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Abstract— Performance limits of multimodal detection systems information-theoretic analysis that remains an open gmbl
are analyzed in this paper. Two main setups are considered, should provide an attainable upper bound on such a system
I.e., based on fusion of dependent and independent modalities, yerformance. The second motivating aspect of the current
respectively. The analysis is performed in terms of attainable . . . .
probability of detection errors characterized by the correspond research con5|st§ in the uncertainty about the_ Influenge of
ing error exponents. It is demonstrated that an expected per- the dependence/independence of the fused multimodallsigna
formance gain from fusion of dependent modalities is superior used in the detection framework on the attained theoretical
than in the case when one fuses independent signals. In ordersystem performance. The existing results in this direction
to quantify the efficiency of dependent modality fusion Versus .,ncerm the correlation structure of these data. It might be
the independent case, the problem analysis is performed in the . .
Gaussian formulation. unexpectable, but there. does not exist a unique trgatment
of this problem. According to the results presented in [7],
|. INTRODUCTION mutimodal detection based on correlated data does not alway
Hypothesis testing is widely used for modeling, design aréad to the overall performance improvement versus comdini
performance optimization of of various practical systetrat t independent signals. Oppositely, as it is demonstratedBin [
include but not limited to radar imaginary, speaker detecti taking into account correlation between the multimodahalg
person identification, etc. The main goal of the test cossigine can expect some performance improvement.

in defining, which of possible alternatives takes place thase ) . . i
d P P Therefore, motivated by the existing gap in the theoretical

on the observed data. In the very simplest case of binarg]c veis of & bi i I .
hypothesis testing that will be considered in this papesrah PEfOrmance analysis ot a binary multimodal detection that

are only two alternatives to be discriminated considered as a theoretical model of real multimodal bioimet
Intuitively, exploitation of the complete data set of multi person identification systems, we would like to formulate th

modal signals should lead to more accurate detection perfBt2in goal of this paper in the justification of its performanc

mance than in the case of incomplete data set exploitatid,l€"MS Of error exponents for both cases of dependent and

However, in some practial situations like biometric persofidependent multimodal cases.

identification till recent past only part of the availableobi  Thg rest of the paper has the following structure. We present
metric data was _epr0|ted in order to reduce the identificati {,o problem formulation of the theoretical analysis of bjna
system complexity and overall cost [1]. _ ‘multimodal detection in Section 2. Performance analysis of
~ However, such a simplification to monomodal biometrig,jimodal detection based on independent and dependent
identification systems leads to a performance that does @fﬁnals is performed in Section 3. Conclusion and future
satisfy sophisticated security requirements of the modemn oqearch perspectives are formulated in Section 4.
ciety. That is why the main trends of current biometric parso
identification is to deviate toward multibiometric desigheve Notations We use capital letters to denote scalar random
joint exploitation of various biometric data (like faciahgtos variablesX and corresponding small lettetsto denote their
and fingerprints) should lead to performance enhancemeealizations. The superscript is used to designate length-
versus unimodal setup [1], [2], [3]. N vectorsz = [z[1],z[2], ..., z[N]] with k" elementz[k].
Fusion of multibiometrics can be performed on varioug/e useX ~ px(x) or simply X ~ p(z) to indicate that
structural levels of an identification system [4]: sensaele a random variableX is distributed according tepx (z). The
feature level, match score level, rank level and decisionathematical expectation of a random varialllev px(z) is
level. Due to the data processing inequality [5], expectettnoted byux ando? denotes the variance of. We useX:
performance improvement will be the highest if fusion io denote a covariance matrix. Correlation coefficient leefw
performed on the sensor level or on the level of the observed random variables is designated py Calligraphic fonts
data. Despite this approach has not received significagn-attX’ denote setsX € X and|X| denotes the cardinality of set
tion in practice due to various technological aspects [8], iX. Superscriptl’ stays for matrix transposition.



Il. PROBLEM FORMULATION

We model a problem of binary multimodal detection as Py = Pr[n > T|Hy). (4)
a binary hypothesis testing (Fig. 1). It is supposed that the
source of multimodal signals modeled by a joint probability According to the Neyman-Pearson lemma, for a given
distribution p(2V, y™) generates a pair aN/length vectors maximal tolerable probability”s, P,,, can be minimized iff
XN e XN and vV e YN, (XN, YN) ~ g(zV,yN). It the log-likelihood ratio test is applied. This test is defiras:
should be noted that in the general case, the length of the
observed data vectors is not necessary the same (Fig. 2) and L 0
this particular selection was made for analysis simplisie. n=N{D(q(z,y)||p"(z,y)) — D(a(z,y) |lp°(z,9))}
The task of the hypothesis testing block that observes this
pair of vectors is to perform a tesf in order to decide > log, T. (®)
which of two alternative cases is represented by the mesdio
pair.Thus, a binary multimodal detection system consiktise
set{X", YN} and a hypothesis test:

"Here it is assumed that(z",y") = IV, p(zs, ), and
thus the empirical distribution and a priory hypothesis eisd
are defined ag/(«N,y™) = [, q(zi,v:), p°(a™,y") =

N N .
X , T 20w, i), P @™, y™) =TI, P (@i )i D[ ) stays
of mult?\?gg;?signals . / for a relative entropy between two distributions [5] afid
oz ) Yy \ designates a predefined threshold.
- 0 In case error probabilities of false alarm and miss are

_ _ _ _ defined according to (3) and (4), one has [9]:
Fig. 1. Binary hypothesis testing system.

P, 1—-P,
1—
P, log =P, +(1—Py)log P,
n: XN x YN - {0,1}, 1)
< D" (=™, y™M) 1 p° (=N, y")) (6)

where {0,1} designates the alternative hypotheses that might
take place,H, and Hy, respectively. Thus, the main task of |f gne fixes the probability ofP,, = 0 in (6), a lower

multimodal binary hypothesis testing is to decide which ongound onP; that increases with decrease of relative entropy
of the two hypotheses is true givéX ™, Y™). This task is p(p!(z, yN)|[p°(z",y™)) is obtained:

performed according to the following test:

< 9= D@ @™ yM)Ip’ =N y™)))
{Ho, (XN YY) ~ p(a, ), - P =2 "
Hy, (XY, YY)~ pt (2N, yV), Therefore, it is evident that in order to optimize the
N erformance of a multimodal binary hypothesis testing, one
where Hy ~ p°(a™,y") = Hi:lpo(xi.’yi.)’Hl. o ghould maximize D (p* (zN yN)||p0();;NySN) In order gtO
pt (N, y™) = TL._,p"(x;,y;) denote a priori statistical A g

achieve optimality in terms of the Bayessian probability of
error, P, = 7wrPy + w11 Py, Where 7y, m;; stay for costs
of making the error of type | and Il, respectively, the so-

Modality # 1
}—%Qqu XV (raw data) called J-divergence,J = D(p'(z™,y™) || p°=",yN)) +
_ Ny
"y 5

models on alternative hypotheses.

D(P° (=N, y™) || p'(zN,y")) should be maximized [10].

Modality # 2 s )
QZE NN A N Y2 (raw data) Finally, the complete system performance analysis can be
1 I performed based on Stein lemma [5]. According to this lemma

the performance of the Neyman-Pearson test is defined as:

Fig. 2. Multimodal observations: the vectors of differemdéhs might be
observed.

Py~ 9~ N[DG @D @) for a fixed Py,  (8)
In order to attain the lowest probabilities of detectiorogrr
it is assumed that the test follows the Neyman-Pearson5iile | P,, ~ 2~ N[P@ @D @v)] for a fixed P;. (9)
These errors are of two kinds, type | error or a false alarm,
denoted ag’;, occurs if the hypothesis test decides thatis Thus, the overall multimodal binary detection system perfo
true while Hy is in force, and type Il error or a miss, denotednance is determined by the corresponding relative entsopie
asP,,, that occurs if an uncorrect decision abdif is made. defined with respect to the prior distributions on altenreati
These error probabilities are defined as follows: hypotheses.
The following sections contain the analisis of the modality
P,, =Prln < T|Hy], (3) dependence impact on the corresponding probabilitiesrof.er



I1l. PERFORMANCE ANALYSIS Proof.

A. Independent modalities Dy lz)|p*(y|2)) — (1)7 (=) [|p"(2)) :
— Nz
Here we assume that!'(z,y) = p'(z)p'(v);p°(z,y) = = 202y p(w,y) log | O(J,Z) > p'(z)log ;fg((w) )
p°(x)p°(y). The chain rule for relative entropies leads to: =S~ >, p(z,y)log g?giyz (%: >y p'(x,y)log ﬁogg
=Y, %, p(,y) log Bzl
D(p'(z,) || D" (x, y)) Y ey e 2l R @)
> 13, 5y 2y P W (z ly)
= D' (y) [1P°(v)) + D' (z) || p°(2)), (10)  =1-%, 5Ep(x) =0,
(18)
0 L where the only inequality in (7) is due tog(z) > 1— =
D(p”(z,y) || D(p (z,y)) Thus, based on (6) one can state that multimodal “detection
_ 0 1 0 1 systems based on fusion of independent signals have higher
=D WP ) + D (@) [Ip" (). (1) theoretically attainable probabilities f detection esrbounded

The corresponding bounds on the probabilities of error afdy corresponding error exponents than one expects in tiee cas
of dependent signals.

Py ~ 27 NPE WP W)+ @)1 )] (12) c. Bivariate Gaussian case.

In order to quantify the expected performance gain one
can expect from fusion of dependent modalities in binary
hypothesis testing, it was assumed that the priors on aligen
hypotheses follow bivariate Gaussian distributions:

for a fixed and arbitrary smalPs. Thus, one can conclude that
performance probabilities of incorrect detection measune ) = 1 o {

for a fixed and arbitrary smalf,,,,

P, ~ 2—N[D<p“<y>||p1<y>)+D<p°<w>le<y>>]7 (13)

1 T
— -l —px,y — by

terms of error exponents decrease with a number of explonedp 2my/det(X1) o 2
multimodal signals.
le_l [x_/’(’wa_,u/YJ}; (19)

B. Dependent modalities

In the case of dependent modalities(«, y) # p(z)p(y)) 1 { 1 .
the bounds on the probabilities of error are determined by (8 po(x, Y) = ————==expq — = [T — Ux,,Y — H¥y)
and (9). 2/ det(Eo) 2 0 0

Applying the chain rule for the relative entropy one obtains ngl & — prxg,y — fvi] }7 (20)
1 0
D (z.y) [P (,y)) with mean vectors$yx, , 11y, |, [14x,, 1ty,] and covariance ma-
trices
=D (W) [1P°(W) + D' (z |y) 1Py ),  (14) o _( % roxow .
" pox,oy o3, '
D(po(x, Y) le(x,y)) - O'g(o POX,0Y,
0 POX,0Y, 012’0 ’

=D@’() P (W) + DE°(z |y) [|p' (z]y)).  (15) , _ .
wherep is a correlation coefficient.

Comparing performance bounds for dependent (8) and (9) andrhe joint relative entropies that define corresponding prob
independent (14) and (15), one needs to consider the faltpwiabilities of detection error are defined as:

guantities: . L 0 B
Py D(p'(z,y) ||p"(z,9)) =
1 det(Xq) _
D’ (@)[|p' (@) vs. D@’ y) [Ip" (= ]y)),  (16) 5{ log, WE;) +tr [ 50] + lxo — px, v, — v
Xzal [IU’XO - MthLLYQ - Iqu]T }a (21)

D(p'(z) || p°(x)) vs. D(p" (z |y) || p°(x |y)). 7

0 1
if, D) |[p'@) < D(yle)llp'(ely), and Fon = D(p (z,9) 17" (=:9)) =
D(p'(2) ||p°(x)) < D(p*(x|y) ||p’(x|y)), one can conclude 1y = det(Yg) . o1y,
that systems exploiting statistically dependent signadietter 7{ 082 det(X1) +tr [257 2]
performance than ones working with independent signals. T
Lemma: Conditioning does not reduce relative entropy. XE X, — 1o vy — 1p) }7 (22)

+ [/le — HUXos MYy — IU’YU]




where inverse covariance matricEs ' and Egl defined in probability of miss, are non-decreasing monotonic fumgio

the following way: of the correlation coefficient on the interval [0,1].
As a possible direction for the obtained results extension
. 1 o2 —pox, 0y we see its application to a general multimodal detection sys
1= m ( _pU; oy 021 ! ) ; tem architecture that assumes multiple hypothesis fortionla
X1 o X analysis (Fig. 4).
UE(O 012,0 (1 — p2) —pPOX,0Y, 0%, Source of ol oxyx) ) /> )
. . Itimodal . | >
In order to demonstrate possible performance gain, t signars >{ Hypothesis Test :
parameters of a priory distributions!(z,y) and p°(z,y) | #exd ) s,

where selected to bex, = 10, ux, = 20,0%, = 36,0%, =

16, py, = 4,py, = 8,03, = 4,03, = 6. The behavior of

D(pl (m, y) ||p0(x, y)) andD(pO(x, y) le (a:, y)) as functions Fig. 4. Multiple hypothesis testing system.

of the correlation coefficienp was analyzed. The obtained

results are shown in Figure 3. They entirely confirm our another potential future research line consists in the prac

theoretical findings. tical validation of the developed framework in multimodal

o o _ person identification application using ID cards that conta

DlPyy (XY)lIPyy (x¥)) as & function of p embedded biometric data and personal data. Our goal is

to develop a general system structure and to evaluate its

performance.

250

— (P}, XY IPg (x.¥))
““““ D(R%, I P3 (%.¥))
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