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Abstract— Performance limits of multimodal detection systems
are analyzed in this paper. Two main setups are considered,
i.e., based on fusion of dependent and independent modalities,
respectively. The analysis is performed in terms of attainable
probability of detection errors characterized by the correspond-
ing error exponents. It is demonstrated that an expected per-
formance gain from fusion of dependent modalities is superior
than in the case when one fuses independent signals. In order
to quantify the efficiency of dependent modality fusion versus
the independent case, the problem analysis is performed in the
Gaussian formulation.

I. I NTRODUCTION

Hypothesis testing is widely used for modeling, design and
performance optimization of of various practical systems that
include but not limited to radar imaginary, speaker detection,
person identification, etc. The main goal of the test consists
in defining, which of possible alternatives takes place based
on the observed data. In the very simplest case of binary
hypothesis testing that will be considered in this paper, there
are only two alternatives to be discriminated.

Intuitively, exploitation of the complete data set of multi-
modal signals should lead to more accurate detection perfor-
mance than in the case of incomplete data set exploitation.
However, in some practial situations like biometric person
identification till recent past only part of the available bio-
metric data was exploited in order to reduce the identification
system complexity and overall cost [1].

However, such a simplification to monomodal biometric
identification systems leads to a performance that does not
satisfy sophisticated security requirements of the modernso-
ciety. That is why the main trends of current biometric person
identification is to deviate toward multibiometric design where
joint exploitation of various biometric data (like facial photos
and fingerprints) should lead to performance enhancement
versus unimodal setup [1], [2], [3].

Fusion of multibiometrics can be performed on various
structural levels of an identification system [4]: sensor level,
feature level, match score level, rank level and decision
level. Due to the data processing inequality [5], expected
performance improvement will be the highest if fusion is
performed on the sensor level or on the level of the observed
data. Despite this approach has not received significant atten-
tion in practice due to various technological aspects [6], its

information-theoretic analysis that remains an open problem
should provide an attainable upper bound on such a system
performance. The second motivating aspect of the current
research consists in the uncertainty about the influence of
the dependence/independence of the fused multimodal signals
used in the detection framework on the attained theoretical
system performance. The existing results in this direction
concern the correlation structure of these data. It might be
unexpectable, but there does not exist a unique treatment
of this problem. According to the results presented in [7],
mutimodal detection based on correlated data does not always
lead to the overall performance improvement versus combining
independent signals. Oppositely, as it is demonstrated in [8],
taking into account correlation between the multimodal signals
one can expect some performance improvement.

Therefore, motivated by the existing gap in the theoretical
performance analysis of a binary multimodal detection thatis
considered as a theoretical model of real multimodal biometric
person identification systems, we would like to formulate the
main goal of this paper in the justification of its performance
in terms of error exponents for both cases of dependent and
independent multimodal cases.

The rest of the paper has the following structure. We present
the problem formulation of the theoretical analysis of binary
multimodal detection in Section 2. Performance analysis of
multimodal detection based on independent and dependent
signals is performed in Section 3. Conclusion and future
research perspectives are formulated in Section 4.

Notations We use capital letters to denote scalar random
variablesX and corresponding small lettersx to denote their
realizations. The superscriptN is used to designate length-
N vectorsxN = [x[1], x[2], ..., x[N ]] with kth elementx[k].
We useX ∼ pX(x) or simply X ∼ p(x) to indicate that
a random variableX is distributed according topX(x). The
mathematical expectation of a random variableX ∼ pX(x) is
denoted byµX andσ2

X denotes the variance ofX. We useΣ
to denote a covariance matrix. Correlation coefficient between
two random variables is designated byρ. Calligraphic fonts
X denote setsX ∈ X and |X | denotes the cardinality of set
X . SuperscriptT stays for matrix transposition.



II. PROBLEM FORMULATION

We model a problem of binary multimodal detection as
a binary hypothesis testing (Fig. 1). It is supposed that the
source of multimodal signals modeled by a joint probability
distribution p(xN , yN ) generates a pair ofN /length vectors
XN ∈ XN and Y N ∈ YN , (XN , Y N ) ∼ q(xN , yN ). It
should be noted that in the general case, the length of the
observed data vectors is not necessary the same (Fig. 2) and
this particular selection was made for analysis simplicitysake.
The task of the hypothesis testing block that observes this
pair of vectors is to perform a testη in order to decide
which of two alternative cases is represented by the mentioned
pair.Thus, a binary multimodal detection system consists of the
set

{

XN , Y N
}

and a hypothesis test:
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Fig. 1. Binary hypothesis testing system.

η : XN × YN → {0, 1} , (1)

where{0,1} designates the alternative hypotheses that might
take place,H0 and H1, respectively. Thus, the main task of
multimodal binary hypothesis testing is to decide which one
of the two hypotheses is true given(XN , Y N ). This task is
performed according to the following test:

{

H0, (X
N , Y N ) ∼ p0(xN , yN ),

H1, (X
N , Y N ) ∼ p1(xN , yN ),

(2)

where H0 ∼ p0(xN , yN ) =
∏N

i=1 p0(xi, yi),H1 ∼
p1(xN , yN ) =

∏

i=1 p1(xi, yi) denote a priori statistical
models on alternative hypotheses.

Modality # 1
1NX

1N

2NY

2N

Fig. 2. Multimodal observations: the vectors of different lengths might be
observed.

In order to attain the lowest probabilities of detection error,
it is assumed that the test follows the Neyman-Pearson rule [5].
These errors are of two kinds, type I error or a false alarm,
denoted asPf , occurs if the hypothesis test decides thatH1 is
true whileH0 is in force, and type II error or a miss, denoted
asPm, that occurs if an uncorrect decision aboutH0 is made.
These error probabilities are defined as follows:

Pm = Pr[η ≤ T |H1], (3)

Pf = Pr[η ≥ T |H0]. (4)

According to the Neyman-Pearson lemma, for a given
maximal tolerable probabilityPf , Pm can be minimized iff
the log-likelihood ratio test is applied. This test is defined as:

η = N
{

D(q(x, y) || p1(x, y)) − D(q(x, y) || p0(x, y))
}

≥ log2 T. (5)

Here it is assumed thatp(xN , yN ) =
∏N

i=1 p(xi, yi), and
thus the empirical distribution and a priory hypothesis models
are defined asq(xN , yN ) =

∏N

i=1 q(xi, yi), p0(xN , yn) =
∏N

i=1 p0(xi, yi), p1(xN , yn) =
∏N

i=1 p1(xi, yi); D(. || .) stays
for a relative entropy between two distributions [5] andT

designates a predefined threshold.
In case error probabilities of false alarm and miss are

defined according to (3) and (4), one has [9]:

Pm log
Pm

1 − Pf

+ (1 − Pm) log
1 − Pm

Pf

≤ D(p1(xN , yN ) || p0(xN , yN )) (6)

If one fixes the probability ofPm = 0 in (6), a lower
bound onPf that increases with decrease of relative entropy
D(p1(xN , yN ) || p0(xN , yN )) is obtained:

Pm ≤ 2−D(p1(xN ,yN )||p0(xN ,yN ))). (7)

Therefore, it is evident that in order to optimize the
performance of a multimodal binary hypothesis testing, one
should maximizeD(p1(xN , yN ) || p0(xN , yN ). In order to
achieve optimality in terms of the Bayessian probability of
error, Pe = πIPf + πIIPm, where πI , πII stay for costs
of making the error of type I and II, respectively, the so-
called J-divergence,J = D(p1(xN , yN ) || p0(xN , yN )) +
D(p0(xN , yN ) || p1(xN , yN )) should be maximized [10].

Finally, the complete system performance analysis can be
performed based on Stein lemma [5]. According to this lemma
the performance of the Neyman-Pearson test is defined as:

Pf ∼ 2−N[D(p1(x,y))||D(p0(x,y))], for a fixed Pm, (8)

Pm ∼ 2−N[D(p0(x,y))||D(p1(x,y))], for a fixed Pf . (9)

Thus, the overall multimodal binary detection system perfor-
mance is determined by the corresponding relative entropies
defined with respect to the prior distributions on alternative
hypotheses.

The following sections contain the analisis of the modality
dependence impact on the corresponding probabilities of error.



III. PERFORMANCE ANALYSIS

A. Independent modalities

Here we assume thatp1(x, y) = p1(x)p1(y); p0(x, y) =
p0(x)p0(y). The chain rule for relative entropies leads to:

D(p1(x, y)) ||D(p0(x, y))

= D(p1(y) || p0(y)) + D(p1(x) || p0(x)), (10)

D(p0(x, y)) ||D(p1(x, y))

= D(p0(y) || p1(y)) + D(p0(x) || p1(y)). (11)

The corresponding bounds on the probabilities of error are:

Pf ∼ 2−N[D(p1(y)||p0(y))+D(p1(x)||p0(x))], (12)

for a fixed and arbitrary smallPm,

Pm ∼ 2−N[D(p0(y)||p1(y))+D(p0(x)||p1(y))], (13)

for a fixed and arbitrary smallPf . Thus, one can conclude that
performance probabilities of incorrect detection measured in
terms of error exponents decrease with a number of exploited
multimodal signals.

B. Dependent modalities

In the case of dependent modalities (p(x, y) 6= p(x)p(y))
the bounds on the probabilities of error are determined by (8)
and (9).

Applying the chain rule for the relative entropy one obtains:

D(p1(x, y) || p0(x, y))

= D(p1(y) || p0(y)) + D(p1(x |y ) || p0(y |x )), (14)

D(p0(x, y) || p1(x, y))

= D(p0(y) || p1(y)) + D(p0(x |y ) || p1(x |y )). (15)

Comparing performance bounds for dependent (8) and (9) and
independent (14) and (15), one needs to consider the following
quantities:

D(p0(x) || p1(x)) vs. D(p0(x |y ) || p1(x |y )), (16)

D(p1(x) || p0(x)) vs. D(p1(x |y ) || p0(x |y )). (17)

If, D(p0(x) || p1(x)) ≤ D(p0(y |x ) || p1(x |y )), and
D(p1(x) || p0(x)) ≤ D(p1(x |y ) || p0(x |y )), one can conclude
that systems exploiting statistically dependent signals abetter
performance than ones working with independent signals.

Lemma: Conditioning does not reduce relative entropy.

Proof.

D(p0(y |x ) || p1(y |x )) − D(p0(x) || p1(x))

=
∑

x

∑

y p1(x, y) log p1(x|y )
p0(x|y ) −

∑

x p1(x) log p1(x)
p0

X
(x)

=
∑

x

∑

y p1(x, y) log p1(x|y )
p0(x|y ) −

∑

x

∑

y p1(x, y) log p1(x)
p0(x)

=
∑

x

∑

y p1(x, y) log p1(x|y )p0(x)
p0(x|y )p1(x)

≥ 1 −
∑

x
p1(x)
p0(x)

∑

y p1(y)p0(x |y )

= 1 −
∑

x
p1(x)
p0(x)p

0(x) = 0,
(18)

where the only inequality in (7) is due tolog(x) ≥ 1 − 1
x

.
Thus, based on (6) one can state that multimodal detection

systems based on fusion of independent signals have higher
theoretically attainable probabilities f detection errors bounded
by corresponding error exponents than one expects in the case
of dependent signals.

C. Bivariate Gaussian case.

In order to quantify the expected performance gain one
can expect from fusion of dependent modalities in binary
hypothesis testing, it was assumed that the priors on alternative
hypotheses follow bivariate Gaussian distributions:

p1(x, y) =
1

2π
√

det(Σ1)
exp

{

−
1

2
[x − µX1

, y − µY1
]
T

×Σ−1
1 [x − µX1

, y − µY1
]
}

; (19)

p0(x, y) =
1

2π
√

det(Σ0)
exp

{

−
1

2
[x − µX0

, y − µY0
]
T

×Σ−1
0 [x − µX0

, y − µY0
]
}

, (20)

with mean vectors[µX1
, µY1

], [µX0
, µY0

] and covariance ma-
trices

Σ1 =

(

σ2
X1

ρσX1
σY1

ρσX1
σY1

σ2
Y1

)

;

Σ0 =

(

σ2
X0

ρσX0
σY0

ρσX0
σY0

σ2
Y0

)

,

whereρ is a correlation coefficient.
The joint relative entropies that define corresponding prob-

abilities of detection error are defined as:

Pf : D(p1(x, y) || p0(x, y)) =

1

2

{

log2

det(Σ1)

det(Σ0)
+ tr

[

Σ−1
1 Σ0

]

+ [µX0
− µX1

, µY0
− µY1

]

×Σ−1
0 [µX0

− µX1
, µY0

− µY1
]
T

}

; (21)

Pm : D(p0(x, y) || p1(x, y)) =

1

2

{

log2

det(Σ0)

det(Σ1)
+ tr

[

Σ−1
0 Σ1

]

+ [µX1
− µX0

, µY1
− µY0

]

×Σ−1
1 [µX1

− µX0
, µY1

− µY0
]
T

}

, (22)



where inverse covariance matricesΣ−1
1 and Σ−1

0 defined in
the following way:

Σ−1
1 =

1

σ2
X1

σ2
Y1

(1 − ρ2)

(

σ2
Y1

−ρσX1
σY1

−ρσX1
σY1

σ2
X1

)

,

Σ−1
0 =

1

σ2
X0

σ2
Y0

(1 − ρ2)

(

σ2
Y0

−ρσX0
σY0

−ρσX0
σY0

σ2
X0

)

.

In order to demonstrate possible performance gain, the
parameters of a priory distributionsp1(x, y) and p0(x, y)
where selected to beµX0

= 10, µX1
= 20, σ2

X0
= 36, σ2

X1
=

16, µY0
= 4, µY1

= 8, σ2
Y0

= 4, σ2
Y1

= 6. The behavior of
D(p1(x, y) || p0(x, y)) andD(p0(x, y) || p1(x, y)) as functions
of the correlation coefficientρ was analyzed. The obtained
results are shown in Figure 3. They entirely confirm our
theoretical findings.
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Fig. 3. D(p1(x, y) || p0(x, y)) andD(p0(x, y) || p1(x, y)) as functions of
correlation coefficientρ.

IV. CONCLUSIONS AND FUTURE RESEARCH PERSPECTIVES

In this paper we considered the problem of performance
analysis of binary multimodal detection. In particular, we
considered two particular problem formulations where hypoth-
esis test is performed based on independent and dependent
multimodal signals. Corresponding lower bounds on the prob-
abilities of miss and false alarm in terms of error exponentsfor
both setups were developed and it was theoretically proved that
dependence between multimodal signals leads to the overall
enhanced system performance versus the setup with inde-
pendent modalities. For demonstration purpose, the bivariate
Gaussian problem formulation was analyzed and respective
results quantifying performance improvement were obtained.
Since in the case of Gaussian data independence is equivalent
to the uncorrelation, one can conclude that fusion of correlated
modalities leads to a higher accuracy in classification problem.
In particular, relative entropies that define the corresponding
probability of errors, i.e., probability of false alarm and

probability of miss, are non-decreasing monotonic functions
of the correlation coefficientρ on the interval [0,1].

As a possible direction for the obtained results extension
we see its application to a general multimodal detection sys-
tem architecture that assumes multiple hypothesis formulation
analysis (Fig. 4).
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Fig. 4. Multiple hypothesis testing system.

Another potential future research line consists in the prac-
tical validation of the developed framework in multimodal
person identification application using ID cards that contain
embedded biometric data and personal data. Our goal is
to develop a general system structure and to evaluate its
performance.

V. ACKNOWLEDGEMENTS

This paper was partially supported by SNF Professeur
Boursier grant PP002–68653, by the European Commission
through the IST Programme under contract IST-2002-507932-
ECRYPT and European Commission through sixth framework
program under the number FP6-507609 (SIMILAR) and Swiss
IM2 projects. The authors are thankful to the members of
SIP group, University of Geneva for many stimulating and
interesting discussions.

REFERENCES

[1] J. L. Wayman, A. K. Jain, D. Maltoni, and D. Maio,Biometric Systems:
Technology, Design and Performance Evaluation, Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2004.

[2] L. Hong, A. K. Jain, and S. Pankanti, “Can multibiometrics improve
performance?,” Tech. Rep. MSU-CSE-99-39, Department of Computer
Science, Michigan State University, East Lansing, Michigan, December
1999.

[3] L. Hong and A. K. Jain, “Integrating faces and fingerprints for personal
identification,” inACCV ’98: Proceedings of the Third Asian Conference
on Computer Vision-Volume I, pp. 16–23, Springer-Verlag, (London,
UK), 1997.

[4] A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: A tool for information
security,”IEEE Trans. on Information Forensics and Security1, pp. 125–
143, June 2006.

[5] T. Cover and J. Thomas,Elements of Information Theory., Wiley and
Sons, New York, 1991.

[6] A. Ross, R. G. Hong, A. K. Jain, and S. Pankanti, “Feature level fusion
using hand and face biometrics,” inSPIE Conf. Biometric Technology
for Human Identification II, pp. 196–204, 2005.

[7] N. Poh and S. Bengio, “ow do correlation and variance of base classifiers
affect fusion in biometric authentication tasks?,”IEEE Transactions on
Signal Processing53, pp. 4384–4396, November 2005.

[8] O. Ushmaev and S. Novikov, “Biometric fusion: Robust approach,”
in Workshop on Multimodal User. Authentication (MMUA 2006),
(Toulouse, France), 2006.

[9] R. E. Blahut,Principles and practice of information theory, Addison
Wesley Publ. Co., 1987.

[10] H. V. Poor, An Introduction to Detection and Estimation Theory,
Springer-Verlag, 1994.


