
Extended Distributed Genetic Algorithm for Channel
Routing

B. B. Prahlada Rao*and It. C. Hansdah t
Computer Science and Automation Department

Indian Institute of Science
Bangalore - 560 012

India

Abstract

In this paper, we propose a new parallel genetic a lge
rithm (GA), called Extended Distributed Genetic Al-
gorithm (EDGA), for channel routing problem. The
EDGA combines the advantages of previous parallel
GA models , viz., master/slave GA model and dis-
tributed GA model. In EDGA, the root processor ex-
ecutes the conventional genetic algorithm with global
selection on total population and the remaining proces-
sors execute conventional genetic algorithm with local
selection on subpopulations. After certain number of
generations, the total population on the root proces-
sor and the subpopulations on the remaining proces-
sors are interchanged, and the process is repeated till
terminating conditions are reached. This incorporates
features of both global and local selection in the pro-
posed EDGA. The EDGA is designed to obtain good
speedup, global optimal solution, and full utilization
of the parallel system. We have implemented mas-
ter/slave GA, distributed GA, and the proposed EDGA
in C on a transputer-based parallel MIMD machine
and compared their performance. It is found that the
EDGA achieves higher speedup than both master/slave
GA, and distributed GA.

1 Introduction

In the physical design of VLSI circuits , the prob-
lem of circuit layout is quite difficult, and there exists
no known polynomial time algorithm to obtain optimal
solution. The layout problem is broadly divided into
placement and routing. In placement, all the compo-
nents are placed on the chip, and in routing, all the
components are interconnected. The routing problem

'email: p1adOcsaiisc.emet.in
tanail: hansdahOcsa.iisc.emet.in

is further divided into globa. routing and detailed rout-
ing. Global routing roughly determines the regions
through which the wire passes and detailed routing de-
termines the path of every wire precisely in the region.
Channel router is a type of detailed router. The con-
cept of channel routing (CHR) was first proposed in
[l]. Since then various algorithms have been proposed
for channel routing [2,3,5]. A channel is a rectangular
region with terminals at the horizontal sides. A net
in a channel is a set of terminals to be interconnected.
The objective of a channel router is to interconnect
all the terminals in each net of the channel using mini-
mum number of tracks, and the problem is shown to be
NP-complete [4]. Hence, several algorithms have been
proposed to find approximate solution to the channel
routing problem.

Most of the channel routing algorithms [2,3,5] are
sequential in nature, i.e., they work either on one track
of the channel or on one possible routing solution at
a time. Probabilistic algorithms such as simulated an-
nealing are also used to solve the channel routing prob-
lem. Simulated annealing-based channel routers [3]
start with an initial solution and try to improve the so-
lution by perturbing it to its neighbourhood at a time,
following the principles of physical annealing in met-
allurgy. Even though methods have been proposed to
parallelize simulated annealing [8], it is inherently se-
quential in nature. The genetic algorithmbased chan-
nel router [12] is inherently parallel in nature. This
methodology starts with a set of initial solutions. At
each iteration, it combines the features of a pair of so-
lutions, called parents, to produce two new solutions,
called offsprings, which inherit the features of the par-
ents, and thereby this method tries to search new po-
tential solutions using the principles of biological evo-
lution.

The unique power of genetic algorithms shows up
wit n parallel computers. Parallel searches(i.e., parallel

10636376193 $03.00 0 1993 IEEE
726

GAS) with information exchange between the searches
are often more efficient than independent searches.
Thus parallel genetic algorithms (PGA) combine the
speed of parallel machine and the advantage of inher-
ent parallelism available in the GA. Easiest way to uti-
lize the inherent parallelism of a sequential GA is by
evaluating the fitness of the offsprings in parallel [9].
In this approach (master/slave GA) the root proces-
sor(master) selects the parents for the next generation
and generates the offspring. The slave or worker pro-
cessors perform mutation on each offspring and eval-
uate the objective function(fitness) value of the off-
springs. Although this is straightforward, it is not al-
ways advantageous with respect to the communication
time. Parallel MIMD computers suitable for coarse-
grain parallelism are characterized by a low communi-
cation bandwidth. Most of the existing parallel vari-
ants of GA are based on the concept of distributed
subpopulations (distributed GA).

A new parallel genetic algorithm for channel rout-
ing problem, called Extended Distributed Genetic Al-
gorithm(EDGA), is proposed in this paper. In EDGA,
we use the concept of distributed subpopulations [lo] to
achieve good speedups, and the concept of global selec-
tion strategy [9] to obtain better optimal solution(s).
The root processor executes the GA with the global
selection on the entire population, whereas the pro-
cessing elements(PE) operate GA on the correspond-
ing subpopulations with local selection. At a prede-
termined interval, the evolved populations of root and
the PES are exchanged. This cycle is repeated for spec-
ified number of cycles(cal1ed epochs) or till terminat-
ing condition is reached. The combination of locally
adapted subpopulations with the globally adapted to-
tal population offers the advantages of a fast search
within the optimal search regions and better optimal
solutions. The EDGA proposed is simple, efficient,
and can easily be implemented on the available par-
allel hardware. The proposed algorithm obtains good
speedup and it balances the load on all the processors
so as to ensure good performance of the parallel sys-
tem. We have implemented the master/slave GA, the
distributed GA, and the EDGA for channel routing
problem on a transputer-based MIMD machine, called
PARAM, and compared their performance.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of genetic algorithms. Sec-
tion 3 explains the channel routing problem. Section
4 presents how the channel routing problem is solved
using genetic algorithm followed by a discussion of the
genetic operators and the evaluation function used for
the channel routing problem. Section 5 presents the
extended distributed genetic algorithm. Results and

Algorithm Sequential-GA
Generate an initial population of size PopSz;
for generation = 1 to MAXGEN do

Calculate fitness statistics for each individual in
the population;
Select PopSz parents probabilistically based on
the individual’s fitness;
for generation i = 1 to PopSz/2 do

Pair two parents randomly without replacement;
Crossover the parents based on PcroddOVer and
produce two new offsprings;
Mutate each offspring based on mutation rate;

endfor
endfor

Figure 1: Sequential Genetic Algorithm

conclusions are presented in Section 6.

2 Overview of Genetic Algorithms

Genetic algorithms(GA) are stochastic search meth-
ods based on biological evolution models, whose main
advantage lies in the robustness of search and problem
independence. The basic concepts of GA were devel-
oped by Holland in 1975[6]. The algorithm operates
on a population of individuals which represent points
in bhe search space. Each individual has some fitness
value or figure of merit and is measured by an evalua-
tion function. The approach of the algorithm is to ex-
plore the search space and to discover better solutions
by allowing the individuals to evolve over time. The
time steps for evolution in a GA are called generations.
The conventional Sequential Genetic Algorithm(SGA)
is shown in fig.1.

The algorithm’s main loop is executed once for each
generation. For each generation, the algorithm calcu-
lates the fitness value for each individual in the popu-
lation, selects fittest individuals for reproduction, and
reproduces offsprings using crossover and mutation op-
erations. Selection, crossover and mutation are the
basic operators of GA. In order to solve a problem us-
ing GA, the following five components are required:

1. A genetic encoding scheme to represent the solu-
t ion space of the problem: Various representation
schemes are possible, viz., binary representation,
integer representation, matrix representation etc.

2. A mechanism to create an initial population ofso-

727

3.

4.

5.

3

Iutions: Initial population of solutions is generated
randomly.

A n evaluation function that plays the role of the
environment and rates the solutions: Evaluation
functions are problem-dependent. They reflect the
constraints of the problem in the sense that, for
each solution, the function evaluates the solutions
to show how good or bad the solutions are.

Selection of the parameter values used in GA
(PopSz, Probabilities of genetic operators, MAX-
GEN ..etc.): There is no rigid rule for selecting
these parameter values. The genetic algorithm
has to be run many times to find suitable val-
ues of these parameters for the problem at hand
or else the parameters have to be estimated using
meta-GA concept [ll].

A set of genetic operators, wiz., selection,
crossover, mutation and a few others as required
b y the application: These operators have to be de-
fined to suit the application and the power of the
GA lies in the proper selection of these operators.
The selection operator selects PopSz individuals
from a population of PopSz individuals dropping
some individuals with lower fitness value and tak-
ing more copies of individuals having higher fitness
value. This incorporates the Darwin's survival of
the fittest concept in the GA. The crossover op-
erator combines features of two parent structures
to form new offsprings. The mutation operator
randomly alters few bits in each chromosome.

Channel Routing Problem

In this section, we present a mathematical formula-
tion of channel routing(CHR) problem. A horizontal
channel is assumed. The routing is done in two layers,
one for horizontal segments and the other for verti-
cal segments. Net i is denoted by ni. Let 1 be the
length of the channel and N be the set of nets to be
routed. The set of terminals on the top(bottom) of the
channel are denoted by T (B) . Let L;(Ri) be the left-
most(rightmost) column in the channel for the net ni.
Then the interval (L i , R i) is known as the span of the
net ni.

Let
T = { t l , t2 , . . . , t l) ,
B = { h , b 2 , ..., b i } ,
N = { n l , n2, '.., n k) ,

where
ni C T U B ;

ti or bi can take values 0, L, R or any value from
the set N ;

0 represents that the terminal is not connected to
any net;

L represents that the terminal is connected to a net
entering from the left side of the channel;

R represents that the terminal is connected to a net
entering from the right side of the channel.

3.1 Horizontal constraints

We say that there exists a horizontal constraint vi-
olation between nets n, and nj if the horizontal spans
of these nets overlap. Therefore, these nets cannot
be placed in the same track in the channel. Horizon-
tal constraints can be represented using the horizontal
non-constraint graph(HNCG), HNCG = (N,E), where
N is the set of nets, and an undirected edge (n i ,n j)EE
indicates that the horizontal segments of nets ni , n, do
not overlap.

3.2 Vertical constraints

We say that there exists a vertical constraint vio-
lation at a column in the channel if, the vertical seg-
ments of nets connected to top and bottom terminals
at the column overlap. Vertical constraint violation
can be avoided at a column if the horizontal segment
of the net connected to the top terminal a t the column
is routed in a track that is above the track in which the
horizontal segment of the net connected to the bottom
terminal at the column is routed.

3.3 Objective of channel routing

The objective of channel routing problem is to assign
tracks in the channel to the given set of nets using a
minimum number of tracks satisfying the following
constraints:

1. In every track, no horizontal constraints

2. At no column along the channel length,

3. Interconnections are restricted to two layers.

are violated .

vertical constraints violated.

4 Problem Formulation

The channel routing problem is (i) t o find a partition
of the HNCG graph with minimum number of disjoint
clusters(a subgraph of HNCG, which is complete), and
(ii) to assign each cluster to a different track without

728

a vertical constraint violation. It is to be noted that
any one-to-one mapping of clusters to tracks would not
result in a horizontal constraint violation, since clusters
are disjoint, and each cluster is complete. A partition
of a graph G is a set of non-overlapping clusters of G.

In this paper, a genetic approach has been used to
find a solution for the channel routing problem. In this
approach, we take a collection of randomly generated
graphs. Each graph has the same number of vertices as
that of the HNCG graph of the channel routing prob-
lem. Each connected subgraph of G is treated as a
complete subgraph, and the resulting clusters of G are
disjoint. The set of clusters of G so obtained is consid-
ered as a possible partition for the HNCG graph. Using
the HNCG graph, the number of horizontal constraint
violations are found out among the nets in each clusters
of G. Then each cluster of G is assigned a label repre-
senting the track number in which nets of the cluster
are routed. After assigning the tracks to each cluster of
G, the total number of vertical constraint violations are
found out. The fitness value of G is determined using
an evaluation function, whose arguments are number
of horizontal constraint violations, number of vertical
constraint violations, and the number of clusters. The
fitness value of each graph G in the collection is eval-
uated likewise. Then the genetic operators selection,
crossover and mutation are applied to the collection
of graphs resulting in a new collection of graphs. The
process of evaluation, selection, crossover and mutation
are repeated till the terminating condition is reached.
The GA operators are explained below.

4.1 Encoding scheme for CHR problem

The encoding scheme is the same as that discussed
in[12]. Since the adjacency matrix representation of a
graph is always symmetric, the lower triangle of the
adjacency matrix is represented as a linear bit string;
we thus get a unique encoding for the graph. We en-
code a k-node graph using k(k-1)/2 binary bits. The
chromosome is constructed from the adjacency matrix
as follows.

for i = 2 to number-of-nets
for j = 1 to (i - 1)

c h r o m [v +j] = 1 if (i , j) th element
of the adjacency matrix is equal to 1

= 0 otherwise

4.2 Crossover

Crossover is done on two selected strings, called par-
ents. The resulting strings of the crossover are called

offsprings. We have used single point crossover in our
GA implementation for CHR. In single point crossover
[7], we select a point within the chromosome (called
crossover point), which divides both the parents into
two segments each. Offsprings are generated by mu-
tually exchanging the corresponding segments of the
parent chromosomes after the crossover point.

4.3 Mutation

The mutation operator is a method by which a so-
lution is perturbed. The mutation operator is meant
for reducing the allele loss in the chromasome. In nor-
mal mutation, a bit in the chromosome is randomly
selected and altered. When the chromosome repre-
sents a partition of a graph [12], normal mutation
scheme causes random breaking/merging of clusters
represented by the chromosome. This normal mutation
causes loss of the optimal partition information gained
by GA, over the previous generations. We have imple-
mented the graph-based inter-cluster mutation opera-
tors of [13].

4.3.1 Inter Cluster Mutation Scheme(1CM)

The ICM makes use of the cluster’s information of the
chromosome, i.e. , the nets in the cluster, number of
horizontal constraints among the nets within a clus-
ter, the track number assigned to the cluster etc. ICM
moves nets between clusters.

Some of the ICM strategies are as follows:

1. MoveNet: Select a cluster in a chromosome hav-
ing maximum number of horizontal constraint vi-
olations (HCV’s) as source cluster and a cluster
having zero or minimum number of HCV’s as des-
tination cluster. Select a net within the source
cluster that has maximum number of HCV’s with
the remaining nets in this cluster. Move the se-
lected net form the source cluster to the destina-
tion cluster.

2. ExchangeNets: Select randomly a source and a
destination cluster in a chromosome. Select a net
from each of these clusters. Mutually exchange the
selected nets between the source and the destina-
tion cluster.

3. Mergecluster: Select a cluster in a chromosome
having only one net. Move the net of the selected
cluster into another cluster.

4. Breakcluster: Select a cluster having maximum
number of HCVs in a chromosome. In the cluster,
select the net k that has the highest number of

729

HCVs, and select the set of all the nets@) that
have no HCVs with k. Remove net k and the nets
in the set S from the cluster and form a new cluster
having net k and the nets in set S. This mutation
scheme reduces the number of HCVs by increasing
the number of tracks in a routing solution.

5. VerticalSwap: Select a column C along the chan-
nel length having the vertical segments overlapped
a t C. Swap the tracks of the nets connected to
the top and bottom terminals at C. This muta-
tion scheme helps to reduce the number of vertical
constraint violations.

In order to incorporate the randomness of mutation,
one of the ICM schemes can be selected at random and
applied to the given graph. The ICM is implemented
by applying one of the ICM operator discussed above
depending on the charecteristics of the chromosome to
be mutated. We have implemented inter-cluster muta-
tion as discussed in [13].

4.4 Evaluation function

The evaluation function that is used to evaluate the
quality of a routing solution in the GA is shown below.

where w = number of tracks (width) of the solution.
f (~ , H , V) = X i - X ~ W ’ - X3H - X4V

H = total number of horizontal constraint
violations in the routing solution

V = total number of vertical constraint
violations in the routing solution,

and X l , X ’ , A 3 and X4 are constants.

This evaluation function is the same as the evalua-
tion function proposed by Rao et al. [12]. Proper selec-
tion of the constants improves the convergence speed
and quality of the final solution.

5 Parallel Genetic Algorithms

In the master/slave parallel GA model [9], the mas-
ter performs the selection and crossover operations.
The children generated by the master are sent to the
slaves. The slaves perform the mutation operation and
the corresponding fitness value evaluation on these chil-
dren. The resultant children along with their fitness
values are sent back to the master. The special feature
of this model is that the selection process is done on the
total population. Hence, the global information of the
population is not lost and the optimal solution found
will be of global nature. In this model, the communi-
cation overhead is linearly proportional to the product

of population size and number of generations run. The
computational gain obtained in master/slave parallel
model is reduced due to the large communication over-
head.

In the DGA model, the population is divided into
subpopulations, each of which is placed on one pro-
cessor element. Each processor element(PE) runs the
SGA on its subpopulation. The selection done by each
PE is local to its subpopulation only. After a finite
number of generations, called migration interval, the
best solutions of each P E are migrated to the neigh-
bouring processors. Though the DGA model gives bet-
ter speedups than the master/slave model, the migra-
tion of the best individuals creates some communica-
tion overhead and, as a result, the speedups obtained
are not linear [12]. Because of the local selection, the
probability that the obtained solution may not be glob-
ally optimal is high.

The proposed EDGA is an extension of the idea of
DGA proposed in [lo]. The algorithm is illustrated
in fig.2. Some of the terms used in the EDGA are
explained below:

1. Total population: The population of size PopSz
placed at the root processor.

2. Subpopulation: The total population is divided
into subpopulations each of size SubPopSz =
PopSt , where Z= No of PES. These subpopu-
lations are placed on the PES.

3. Merging subpopulations: The evolved subpopula-
tions from all the PES are sent to the root. The
subpopulations received are merged and a new to-
tal population is generated.

4. Global selection: Selection of strings from total
population.

5. Local selection: Selection of strings from subpop-
ulation.

6. Terminating conditions :Terminating condition
can be reaching of known optimal fitness value,
or running of the GA for fixed number of gener-
ations, or average value of population crossing a
specified value .. etc.

5.1 Extended Distributed Genetic Algo-
rithm(EDGA)

The EDGA starts with an initial population PO, ran-
domly generated on the root. A copy of PO is divided
into subpopulations (S P O ~ , sP02, sP03 .. .), and are
distributed to the PES. Now the root runs the conven-
tional SGA on PO. PES run the conventional SGA for

730

specified number of generations(G) on sP0is (l<i<No.
of PES) and send an interrupt to the root. ?he evolvyd
populations of PO and sP0is are termed as Po and sPois
respectively. Now all subpopulations sPii are merged
to form a ne: populationP1 on tlw root.. The evolved
population Po of the root is divided into siibpopula-
tions s A i s and are distributed to the PES. Now root
and PES run SGA on PI and sP,,(l<iLNo. of PES)
respectively. The algorithm repeats this process for
K(pre-determined) cycles or till the terminating condi-
tion is reached.

On all PES, the selection is local, i.e., it selects
strings from its subpopulation only, and hence, the
EDGA does not lose temporarily unfavorable genetic
information too early. Since this suboptimal informa-
tion is preserved for some time, the good genetic com-
ponents (if any) in these suboptimal solutions are given
a chance to contribute their good genes for the global
optimal solution in the future evolutions. At the same
time, the root processor performs SGA with the se-
lection strategy on the total population(called global
selection), and this helps the algorithm in iiot getting
trapped at a local optimum.

The combination of locally adapted subpopulations
with the globally adapted populatioii oflers EDGA the
combined power of converging to global roiiting solu-
tion with a good speedup on the MIMD machine. The
root processor is fully engaged all t.110 t . i i iw, and hence,
this contributes to good utilizatioii of the parallel ma-
chine.

In our proposed EDGA, emphasis is given for the
global selection criterion, speedup achievable, and max-
imum utilization of the root processor. The advantages
of EDGA are: (i) it balances the load on the root and
the PES, (ii) it has the useful features of the DGA
model, and the global selection feature of the mas-
ter/slave model. The working of EDGA is shown in
fig.??.

6 Implementation and Analysis of Re-
sults

For the implementation, and demon~t~rat ioii of the
GA-based parallel channel router, we havr takeir a
channel routing problem of 24 nets and having chan-
nel length of 25. The parameters PopSx, I’cro33ovep,
Pmutation to GA are 32, 0.2, and 0.9 respectively. The
total number of generations in iiiiister/slavr riiodel is
96. In DGA and EDGA models, f h c , niigralion inter-
val is 24, and the number of epochs is 4 . A N v r inany
runs of the sequential genetic algor ithin-lmstd cliantiel
router, the constants for the evaluation fuiiclioii X I , X 2 ,

731

Algorithm Extended Distributed-GA

Randomly generate an initial population PO
of size PopSz;
Divide the population into Z subpopulations of
size SubPopSz;
Copy one subpopulation to each PE;
Sriitl t h piaramet,er va1ric.s to all thc PES;
for C cycl~~s

On root. r u i i SGA o n PO until all PES interrupt;
dopar (on P Es)

for geiieration = 1 to G do

endfor
Send interrupt to the root processor;
Send evolved subpopulation to root;

ltun Sequential SGA on subpopulation;

endpar
Makc populalion PI with evolved subpopulations;
Make siibpopulations with evolved PO;
Send one subpopulation to each PE;
Po = 1’1;

elidfor (for cycles)

Figure 2: Extended Distributed Genetic Algorithm

X3 iiiid X4 are empirically fixed as 100000, 10, 200 and
200 respectively.

‘The iii;ist.rr/slave GA iiiodrl, distributed GA model
and EDGA iiiotlels were implemented in C on
a transputer-1)zsed parallel MlMD machine, called
PARAM. lhese parallel GAS were run/executed on 1,
2 , 4 , 8 and lG PES, configured as zero dimensional, one
dimensional, two dimensional, three dimensional and
four dimensional hypercubes respectively. The compu-
tation and communication times for each of the these
paralle GAS were measured and are shown in tables 2
to 6.

The communication times were measured both in-
cluding arid excluding waiting time. Communication
time excluding waiting tiine refers to the actual time re-
qiiired for the nicssagc: transfer between the sender and
rrceiver t d i s , a i d the conimunication time including
waiting time refers to the message transfer time and the
time overliratl involved in waiting till both the sender
task and receiver task gets synchronized.

The coriipiit.alion and communication times (exclud-
iiig waitiiig tiiiiv) for iiiiislrr/slave, DGA, and EDGA
art’ sliowii in tables 2, 3, 4 respectively. Tables 5 and 6
sliow coriiputation aiicl roitiriiunicatioii times(inc1uding
waiting t i i i i t ’) for I ti(.])(;A ;iiid ISDGA riiodels respec-

tively. We compared the speedups of all the above
models in tables 1 and 7. From tables 3, 4, 5, and 6, it
is clear that the computation times in EDGA and DGA
are much higher than the communication times. Also
the communication time in DGA seems to increase aa
the number of processors is increased; whereas it d e
creases in EDGA.

No. of
PES
1

The speedup obtained in the EDGA model always
surpassed the speedup obtained in the master/slave
model. When the waiting times are included in commu-
nication time measurement, it can be observed(tab1e 7)
that the speedup for the EDGA model is better than
that of the DGA model, when the number of proces-
sors exceeded 5. But when the waiting times are ex-
cluded in communication time measurement(tab1e l) ,
the speedup for the EDGA model is always better than
that of the DGA model.

Comput. Commn. Total
Time(Sec.) Time(Sec.) Time(Sec.)
506.23 0.00 506.23

Table 1 Speedup Charecteristics

No. of Comput.
PES Time(Sec.)
1 508.77

Table 4 Timings in EDGA model

Commun. Total
Time(Sec.) Time(Sec.)
0.00 508.77

I No. of I Comput. I Commn. I Total I

No. of
PES

233.355

57.54 0.369 58.016

Master/Slave Dga Edga
Model Model Model

17 I 29.07 I 0.477 I 29.547

3
5

269.39 283.48 552.87
132.69 231.79 364.49

252.63 0.0359 252.66
128.63 31.90 160.53
66.24 83.86 150.10

17 34.17 117.12 151.29

9
17

I No. of Master/Slave 1 Dga I Edga 1

68.70 190.16 258.86
35.61 179.46 215.08

PES I Model I Model I Model
1 I 1.000 I 1.000 I 1.000

No. of Comput.
PES Time(Sec.)
1 506.23

0.920
1.392
1.965

17 2.365

Commun. Total
Time(Sec.) Time(Sec.)
0.00 506.23

Table 2 Timings in master/slave model

1
3
5

252.63 0.0199 252.65
128.63 0.0332 128.665

Table 3 Timings in DGA model

9 I 66.24 I 0.0469 I 66.289
17 I 34.17 I 0.1567 I 34.326

Table 6 Timings in EDGA model(with waiting
time included in the Communication time mea-
surement)
I No. of [Comput. [Commn. I Total 1

PES
1 I 460.73 I 0.00 I 460.73

1 Time(Sec.) I Time(Sec.) 1 Time(Sec.)

17 29.07 36.16 65.23

0.920 2.000
1.392 3.153
1.965

17 2.365

7 Acknowledgments

We are very thankful to Prof. L.M.Patnaik, for
his valuable guidance and suggestions, throughout this
work, without which it would not have been possible
to bring out this paper.

732

a. state of EDGA at epoch i

b. State of EDGA at epoc i t 1

Figure 3: Illustration of Extended Distributed GA.

References

[l] A. Hashimoto and J . Stevens. Wire Routing by
Optimizing Channel Assignment Within Large
Apertures, Proceedings of 8th ACM/IEEE Design
Automation Conference, 1971, pp. 214-224.

[2] M. Burstein and R. Pelavin. Hierarchical Wire
Routing, IEEE Tr. on CAD, Vol CAD-2, Oct 1983,

[3] H. W. Leong , D. F. Wong and C. L. Liu. A Sim-
ulated Annealing Channel Router, Proceedings of
IEEE Intl. Conf. on CAD (ICCAD) 1985, pp. 226-
228.

[4] T. G. Szymanski. Dogleg Channel Routing is NP-
Complete, IEEE Tr. on CAD, Vol. CAD-4, No-1,
January 1985, pp. 31-41.

[5] Uzi Yoeli. A Robust Channel Router, IEEE Tk. on

pp. 223-234.

CAD, Vol.10, No-11, Feb 1991, pp. 212-219,

John Holland. Adaptation in Natural and Artifi-
cial Systems, Ph.D. Thesis, MIT 1975.

David E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison
Wesley Publishing Co. Inc., 1989.

S. A. Kravitz and R. A. Rutenbar. Placement by
Simulated Annealing on a Multiprocessor, IEEE
Tr. on CAD, Vol. CAD-6, No. 4, July 1987.

R. Kottkamp. Nicht-lineare Optimierung Unter
Verwendung Verteilter, paralleler Prozess in einem
Local Area Network(LAN). Master thesis, Uni-
versity of Dortmund, Dortmund, FRG, February
1989.

J . P. Cohoon et al., . Distributed Genetic Algo-
rithms for the Floorplan Design Problem, IEEE
Tr. on CAD, Vol.10, April 1991, pp. 484-492.

J . J . Grefenstette. Optimization of Control P a r a m
eters for Genetic Algorithms, IEEE Tr. on Sys-
t e m , Man and Cybernetics, Vol SMC-16, No. 1,
Jan/Feb. 1986, pp. 122-128.

B. B. Prahlada Rao, L. M. Patnaik and R. C.
Hansdah. Parallel Genetic Algorithm for Chan-
nel Routing Problem, Proc. of the IEEE third
Great Lake Symposium on VLSI Design, Kalama-
zoo, Michigan, March 5-6, 1993, pp. 69-70.

B. B. Prahlada Rao, L. M. Patnaik and R. C.
Hansdah. A Genetic Algorithm for Channel Rout-
ing Using Inter-Cluster Mutation, Submitted for
Publication.

133

