
EXECUTING DYNAMIC DATA RATE ACTOR NETWORKS ON OPENCL PLATFORMS

J. Boutellier, I. Hautala

Center for Machine Vision and Signal Analysis
University of Oulu, Finland

ABSTRACT

Heterogeneous computing platforms consisting of general purpose
processors (GPPs) and graphics processing units (GPUs) have be-
come commonplace in personal mobile devices and embedded sys-
tems. For years, programming of these platforms was very tedious
and simultaneous use of all available GPP and GPU resources re-
quired low-level programming to ensure efficient synchronization
and data transfer between processors. However, in the last few years
several high-level programming frameworks have emerged, which
enable programmers to describe applications by means of abstrac-
tions such as dataflow or Kahn process networks and leave parallel
execution, data transfer and synchronization to be handled by the
framework.

Unfortunately, even the most advanced high-level program-
ming frameworks have had shortcomings that limit their applica-
bility to certain classes of applications. This paper presents a new,
dataflow-flavored programming framework targeting heterogeneous
platforms, and differs from previous approaches by allowing GPU-
mapped actors to have data dependent consumption of inputs /
production of outputs. Such flexibility is essential for configurable
and adaptive applications that are becoming increasingly common
in signal processing. In our experiments it is shown that this feature
allows up to 5× increase in application throughput.

The proposed framework is validated by application examples
from the video processing and wireless communications domains. In
the experiments the framework is compared to a well-known refer-
ence framework and it is shown that the proposed framework enables
both a higher degree of flexibility and better throughput.

Index Terms— Dataflow computing, signal processing, parallel
processing, graphics processing units

1. INTRODUCTION

Programming of graphics processing units (GPUs) found on hetero-
geneous computing platforms has required the use of OpenCL or
Cuda until the last few years. Even though the basic usage of these
languages can be considered rather straightforward, tapping the full
computational potential of the platform, including all general pur-
pose processors (GPPs) and the GPU simultaneously, is a very com-
plex task that requires specialized expertise.

To this end, the research community has invested considerable
effort in the development of programming frameworks [1, 2, 3] that
would relieve the programmer from the task of writing low-level
code for optimized data transfers between the GPPs and GPU and
valid synchronization between computations. Existing frameworks
have found Kahn Process networks [4] or dataflow abstractions [5]
to be suitable for simplifying the programming effort.

Unfortunately, even the most advanced programming frame-
works have restrictions that limit their applicability to a certain class

[2] of (signal processing) applications, or fail to provide significant
performance advantage [6] when compared to manually written
OpenCL or Cuda programs. This paper addresses one of the fun-
damental limitations of existing solutions by introducing a novel
dataflow-flavored programming framework that allows executing
dynamic data rate applications on OpenCL / GPU devices. In the
experiments it is shown that this feature allows up to a 5× increase
in application throughput.

In detail, the proposed framework features:

• An abstraction for expressing applications as a network of
dataflow actors,

• Concurrent execution of GPP and GPU mapped actors,

• Support for executing dataflow actors with dynamic data
rates, also on the GPU,

• Support for applications with initial (delay) tokens.

The functionality of the framework is demonstrated by bench-
marking two applications, video motion detection and dynamic pre-
distortion filtering, and by comparing the results to the well-known
DAL framework [7].

The rest of this paper is organized as follows: Section 2 intro-
duces the dataflow abstraction and presents related work, Section 3
details the central contributions of this work, Section 4 presents ex-
perimental evaluation of the proposed approach, Section 5 discusses
the results, and Section 6 concludes the paper.

2. BACKGROUND

2.1. Dataflow Abstraction

In the dataflow abstraction [5], applications are composed of ac-
tors that perform computations on data that is quantized into tokens.
Each actor is created when the application is launched, and is ter-
minated when the whole application has finished. Actors acquire
tokens from their input ports and produce computation results to
their output ports. Token communication between actors is handled
by channels that have an order-preserving FIFO (First-In-First-Out)
behavior. An actor (See Fig. 1) performs a computation by firing,
which can include consuming tokens from input ports at the begin-
ning of the firing, and producing tokens to the actor output ports at
the end of the firing. A central feature of the dataflow abstraction is
that computations are triggered by the availability of data, in contrast
to, for example, time-triggered abstractions [8].

In literature, a wide variety of dataflow Models of Computation
(MoC) have been presented. One of the most important factors that
differentiate a dataflow MoC from another concerns the token com-
munication rates when an actor reads from, or writes to, a channel
to which it connects. In this sense, the most restricted dataflow MoC
is homogeneous synchronous dataflow (HSDF) [5], where an actor

Accepted to Proc. IEEE SiPS 2016, Oct 26-28, 2016, Dallas, Texas c© IEEE 2016

ar
X

iv
:1

61
1.

03
22

6v
1

 [
cs

.D
C

]
 1

0
N

ov
 2

01
6

Port P1-

Port P3+

 Port P2-

Actor a FIFO f [1]

FIFO f [1]

FIFO f [2]

a

a

a c

1

2

3

Fig. 1. Dataflow actor a that has two input ports and one output port.

must read exactly one token from each of its input ports and produce
exactly one token to each of its output ports on each firing. Syn-
chronous dataflow (SDF) [5] is slightly more expressive as it allows
token rates larger than one, as is cycle-static dataflow (CSDF) [9]
that goes beyond SDF by allowing tokens rates to vary in repetitive
cycles.

The aforementioned MoCs (HSDF, SDF, CSDF) are restricted
in the sense that they disallow data dependent changes to the token
rates, which is a required feature as, for example, video decoders
[10] and Software Defined Radio applications [11] introduce be-
havior that cannot be captured by static data rates. To achieve
this, dynamic dataflow MoCs are required. Examples of dynamic
dataflow MoCs are boolean dataflow (BDF) [12], enable-invoke
dataflow (EIDF) [13] and dataflow process networks (DPN) [14]
that allow port token rates to change at application run time. Some
formulations [15, 16] also allow interpreting Kahn process networks
(KPN) [4] as a kind of a dynamic dataflow MoC.

The proposed framework is based on dynamic dataflow, and the
essential features of its computation model are presented next, fol-
lowing the notation adopted from [17].

2.2. Dataflow Model of the Proposed Framework

In the proposed framework an application is described as a network
ℵ = (A,F), where A is a set of actors and F is a set of FIFO com-
munication channels that interconnect the actors. Each actor a(∈ A)
may have 0 or more input ports P−a and zero or more output ports
P+
a . If an actor a has zero input ports it is called a source actor, and

if it has zero output ports it is called a sink actor.
Each FIFO channel f ∈ F has an associated token rate f [r],

where r is a positive integer. If actor a is connected to FIFO channel
fk (where k is the index number of the FIFO) through its output
port P k+

a , the output port adopts the token rate r of the FIFO buffer.
Same applies for input ports. Both reads and writes to channels are
blocking, such that the execution of the reading (writing) actor stalls
until sufficient tokens are (space is) available.

An actor a may be static or dynamic. Dynamic actors have one
control input port and regular ports. A control port always has a
fixed token rate of 1 (and hence, the FIFO to which it connects, must
also have a token rate of 1), whereas a regular port of a dynamic
actor may have two token rates: 0 and r, where r is the token rate
of the FIFO channel f [r]

k to which P k
a connects. For static actors,

on the other hand, each input P k−
a and output P k+

a port of a always
has a single fixed token rate inherited from the FIFO fk to which it
connects.

Figure 1 depicts an example of this. Dynamic actor a is con-
nected to three FIFO channels: f1, f2 and f3 through its ports P 1−

a ,
P 2−
a and P 3+

a . FIFOs f1, f2 and f3 have token rates of 1, 1, and 2,
respectively. Port P 1−

a is the control port of actor a, denoted with
a ”c” in the figure. Values of the tokens consumed from the control
port set the token rate of input port P 2−

a to either 0 or 1, however the

mapping of control token port values to token rates of P 2−
a is left

unspecified here.
When the dynamic actor a fires, it first consumes one token from

its control port. Then, based on the token value of the consumed con-
trol port token, the token rate of each regular input port and regular
output port P of a is fixed to either 0 or r (r being adopted from the
associated FIFO f [r]) for the duration of this firing. After fixing the
token rates, actor a consumes tokens from each input port P−a that
has a non-zero token rate for the duration of this firing. Based on the
tokens consumed from the input ports, a performs computations and
finally produces tokens to each output port P+

a that has a non-zero
token rate.

Any FIFO buffer f ∈ F that is not connected to a control port
is allowed to have 0 or 1 initial tokens (delays) irrespective of the
token rate f [r]. Initial tokens are data that is present in FIFO buffers
before any actor a ∈ A has fired, and is normally used to model
feedbacks in signal processing systems, for example, in Infinite Im-
pulse Response (IIR) filters.

It is necessary to point out that the computation model described
above cannot be reduced to single-rate dataflow (HSDF) due to the
allowed presence of initial tokens. Also, the described model bears
resemblance to boolean dataflow [12], however a more detailed anal-
ysis of the similarities and differences must be presented elsewhere
due to limitations in presentation space.

2.3. Related Programming Frameworks

A number of programming frameworks targeting heterogeneous
platforms have emerged in the last few years. The frameworks
described in [18], [3] and [19] represent task-based programming
approaches, where tasks are spawned, executed and finished, and
their interdependencies are expressed as a directed acyclic graph.
The proposed approach, in contrast, is based on actors that are
created once at initialization and run as independent entities, com-
municating with each other until termination of the application.

A recent article [1] presents a framework that enables deploying
applications written in the StreamIt language [20] to GPUs. Com-
pared to this work, the significant difference is that the StreamIt lan-
guage heeds the SDF MoC that does not allow data dependent exe-
cution paths or dynamic data rates, whereas the proposed framework
allows dynamic data rates as described above. The same restriction
of dynamic data rates also applies to two recent works [6, 21] that
discuss deployment of RVC-CAL dataflow programs to heteroge-
neous architectures.

The DAL framework [7] is based on Kahn process networks and
also has an extension [2] for targeting heterogeneous systems with
OpenCL enabled devices. In terms of OpenCL / GPU acceleration
this framework is limited to the SDF MoC that disallows dynamic
data rates.

3. THE PROPOSED FRAMEWORK

This section provides an overview of the proposed framework:
Subsection 3.1 explains how the programmer expresses actors for
the proposed framework, Subsection 3.2 describes the proposed
inter-actor communications techniques, Subsection 3.3 details the
implementation of concurrency and finally Subsection 3.4 gives an
overview of the concrete framework implementation.

2

D W W W W

R R R R

R R R R

R R R R

W W W W

W W W W

D W W W W

W W W W R R R R

Iteration

N

N+1

N+2

N+3

...

0 1 2 3 4 5 6 7 8 9 10 11 12

Buffer slot index (as tokens)

Fig. 2. Buffer access pattern in the case of a delay token for token
rate 4.

3.1. Description of Actors

In the proposed framework each actor consists of the mandatory fire
function, and optional init, control, and finish functions. The fire
function describes the actor’s behavior upon firing and comprises
the reading of regular input ports, computation and writing to regular
output ports. The optional init and finish functions are only executed
once on application initialization and termination, and are mainly
useful for source and sink actors to start and end interfacing with
I/O. The control function is only required for dynamic actors and is
executed once for each firing of the actor, right before invoking the
fire function. The control function is responsible for setting the data
rates of regular ports.

At design time the programmer chooses whether the actor is go-
ing to be executed on an OpenCL / GPU device or on one of the
general purpose cores. Depending on the choice, the actor func-
tionality is written either in OpenCL C, or in the conventional C
language. The proposed framework provides a minimal API that es-
sentially provides functions for inter-actor communication, such as
fifoWriteStart, fifoWriteEnd, etc.

This formulation, where actors consist of init, fire, and finish
functions is identical to the DAL [7] framework. However, the con-
trol function, especially required for enabling dynamic data rate ac-
tors on OpenCL / GPU devices, is specific to this framework. The
control function takes one control token as its input and is required
to set the data rate (to 0 or r as defined in Subsection 2.2) of each
regular input and regular output port for the duration of one firing.
The proposed framework does not impose limitations regarding the
mapping of control token values to the token rates of ports.

3.2. Communication Channels

A communication channel in the proposed framework connects ex-
actly one output port of an actor to exactly one input port of another
actor, heeding FIFO behavior. In contrast to other (e.g. [7]) program-
ming frameworks, the token capacity of a communication channel f
cannot be arbitrarily chosen by the programmer, but is exactly spec-
ified as

Cf =

{
Sf ∗ (r ∗ 3 + 1), if f has a delay token
Sf ∗ (r ∗ 2), otherwise,

(1)

where r is the token rate, and Sf is the size (e.g. in bytes) of one
token of FIFO f .

As a communication channel f assumes to receive r new tokens
on each write, and to output r tokens on each read, we see that a
regular channel (the otherwise case in Eq. 1) is essentially a dou-
ble buffer that allows simultaneous reading and writing to the chan-

nel. However, for channels that contain an initial (delay) token, the
channel is implemented as a slightly more complex buffer that im-
plements a specific access pattern to enable simultaneous reads and
writes to the channel. This is depicted in Fig. 2 with an example case
of r = 4.

At application initialization the initial token in the channel, dis-
played with D in Fig. 2 resides in buffer slot 0. The first write to
the channel occupies slots 1 ... 4, whereas the first read consumes
tokens from slots 0 ... 3 and so forth. The third write to the channel
reaches the end (slot 12) of the buffer, followed by an explicit data
copy from slot 12 to slot 0, and the access pattern starts to repeat. It
is important to note that the access pattern is repetitive and can be
generalized to any token rate r ∈ [1, inf[.

Looking at Fig. 2, it is evident that this solution is not minimal
in terms of memory footprint, but it was chosen as it offers 1) un-
compromized throughput and 2) transparency to the application pro-
grammer. Conventional ring buffers were considered inadequate, as
OpenCL / GPUs offer the best combination of performance and ease
of programming when input and output data to kernels is provided
as contiguous arrays.

The memory footprint overhead of this solution is slightly more
than 50% (depending on the token rate) when compared to regular
double buffers. Essentially the same triple-buffer solution can also
be generalized to 2 or more delay tokens, however due to limits in
presentation space the generalization is omitted here.

3.3. Concurrency, Scheduling and Actor-to-Core Mapping

The proposed framework has been designed to enable maximally
parallel operation. Parallelism is based on threading, such that each
actor runs on an operating system (OS) thread of its own, regardless
whether the actor is targeted to OpenCL / GPU devices or to one
of the general purpose cores. Each actor thread is created once at
application startup, and is canceled after the application has termi-
nated. Similar to the DAL framework [7, 2], synchronization of data
exchange over FIFO channels is based on mutex locks and blocking
communication: if an actor attempts to read a channel that has less
tokens than the actor requires, the reading actor blocks until suffi-
cient data is available. On one hand, this enables very efficient mul-
tiprocessing, but on the other hand makes the MoC somewhat more
restricted than e.g. that of DPNs [16].

As each and every actor is instantiated as a separate thread us-
ing the GNU/Linux pthreads library, the scheduling of actor firings
(heeding data availability) is left to the OS. If the programmer so
chooses, the framework allows fixing of actors to specific GPP cores,
otherwise the OS chooses the core on which an actor firing is exe-
cuted.

It is necessary to state that alternatively to the adopted OS
threading based concurrency, it would also have been possible to
build concurrency and synchronization on top of OpenCL events,
however this would have limited the applicability to platforms where
both the GPPs and GPUs have OpenCL drivers. The adopted OS
threading based solution, however, is beneficial due to its backwards
compatibility: with this solution it is possible to jointly synchronize
and run also non-OpenCL compatible GPPs with GPUs.

3.4. Overview of the Design Flow

Fig. 3 depicts a hierarchical view of the proposed framework. The
implementation of the framework is written as a C library with an
API that is called by the actors and by the actor network description.

3

Actors

C functions

OpenCL kernels

C Compiler

Network

C function

The Proposed

Framework

C library

General Purpose Processors GPU HW

GPU drivers

 Threading library

OpenCL

Compiler

Operating System

Fig. 3. Overview of the proposed framework.

Table 1. Memory allocated to communication buffers in Megabytes.

Framework DAL Prop. DAL Prop.
target MC MC Heterog. Heterog.
Motion Detection 0.77 0.85 3.69 3.46
Dynamic Predistortion 11.5 11.5 n/a 11.5

The actors that constitute the application are expressed as C func-
tions, or as OpenCL kernels for OpenCL compatible targets, whereas
the actor network is defined with a C function.

4. EXPERIMENTS

To validate the functionality and performance of the proposed frame-
work, two applications were benchmarked on two different hetero-
geneous platforms that are described in Table 2. The Carrizo chip
features an integrated graphics processor, a solution that minimizes
the data transfer times between the GPU and the GPP cores. The
other platform, i7, represents a traditional solution where GPP cores
communicate with the GPU over a PCI Express bus and thus the data
transfer times between the GPP and GPU are non-negligible.

The DAL framework [7, 2] was used as a reference, and the code
of the two applications was adapted from the proposed framework to
DAL with minimal required changes. The DAL platform only allows
fixed actor-to-core mappings, whereas the proposed framework also
allows letting the OS to select the best core for execution, an option
called free mapping in the results.

4.1. Video Motion Detection

The first application used in our experiments is 8-bit grayscale video
Motion Detection that consists of five actors, as shown in Fig. 4.
The source and sink actors are always executed on GPP cores and

GPU

Source Gauss Thres Med Sink

Fig. 4. The Motion Detection application.

P

F

F

F

F

F

F

F

F

F

Ti

F

C

Si

Tq Sq

A

GPU

Fig. 5. The Dynamic Predistortion application.

are essentially responsible for reading and writing data from/to mass
storage. The Gauss actor performs 5×5 pixels Gaussian filtering
on the input data, followed by the Thres actor that subtracts con-
secutive frames and performs pixel thresholding against a fixed con-
stant value. To avoid exceeding frame boundaries the Gauss actor
skips filtering for two pixel rows in the frame top and frame bottom.
Finally, the Med actor performs 5-pixel median filtering to reduce
noise from the generated motion map. One of the communication
channels between the Gauss and Thres actors bears a dot in Fig. 4
and depicts an initial token. The initial token is a one-frame delay
that enables the functionality of consecutive frame subtraction.

To enable comparison with previous works, the frame size used
was 320×240, which resulted in the token size being 76800 bytes.
In GPP-only execution the token rate on all channels was kept at one,
as increasing the token rate did not have a measurable performance
effect. GPU acceleration was applied to Motion Detection by map-
ping the Gauss, Thres and Med actors to the GPU. Total amount of
memory used for buffers is shown in Table 1 for each configuration.
The Motion Detection application is essentially the same as the one
used in our previous work [22], however re-written for the proposed
framework. In [22] the functionality of Thres and Med actors was
implemented in a single actor.

4.2. Dynamic Predistortion Filtering

Dynamic Predistortion (DPD) filtering (Fig. 5) was used as the sec-
ond application test case. The algorithm is used in wireless commu-
nications to mitigate transceiver impairments, and to a great extent
consists of parallel 10-tap FIR filters. Functionally, the filter is iden-
tical to the one presented in our previous work [22], but the actor
descriptions have been rewritten for the proposed framework.

DPD significantly differs from the Motion Detection application
in the sense that it features actors with dynamic data rates: Fig. 5
shows the configuration (C) actor that at run-time periodically re-
configures the Poly (P) and Adder (A) actors to select which set of
the FIR filters is used to process the input signal. The reconfigura-
tion period was set to once every 65536 samples, and the number
of active filter actors is allowed to change arbitrarily between 2 and
10. The run time reconfiguration used here is defined by an external
input and cannot be modeled e.g. by the CSDF MoC.

The DPD application computes on complex floating point num-

4

Table 2. Platforms used for experiments.

Tag GPPs GPU Operating System
Carrizo AMD Pro A12-8800B (2.1 GHz, 4 cores) AMD Radeon R7, OpenCL 2.0, driver 15.30.3 Ubuntu 14.04, g++ 4.8.4
i7 Intel Core i7-4770 (3.4 GHz, 4 cores) AMD Radeon HD 7750, OpenCL 1.2, driver 15.20.3 Ubuntu 14.04, g++ 4.8.4

Table 3. Throughput for Motion Detection in frames per second on
multicore (MC) and MC+GPU (Heterog.) targets. † see Subsect. 4.3

Framework DAL Prop. Prop. DAL Prop.
target MC MC MC Heterog. Heterog.
mapping fixed fixed free - -
Carrizo 400 485 486 2915† 4614
i7 872 1138 1135 4320† 6063

Table 4. Throughput for Dynamic Predistortion in Megasamples per
second on multicore (MC) and multicore+GPU (Heterog.) targets.

Framework DAL Prop. Prop. DAL Prop.
target MC MC MC Heterog. Heterog.
mapping fixed fixed free - -
Carrizo 5.5 7.1 8.8 n/a 47.4
i7 21.1 30.4 32.8 n/a 83.8

bers, which were represented as a pair of single precision floats. To
this end, all edges in Fig. 5 inside the ”GPU” box represent a pair of
edges, one for the real part and one for the imaginary part. Hence,
the total number of FIFO channels is 46 in this application.

4.3. Results

Results for executing the Motion Detection and DPD applications on
the proposed framework, and the reference framework DAL [7, 2]
are presented in Table 3 and Table 4.

On both platforms the GPU-accelerated version of Motion De-
tection invoked a GPU driver issue on the DAL framework when the
token rate was increased beyond 1. To enable benchmarking, the
problem was circumvented by using 640x480 frames with token rate
1 instead of 320x240 frames with token rate 4 on GPU-accelerated
DAL experiments. This alternative setting left the number of compu-
tations and OpenCL work dimensions identical, and hence the results
are directly comparable to other results in Table 3.

For the Motion Detection application the proposed framework
provided a performance advantage of 20% compared to DAL on the
4 processors of the Carrizo platform, and there was no evident per-
formance difference between fixed and free actor-to-core mappings.
Using the proposed framework, on this platform the GPU provided a
considerable 9.5× speedup compared to the best multicore-only re-
sults. Comparing the GPU-accelerated programs, the proposed ap-
proach was 58% faster than DAL.

On the i7 platform multicore-only execution yielded 30% higher
throughput on the proposed framework than on DAL. When GPU-
accelerated programs are compared, the proposed framework was
40% faster than DAL.

For the DPD application the proposed framework yielded a 29%
speedup over DAL with fixed actor-to-core mapping on Carrizo
multicore-only. The speedup gap increased to 60% when the map-
ping was left to be decided by the underlying OS. On the proposed

framework, the use of GPU acceleration provided a speedup of 5.4×
compared to best multicore results, whereas on the DAL platform
GPU acceleration was not possible as the DAL framework does not
support dynamic data rate actors on the GPU.

On the i7 platform the DPD application executed 44% faster on
the proposed framework (fixed mapping) than on DAL when only
the multicore chip was used. The gap further increased to 55%
when the actor-to-core mapping was left to be decided by the OS. Fi-
nally, GPU acceleration enabled by the proposed framework yielded
a 2.6× speedup compared to the best multicore results.

5. DISCUSSION AND FUTURE WORK

The results presented in Section 4.3 illustrate that the proposed
framework

• Provides 20%-60% higher throughput than the reference
framework, and

• Enables executing applications with dynamic dataflow behav-
ior on the GPU.

From the viewpoint of the application programmer, DAL and the
proposed framework are to a great extent similar, differing mainly in
the way actors are written for GPU targets. In DAL, it is in princi-
ple possible to write an actor in C language and have it executed by
the framework either on GPPs or on the GPU without code modi-
fications, however such actors are restricted to static data rates. At
the moment the proposed approach requires an actor to be written in
OpenCL C for GPU execution.

It is necessary to state that although the proposed approach over-
comes DAL in terms of performance, DAL provides a number of
features that are unavailable in the proposed framework, such as tar-
geting distributed systems, error-resilience via spare core allocation
and support for multiple simultaneous applications.

One of the limitations of the proposed framework is that an ac-
tor port may have at maximum two different data rates. The con-
sequence of this restriction is that for applications such as Dynamic
Predistortion, where the data path is arbitrarily changing at run time,
the token rate must for the dynamic part of the network be kept at 1,
otherwise the network has a risk of deadlocking.

Hence, for future development of the framework the most clear
direction is relaxation of token rate restrictions without sacrificing
the efficiency of the framework. In the same vein, it is mandatory to
present a formal definition of the framework’s Model of Computa-
tion and analyze its properties to e.g. identify necessary conditions
for avoiding the possibility of deadlock.

Another likely direction of future work is to make the API com-
patible with DAL. This would have two benefits: 1) applications
from the DAL repository could directly be executed on the proposed
framework, and 2) it would be possible to write programs for the pro-
posed framework using the RVC-CAL dataflow language by means
of the Open RVC-CAL Compiler DAL Backend [21].

5

6. CONCLUSION

We have presented a novel dataflow-flavored framework for efficient
programming of heterogeneous multicore platforms. Compared to
the state-of-the-art, the proposed framework pioneers in enabling the
execution of dynamic dataflow actors on GPU devices.

Claims on the proposed framework’s efficiency and features
have been demonstrated with two applications, video motion detec-
tion and dynamic predistortion filtering. Experiments have shown
that the proposed framework provides 20% to 60% higher through-
put compared to the well-known DAL framework. Moreover, the
proposed framework is capable of GPU-accelerating actors that
have dynamic data rates, a feature that was measured to improve
throughput up to 5×.

7. ACKNOWLEDGEMENTS

This work was funded by Academy of Finland project UNICODE.

8. REFERENCES

[1] H. P. Huynh, A. Hagiescu, O. Z. Liang, W.-F. Wong, and
R. S. M. Goh, “Mapping streaming applications onto GPU
systems,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 25, no. 9, pp. 2374–2385, 2014.

[2] L. Schor, A. Tretter, T. Scherer, and L. Thiele, “Exploiting the
parallelism of heterogeneous systems using dataflow graphs on
top of OpenCL,” in IEEE Symposium on Embedded Systems
for Real-time Multimedia (ESTIMedia), 2013, pp. 41–50.

[3] A. Sbı̂rlea, Y. Zou, Z. Budimlı́c, J. Cong, and V. Sarkar, “Map-
ping a data-flow programming model onto heterogeneous plat-
forms,” in ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, Tools and Theory for Embedded
Systems (LCTES), 2012, pp. 61–70.

[4] G. Kahn, “The semantics of a simple language for parallel pro-
gramming,” in Information processing, J. L. Rosenfeld, Ed.,
Stockholm, Sweden, 1974, pp. 471–475, North Holland.

[5] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[6] W. Lund, S. Kanur, J. Ersfolk, L. Tsiopoulos, J. Lilius,
J. Haldin, and U. Falk, “Execution of dataflow process net-
works on OpenCL platforms,” in Euromicro International
Conference on Parallel, Distributed and Network-Based Pro-
cessing (PDP), 2015, pp. 618–625.

[7] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and
L. Thiele, “Scenario-based design flow for mapping stream-
ing applications onto on-chip many-core systems,” in Interna-
tional Conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES), 2012, pp. 71–80.

[8] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A
time-triggered language for embedded programming,” in Em-
bedded Software: First International Workshop, (EMSOFT),
T. A. Henzinger and C. M. Kirsch, Eds., 2001, pp. 166–184.

[9] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete,
“Cycle-static dataflow,” IEEE Transactions on Signal Process-
ing, vol. 44, no. 2, pp. 397–408, Feb 1996.

[10] M. Mattavelli, I. Amer, and M. Raulet, “The Reconfigurable
Video Coding standard [standards in a nutshell],” IEEE Signal
Processing Magazine, vol. 27, no. 3, pp. 159–167, 2010.

[11] H. Berg, C. Brunelli, and U. Lucking, “Analyzing models of
computation for software defined radio applications,” in Inter-
national Symposium on System-on-Chip, 2008, pp. 1–4.

[12] J. T. Buck and E. A. Lee, “Scheduling dynamic dataflow
graphs with bounded memory using the token flow model,”
in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), April 1993, vol. 1, pp. 429–432 vol.1.

[13] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhat-
tacharyya, “Functional DIF for rapid prototyping,” in IEEE/I-
FIP International Symposium on Rapid System Prototyping
(RSP), 2008, pp. 17–23.

[14] E. A. Lee and T. M. Parks, “Dataflow process networks,” Pro-
ceedings of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[15] E. A. Lee and E. Matsikoudis, “The semantics of dataflow
with firing,” in From Semantics to Computer Science: Essays
in memory of Gilles Kahn, G. Huet, G. Plotkin, J.J. Lévy, and
Y. Bertot, Eds. Cambridge University Press, 2009.

[16] A. Tretter, J. Boutellier, J. Guthrie, L. Schor, and L. Thiele,
“Executing dataflow actors as Kahn processes,” in Interna-
tional Conference on Embedded Software (EMSOFT), 2015,
pp. 105–114.

[17] J. Boutellier, J. Ersfolk, J. Lilius, M. Mattavelli, G. Roquier,
and O. Silvén, “Actor merging for dataflow process networks,”
IEEE Transactions on Signal Processing, vol. 63, no. 10, pp.
2496–2508, May 2015.

[18] V. Boulos, S. Huet, V. Fristot, L. Salvo, and D. Houzet, “Effi-
cient implementation of data flow graphs on multi-GPU clus-
ters,” Journal of Real-Time Image Processing, vol. 9, no. 1, pp.
217–232, 2014.

[19] T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin, “XKaapi:
A runtime system for data-flow task programming on heteroge-
neous architectures,” in International Symposium on Parallel
and Distributed Processing (IPDPS), 2013, pp. 1299–1308.

[20] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit: A
language for streaming applications,” in Compiler Construc-
tion, R. Nigel Horspool, Ed., vol. 2304 of Lecture Notes in
Computer Science, pp. 179–196. Springer, 2002.

[21] J. Boutellier and T. Nyländen, “Programming graphics pro-
cessing units in the RVC-CAL dataflow language,” in IEEE
Workshop on Signal Processing Systems (SiPS), 2015, pp. 1–6.

[22] J. Boutellier and A. Ghazi, “Multicore execution of dynamic
dataflow programs on the Distributed Application Layer,” in
IEEE Global Conference on Signal and Information Process-
ing (GlobalSIP), 2015, pp. 893–897.

6

	1 Introduction
	2 Background
	2.1 Dataflow Abstraction
	2.2 Dataflow Model of the Proposed Framework
	2.3 Related Programming Frameworks

	3 The Proposed Framework
	3.1 Description of Actors
	3.2 Communication Channels
	3.3 Concurrency, Scheduling and Actor-to-Core Mapping
	3.4 Overview of the Design Flow

	4 Experiments
	4.1 Video Motion Detection
	4.2 Dynamic Predistortion Filtering
	4.3 Results

	5 Discussion and Future work
	6 Conclusion
	7 Acknowledgements
	8 References

