = u∗(k|k) = Khp
z(k) (16)

where Khp
= −

[
Ihp

0 · · · 0
]
H−1F.

IV. SIMULATION AND EXPERIMENTAL RESULTS

The controller was designed to minimize the error e(k) =
d(k)− r(k) where d(k) is the distance between the current
robot and the robot in front of it and r(k) is the reference
distance, for k ∈ Z+. In our case, r(k) = r was considered
equal to 7 cm, for all k ∈ Z+. Note that a reference for
the first state, i.e., the position of the mobile robot, can be
computed as x(k) = x(k − 1) + e(k). The distance d(k)
was measured at each sampling period using the obstacle
sensor and the second state (the speed of the robot) was not
measured, but computed as the derivative of the first state
(the position of the robot)

The simulation results obtained with the state-space MPC
controller for which the design parameters were chosen to
obtain a compromise between good performances and faster
closed loop with a prediction horizon set to hp = 5 are
illustrated in Fig. 8. The parameters of the MPC controller
are as follows: Q̄ = 2I2; Q = 1.5I2; R = 1; there were no
constraints included in the optimization problem. The V2I
communication was only used for data gathering for offline
behavior analysis.

The experimental results obtained with the same SS-MPC
controller are represented in Fig. 9, in which it can be seen
that the distance error is close to 0. Note that the oscillatory
responses are also due to the effects of disturbances on the
distance sensor (reading). It can be observed that the speeds
of the followers are higher than the speed of the leader
because the followers have to travel more to maintain a
predefined reference distance to the mobile robot in front
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Fig. 9. Experiment: speeds of the mobile robots and distances

which implies that a higher average speed is reached (see
subsection IV-A for further details).

A. Experimental remarks

In Fig. 9 it can be observed that the average speeds of
the followers are continuously higher than the speed of the
leader. This is due to several circumstances regarding the
experimental setup as follows:
• in the performed experiments all the mobile robots follow
a line marked on the floor;
• the mobile robots do not remain perfectly on the line
while running, but if a deviation occurs from the imposed
trajectory, this deviation is considered as a disturbance [13]
that is rejected by modifying the angular speed of the left
motor through a feed-forward gain; still, this means that
they have to travel more to maintain a predefined reference
distance to the mobile robot in front which implies that a
higher average speed is reached;
• the movement around the line the robots should follow also
influences the distance measured by each mobile robot (if the
leader is straight on the line and the follower is orientated a
little to the left/right than the distance measured by the latter
is practically higher than the real distance which actually
corresponds to a higher average speed);
• when the leader reaches a curve in the line, the follower
is not able to detect the distance precisely (usually the
measured distance is higher) which causes the speed to
increase suddenly in order to reduce the artificial error.

B. Communication related remarks

Based on the data gathered by the mOway mobile robots,
we can conclude that:
• the V2I communication system is running smoothly;
• the 4 mobile robots involved in the experimental results
can keep a safety distance to drive in a platooning scenario;
• because of the communication hardware limitations, the
gathered data was strictly related to the dynamics of the
mobile robots; they could be upgraded with various sensors
to provide in depth informations about the environment;
• the research could benefit from including more mobile

robots in the platoon and improving the communication
stability;
• the robots could communicate directly to each other
using V2V communications for fastening and optimizing the
decision making.

V. CONCLUSION

The focus of this paper was on implementing a wireless
V2I communication system for data gathering in a robot
platooning scenario. The developed infrastructure to emulate
a platoon of mOway mobile robots was presented firstly
together with the RF communication system used for data
gathering. Then, a state-space model predictive control strat-
egy was designed to maintain a safety distance between
the robots in the platoon and the developed strategy was
tested both in simulation and in real-time. The behavior of
individual mobile robots and the whole platoon was analyzed
based on the data gathered using the V2I communication
system. It was shown that the platoon of mobile robots
behaves as expected, but as pointed out in subsections IV-
A and IV-B the whole infrastructure could be improved
to obtain more information about the environment and to
stabilize the communication system.
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