
1

Pathfinder: End-to-End Automation of Coverage
Mapping of 4G/5G Networks at Street Level
A. Almazi Bipon, Ahmed Osman, Md Shantanu Islam, A. Taufiq Asyhari and Raouf Abozariba

College of Computing, Birmingham City University, United Kingdom
{md.almazibipon, ahmed.osman, mdshantanu.islam, taufiq.asyhari, raouf.abozariba}@bcu.ac.uk

Abstract—Despite 5 revolutionary generations and 18 releases,
automated measurement tools for cellular networks offer limited
programmability and their integrated APIs remain difficult to
reproduce. We demonstrate the challenges and solutions related
to building web and mobile-based applications for continuous
cellular networks data collection and analysis. This is shown in
the form of an integrated suite of reliable, low-cost cloud-based
data processing, querying and analysis software functions that
domain experts and laypeople users can utilize to assess cellular
networks’ quality of service at street level.

Index Terms—Drive Test, Network Analysis, 4G/5G

I. INTRODUCTION

As mobile network operators (MNO) roll out 5G networks,
there is an increasing need for tools and techniques to enable
effective coverage mapping and data analysis. While cellular
networks have tremendously evolved at all network layers,
the same has not happened from the monitoring and evalua-
tion perspective. Industry standardised techniques such as the
immediate and logged Minimization of Drive Tests (MDT),
which were introduced in 3GPP Release 8 and enhanced in
Release 11, suffer from positioning/quantisation errors and
scarcity of user equipment reports, where only less than 10%
of users enable MDT through subscription, limiting its data
quality [1], [2]. The growing demand for reliable tools and
techniques for the use of public and private companies has
generated interest from the industry. There are now several
available solutions in the market offering different measure-
ments and analysis but with limited customisation options
and do not enable access to APIs [3], [4], making them
difficult to reproduce. On the other hand, tools developed by
the research community such as [5]–[8], are tailored to small-
scale studies to assess the performance of specific technologies
such as MIMO, beamforming, and mmWave. We demonstrate
Pathfinder: an autonomous, end-to-end coverage mapping tool
enhanced with state-of-the-art data and statistic visualisation
capabilities and based on control plane (C-Plane) information.
Pathfinder provides on-the-fly network statistics such as the
number of vertical and horizontal handover events, bandwidth,
and signal strength in an area, allowing users to precisely
locate coverage holes at street level, among other vital metrics.
By incorporating spatial area selection for 4G/5G coverage
mapping, our solution offers insights into network coverage
and performance per selected region. In this short demo paper,
we specifically discuss the key underlying technologies we
leveraged to build a successful mapping tool using only open-
source software and off-the-shelf mobile devices.

II. PASSIVE NETWORK DATA ACQUISITION

We designed an Android application to collect C-Plane
data, including signal strength and ASU level, SNR, handover
events, Physical Cell ID (PCI) etc. To monitor four networks
(Vodefone, Three, O2 and EE) simultaneously, we 3D printed
a unit capable of holding four Android-based smartphones (we
used Samsung Galaxy S21/5G). The application then utilizes
local storage and Firebase (cloud) to record timestamped data.
This application’s main technical developments are discussed
next.
LTE/NR-NSA discrimination: The Android application em-
ploys the TelephonyManager class, a built-in feature in the
Android system, to retrieve network information from the
mobile device [9]. The application’s primary objective is to
gather network data on both the NSA and SA connections,
as well as LTE since these RATs will coexist in the fore-
seeable future. However, the LTE subclass in the Android
system represents both 5G NR-NSA and 4G RAT and does
not distinguish between the two. To address this issue, we
leverage the dataNetworkRegistrationInfo flag, which provides
information on the NR-NSA connectivity, to discern 5G NSA
and LTE. It is also worth noting that it is considered within
Android App-based studies that Reference Signal Received
Power (RSRP) measurements of commercial smartphones are
accurate and correct without confirmations from author-based
spectrum analyzer measurements and power level calibration.
Synchronizing GPS with network measurement: The appli-
cation also captures geolocation coordinates, which are crucial
to associate network measurements. Geo tags are obtained
from the Android system’s locationManager class, which
operates asynchronously with the network data collection pro-
cess. We use the network update time and the GPS timestamps
to sync the data. The significance of the temporal disparity
between the network update time and GPS update time varies
with the speed of drive tests. In the case of a stationary device,
the temporal disparity bears no significance. As we solicit
updates from the network and GPS every 2 milliseconds,
we determined that a maximum temporal disparity of 10
milliseconds is the optimal value to facilitate synchronization
between the device location and network parameters.
Foreground services: In order to improve the data collection
process, our application incorporates an autonomous operating
mode, enabling uninterrupted data acquisition for an extended
period. This was achieved by binding data acquisition with
an Android foreground service that remains active even when



2

the device is in idle mode, minimizing the need for human
intervention. We also created two separate foreground services
for network data acquisition and GPS data acquisition to
enhance the application’s automatic functionality further. This
approach is critical because relying on manual assistance for
a long period can be costly, inefficient, and prone to human
error.
Data collection: To collect the data and to test our system, we
deployed the data logging devices in refuse vehicles, operated
by county councils to generate saturated drive test data. Due
to its small size and light weight, the data logging devices
can be used for general drive or walk test. The collected
data is stored locally on the mobile device’s memory and in
cloud servers, providing a backup source. The local database
also enables the application to transmit all the collected data
captured in areas with no network coverage at a later time
when a connection becomes available, ensuring that all data
is accurately captured and processed, regardless of network
coverage/congestion limitations inherent in cellular networks.
System optimization: During one year of field deployments
under varied scenarios and monitoring four MNOs, we updated
the mobile application several times to enhance the system’s
reliability. During these updates, we noticed that the Firebase
SDK has a maximum allowed JSON file size of 16 MB for
a single transmission. This situation emerged when a handset
roamed in areas with no network coverage for a long period,
resulting in a substantial number of instances of offline data –
the data collected while the device had no network coverage
was not sent to the cloud database. The significant volume
of offline data caused the application to crash, interrupting
services. To address this issue, we implemented a maximum
limit of 100 instances to be transmitted to Firebase in a single
transmission. If there is more offline data, it is segregated into
batches of up to 100 instances before transmission to ensure
that the transmission size remains within the Firebase SDK
allowed limit.

We also encountered a problem with the log file size in the
long-running application. We started by monitoring all errors
and warnings for future updates and bug fixing. However,
within just a few weeks of data collection, the application
crashed when attempting to write a new entry due to limited
memory caused by the large size of the warnings log file,
which had grown to 1-2 Gigabytes. To resolve the problem,
we only track errors in the log files ignoring the warning logs.

III. REAL-TIME MONITORING

As noted above, the data collection method is a mobile
application that runs on Android phones and collects infor-
mation about carrier signals and coordinates, generating time
series datasets with geospatial properties. This data is then
transmitted to Firebase through a wireless cellular connection.
The carrier information is saved in the root of the database in
a node named after the carrier (e.g., Vodafone and O2). Each
node has several child nodes named after the time the data was
collected, containing values about the carrier data. To enable
real-time device health check and survey progress on maps, we
use a Zabbix server with several functions, including battery

status, device location and coverage map. The design of the
server is straightforward, but here we discuss two methods,
which enable efficient monitoring, specific to the application.
Back-end fetching: To handle large volumes of data in real-
time, we utilised Zabbix agents to read the data, but this
method proved to be ineffective as the data volume increased,
resulting in long loading times and high cloud processing
costs. We developed a Python script to perform data segmenta-
tion, reducing processing complexity. The method utilises the
requests library to execute HTTP GET requests to Firebase
and store the data in a local database. startAt parameter, a
Firebase query, is set to the previously recorded timestamp, to
get the next set of data. The fetched data is saved in JSON
objects named after the carrier, and relevant information is
extracted and saved in the respective files. We then use the
L.glify.lines [10] a web graphic language renderer plugin for
leaflet in typescript to display latitude and longitude keys, size,
and colour of the lines.
Front-end fetching: When reading small amounts of data, we
deploy front-end fetching. This method is useful specifically
when only a few child-nodes need to be accessed, and the
data does not need to be saved locally. For instance, we used
front-end fetching to monitor the battery status on each phone,
which is essential for maintaining operations, where only four
nodes of information requires retrieving. We use Firebase
JavaScript SDK [11] and leverage ChildEventListeners to
listen for events of a specified database reference.

IV. VISUALIZED ANALYSES OF NETWORK PARAMETERS

To build the web application for data analysis we used
Laravel, an open-source PHP framework that offers a variety
of tools to simplify development, such as caching and CRUD.
We also utilized several JavaScript libraries, including Open
Street Maps and leaflet-area-selection, to add functionality
and interactivity to the web application. A Percona Server
was deployed to build a MySQL database. In this section,
we highlight the underlying technologies we used to integrate
polygon-based filtering to simplify coverage mapping.
Heatmap/contour representation: We use geolocation data
and signal strength to generate a colour-coded gradient line
to produce coverage heatmaps. We define coverage as the
4G/5G signal strength in RSRP on a given road/street. Areas
without 4G or 5G connectivity are not colour coded, indicating
the presence of coverage holes. Gradient lines span a range
from Green (representing strong signal strength) to Yellow
(moderate signal strength) to Red (indicating weak or absent
signal strength), corresponding to RSRP values ranging from
-65dBm to -120dBm, a widely recognised range for evaluat-
ing network signal strength. We used ‘Open Street Map’ to
visualise coverage on a map [12]. To enhance the usability of
the heatmap, we made the gradient-coloured line transparent,
enabling street names to remain visible. Considering vehicular
speed, if the distance between two subsequent points exceeds
500 meters on the map, we break the line sequence. This value
can be adjusted according to the data collection system. In
addition, when analysing repeated drive test routes, we super-
imposed the gradient-coloured lines to produce a composite
representation.



3

Fig. 1. The architecture of Pathfinder with illustration of Selection UI and Coverage Map.

It is also worth noting that the dataset contained a moderate
number of stale data points, which can add unnecessary delay
in presenting data. To address this problem we created a script
to compare the distance between any given two subsequent
data points, and if the distance is less than 3 meters, we discard
it.
Polygon-based filtering: The execution time of data visual-
isation grows fast as the size of the data points increase. In
addition, processing of entire data sets generate out-of-context
statistics, which can not be used to form specific region-based
analysis. We leverage a polygon-based method for the first
time in this domain, enabling a user to draw a custom outline
on a map, specifying only the area where users intend to
construct the coverage map and generate a set of key stats. We
used a Javascript plugin ‘leaflet-area-selection’, to capture the
coordinates of the selected polygons to achieve the ‘Selection
UI’ functionality [13] which is then used to querying the
database. We use the same methodology used for generating
global heatmaps but with significantly smaller datasets to gain
a faster and more interactive response.

V. CONCLUSION

We demonstrate the enabling technologies for developing
tools for drive tests intending to generate street-level coverage
heatmap, providing bench-marking between mobile network
operators and vital statistics, such as signal strength and
handover events. We also discussed the inherent challenges
in modern cloud platforms and mobile/web applications to
channel data to remote servers. In addition, the technologies
discussed are essential for building live monitoring graphi-
cal user interfaces to control real-time data collection and
optimizing system operations to enable autonomous drive
tests, which meet vehicle’s routines. For the first time, we
presented how a polygon-based approach is leveraged to focus

on areas of interest instead of generic global coverage maps
and non-localized statistics. Figure 1, captures the end-to-end
workflow of the coverage map representation along with data
capture methodology. There are various directions to extend
this work. An exciting approach is to utilize the power of
machine learning models to predict coverage in areas where
mapping using drive tests is not feasible, such as in no-entry
and hard-to-reach regions. This work was partially sponsored
by the Local Government Association (LGA), UK, through
Nottinghamshire County Council (NCC).

REFERENCES

[1] W. A. Hapsari et al., “Minimization of drive tests solution in 3GPP,”
IEEE Communications Magazine, vol. 50, no. 6, pp. 28–36, 2012.

[2] C. K. Anjinappa et al., “Coverage hole detection for mmWave networks:
An unsupervised learning approach,” IEEE Comms. Letters, vol. 25,
no. 11, pp. 3580–3584, 2021.

[3] rantcell, “rantcell,” https://www.rantcell.com/index.html, accessed: June
15, 2023.

[4] rootmetrics, “rootmetrics,” https://www.rootmetrics.com/en-US/home,
accessed: June 15, 2023.

[5] C. Hausl, et al., “Mobile network testing of 5G NR FR1 and FR2
networks: Challenges and solutions,” in Proceedings of EuCAP. IEEE,
2022, pp. 1–5.

[6] K. Kousias et al., “Implications of handover events in commercial 5G
non-standalone deployments in Rome,” in Proceedings of SIGCOMM,
2022, pp. 22–27.

[7] A. Narayanan et al., “A variegated look at 5G in the wild: performance,
power, and QoE implications,” in Proceedings of SIGCOMM, 2021, pp.
610–625.

[8] Rohde and Schwarz®, “TSME6 Ultracompact Drive test Scanner, Prod-
uct Brochure,” Version 11.00.

[9] Android, “TelephonyManager,” https://developer.android.com/reference/
android/telephony/TelephonyManager, accessed: March 01, 2023.

[10] Robert Lee Plummer Jr., “Leaflet.glify,” https://github.com/
robertleeplummerjr/Leaflet.glify, accessed: February 24, 2023.

[11] Google, “Firebase JavaScript SDK,” https://firebase.google.com/docs/
reference/js/v8/firebase.database, accessed: February 24, 2023.

[12] Iosphere GmbH, “leaflet hotline,” https://github.com/iosphere/Leaflet.
hotline, accessed: March 25, 2023.

[13] B-Open, “leaflet area selection,” https://github.com/bopen/
leaflet-area-selection, accessed: March 25, 2023.


