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On the performance analysis of resilient

networked control systems under replay attacks

Minghui Zhu and Sonia Manez

Abstract

This paper studies a resilient control problem for disctete, linear time-invariant systems sub-
ject to state and input constraints. State measurementg@tcbl commands are transmitted over a
communication network and could be corrupted by adversalte particular, we consider the replay
attackers who maliciously repeat the messages sent fronopgbeator to the actuator. We propose a
variation of the receding-horizon control law to deal wittetreplay attacks and analyze the resulting
system performance degradation. A class of competitisp(reooperative) resource allocation problems

for resilient networked control systems is also investgdat

. INTRODUCTION

The recent advances of information technologies have bdasie emergence of networked
control systems where information networks are tightlypied to physical processes and human
intervention. Such sophisticated systems create a wehhlew opportunities at the expense of
increased complexity and system vulnerability. In patdgumalicious attacks in the cyber world
are a current practice and a major concern for the deploymenetworked control systems.
Thus, the ability to analyze their consequences becomesmépmportance in order to enhance
the resilience of these new-generation control systems.

This paper considers a single-loop remotely-controllestesy, in which the plant, together

with a sensor and an actuator, and the system operator atallgpdistributed and connected
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via a communication network. In particular, state measerd@siare communicated from the
sensor to the system operator through the network; thengeherated control commands are
transmitted to the actuator through the same network. Thidains an abstraction of a variety of
existing networked control systems, including superyismmtrol and data acquisition (SCADA)
networks in critical infrastructures (e.g., power systesnsl water management systems) and
remotely piloted unmanned aerial vehicles (UAVS). The otbye of the paper is to design and
analyze resilient controllers against replay attacks.

Literature review. Recently, the cyber security of control systems has redeivereasing
attention. The research effort has been devoted to studyngaspects: attack detection and
attack-resilient control. Regarding attack detectionadipular class of cyber attacks, namely
false data injection, against state estimation is studied in|[26], [29],![30].eTpaper [[19]
studies the detection of thesplay attacks, which maliciously repeat transmitted data. In the
context of multi-agent systems, the papers [ofl [25],! [28]edatne conditions under which
consensus multi-agent systems can detect misbehavingsagearfor attack-resilient control, the
papers [[2], [[32], [[33] are devoted to studyingception attacks, where attackers intentionally
modify measurements and control commaridenial-of-service (DoS) attacks destroy the data
availability in control systems and are tackled in receqgra[l], [3], [4], [9]. More specifically,
the papers |1],[]9] formulate finite-horizon LQG control plems as dynamic zero-sum games
between the controller and the jammer.[In [3], the authorsstigate the security independency
in infinite-horizon LQG against DoS attacks, and fully cleaegize the equilibrium of the induced
game. In our paper [35], a distributed receding-horizontrmbriaw is proposed to ensure that
vehicles reach the desired formation despite the DoS ardyregptacks.

The problems of control and estimation over unreliable camigation channels have re-
ceived considerable attention over the last decade [12].iE®ues include band-limited chan-
nels [15], [22], quantization [6], [21], packet dropout [1[L3], [27], delay [5] and sampling [23].
Receding-horizon networked control is studied in [7],![1[d4] for package dropouts and
in [14], [16] for transmission delays. Package dropouts Bu$ attacks (resp. transmission
delays and replay attacks) cause similar affects to comsystems. So the existing receding-
horizon control approaches exhibit the robustness to iceclasses of DoS and replay attacks
under their respective assumptions. However, none of th&sers characterizes the performance

degradation of receding-horizon control induced by the momication unreliability.
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Contributions. We study a variation of the receding-horizon control undher teplay attacks.
A set of sufficient conditions are provided to ensure asymigetband exponential stability. More
importantly, we derive a simple and explicit relation beswehe infinite-horizon cost and the
computing and attacking horizons. By using such relatiomchvaracterize a class of competitive
(resp. cooperative) resource allocation problems fotieesinetworked control systems as convex
games (resp. programs). The preliminary results are hdalisn [33] where receding-horizon
control is used to deal with a class of deception attacks. t€hknical relations between this
paper and([33] will be explained at the very beginning of Bedil

[I. ATTACK-RESILIENT RECEDINGHORIZON CONTROL
A. Description of the controlled system

Consider the following discrete-time, linear time-inaant dynamic system:
x(k+1) = Az(k) + Bu(k), 1)

wherez(k) € R™ is the system state, andk) € R™ is the system input at timé > 0. The
matricesA € R™"™ and B € R™*™ represent the state and the input matrix, respectivelyeSta
and inputs of systeni (1) are constrained to be in some sets;(ik) € X andu(k) € U, for all
k>0, where0 € X C R" and0 € U C R™. The quantities|z(k)||% and [|u(k)||, are running
state and input costs, respectively, for soMm@nd () positive-definite and symmetric matrices.
We assume the following holds for the system:

Assumption 2.1: (Stabilizability) The pair(A, B) is stabilizable. °

This assumption ensures the existenced<ofuch that the spectrum(A) is strictly inside the
unit circle whered £ A + BK. In the remainder of the paper,= Kz will be referred to as
the auxiliary controller. We then impose the following caimah on the constraint sets.

Assumption 2.2: (Constraint sets)The setsX andU are convex andiz € U for x € X.e

B. The closed-loop system with the replay attacker

System|[(ll) together with the sensor and the actuator ar@alpaeparated from the operator.
These entities are connected through communication charinethe network, there is a replay
attacker who maliciously repeats the messages deliveoed the operator to the actuator. In

particular, the adversary is associated with a memory whtage is denoted by/* (k). If a replay
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attack is launched at time the adversary executes the followinig: erases the data sent from the
operator;(ii) sends previous data stored in her memay,(k), to the actuator(iii) maintains
the state of the memory; i.eM*(k + 1) = M“(k). In this case, we usé(k) = 1 to indicate
the occurrence of a replay attack. If the attacker keepsatllame k, then data is intercepted,
say T, sent from the operator to plant, and stored it in memory; & (k + 1) = Y. In this
case,’(k) = 0 and u is successfully received by the actuator. Without loss of generality,
we assume that(—1) = J(0) = 0.

We now define the variablg k) with initial states(0) = s(—1) = 0 to indicate the consecutive
number of the replay attacks. #(k) = 1, thens(k) = s(k — 1) 4 1; otherwise,s(k) = 0. So,
the quantitys(k) represents the number of consecutive attacks up to ime

A replay attack requires spending certain amount of en&kigyassume that the energy of the
adversary is limited, and adversarys only able to launch at most > 1 consecutive attacks.
This assumption is formalized as follows:

Assumption 2.3: (Maximum number of consecutive attacks)There is an integef > 1
such thatmaxy>o s(k) < S. o

Sensor Plant Actuator <—j

-
T
-

x(k) u(k) |
Operator

Fig. 1. The closed-loop system

Replay attacks have been successfully used by the virukaifeStuxnet([8], [18]. This class
of attacks can be easily detected by attaching a time stangadb control command. In the
remainder of the paper, we assume that the attacks can aleagetected and focus on the

design and analysis of resilient controllers against them.

C. Attack-resilient receding-horizon control law

Here we propose a variation of the receding-horizon conirok.g. [17], [16], to deal with

the replay attacks. Ouattack-resilient receding-horizon control law, (for short, AR-RHC)
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is stated in Algorithni L. In particular, at each time instehe plant stores the whole control
sequence which will be used in response to future attacks.t@tminal state cost is chosen
to coincide with the running state cost. This is instrumkefda the analysis of performance
degradation in Theorefm 2.1.

Algorithm 1 The attack-resilient receding-horizon control law
Initialization: The following steps are first performed by the operator:

1: ChooseK so thato(A) is strictly inside the unit circle.

2: Choose = Q" > 0 and obtainP by solving the following Lyapunov equation:
ATPA - P =-Q. (2)
3: Choose a constanrt> 0 such thatX, £ {z € R" | [|z|% < ¢} C X.

Iteration: At eachk > 0, the operator, actuator and sensor execute the followiggsst

1: The operator solves the followiny-horizon quadratic program, namelN-QP, parameter-
ized byz(k) € X:

N-1
e in Y (ke + 7R 5 + lu(k + TIR)IG) + otk + NIk,
7=0

st. x(k+ 74 1k) = Ax(k + 7|k) + Bu(k + 7]k),
z(klk) =z(k), z(k+71+1k) € Xo, ulk+7lk)eU, 0<7<N-—1,

obtains the solutiom(k) = [u(k|k),--- ,u(k + N — 1]k)], and sends it to the actuator.
2. If s(k) = 0, the actuator receivas(k), setsM?(k+1) = u(k), implementsu(k|k), and the
sensor sends(k + 1) to the operator. Ifs(k) > 1, the actuator implements(k|k — s(k))
in MP(k), setsM?(k + 1) = MP?(k), and the sensor send$k + 1) to the operator.
3: Repeat fork = k + 1.

In what follows, we present the results characterizing ttadikty and infinite-horizon cost
induced by AR-RHC. See Table I, for the main notations emgidioyand Sectiof V for the
complete proof. Notice that the following property holds:

)\min(P) o )\min(P) )\min(P) (1 - )\>
o Amad(P + KTQK) Amax(P) (1 — AN+1)

< 1.
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TABLE |

MAIN NOTATIONS USED IN THE FOLLOWING SECTIONS

Amax(R) (resp. Amin(R)) the maximum (resp. minimum) eigenvalue of matix
VA ,\max(@ positive constant € (0, 1), see[[20],
Amin(P) defined withQ, P introduced in AR-RHC
o 2 Amax(P) Amax( p_+ KTQ K)(1- )\NH) positive constant defined for al > 0,
Amin(P) I=A with @, P, and K introduced in AR-RHC
b 2 Amax( P))\maé( P+ KTQK) positive constant defined wit®), P, and K
Amin(P)(1 = A) introduced in AR-RHC
N /\max(KTQK + ATPA) Nﬁl(l /\min(p)) positive constant defined for alV > 0,
aN = - 7 B
Amin(P) =0 Prt1 with A and K introduced in AR-RHC, and introduced here
oy = (1+an_1)(1 - A’“QT—JSP)) a discount factor
W(z) £ ||z||% matrix P is the solution to Lyapunov equatiofl (2)
Vi the optimal value function ofV-QP

where A and ¢ are defined in Tablél I. On the other hand, fof in Table[, ay \, 0 as
N 7 +o00, and ¢y is strictly increasing inN and upper bounded by.,. Then, given any
integerS > 1, there is a smallest integéf*(.S) > S such that for allvV > N*(5), it holds that:

YN,S £ (1 — )\m(lbnif:’j))max{(l —l—OéN_S_l), (1 —|—OéN_1) f[ (1 -+ Oég)} < 1.

Analogously, given any intege¥ > 1, there is a smallest integé‘i’*(S) > S such that for all
N > N*(S), it holds that
)\min(P)

;}/N,S é (1 - T)2(1 + OéN_1)<1 + OéN_Q)
. Amin(P pl,
< (max_ T]00- %)(1 tave) ] G+a)<t.
sethShy o0 (=N-5

One can easily verifyV*(S) < N*(S). The following theorem characterizes the stability and
infinite-horizon cost of systenil(1) under AR-RHC whéféx) represents the value of tHeQP
parameterized by € X.
Theorem 2.1: (Stability and infinite-horizon cost) Let Assumption$ 211, 2.2 and 2.3 hold.
1) (Exponential stability) SupposeN > max{N*(S) + 1,5 + 1}. Then system[(1) under

AR-RHC is exponentially stable when starting fraky with a rate ofyy s in the sense
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that Viy_se—1)(2(k)) < v.sVa(2(0)). In addition, the infinite-horizon cost of systef (1)
under AR-RHC is bounded above %VN(x(O)).

2) (Asymptotic stability) If N > max{N*(S)+ 1,5 + 1}, then system (1) under AR-RHC

is asymptotically stable when starting froiy,.

Remark 2.1: AR-RHC with Theoreni_ 2]1 can be readily extended to sevemhagos, in-
cluding DoS attacks, measurement attacks and the comdmisatf such attacks. If the adversary
launches a DoS attack on control commands, the actuatovesceothing and then performs
Step 3 in AR-RHC. The adversary may produce the replay atackthe measurements sent
from the sensor to the operator. If this happens, then theatgredoes not send anything to the

actuator and the actuator performs Step 3 in AR-RHC. °

IIl. DISCUSSION AND SIMULATIONS
A. Extensions

AR-RHC with Theorem_2]1 can be readily extended to severahatos, including DoS
attacks, measurement attacks and the combinations of staxtks If the adversary launches
a DoS attack on control commands, the actuator receivesngo#imd then performs Step 3 in
AR-RHC. The adversary may produce the replay attacks on thasurements sent from the
sensor to the operator. If this happens, then the operats dot send anything to the actuator

and the actuator performs Step 3 in AR-RHC.

B. Explicit upper bounds on N*(S) and N*(S)

ConsiderS > 2 and lety £ (1 — 222) and ) £ = Kig:((;f PA) Note that

. P N—-1
’YN,S S (1—)\mL())(1+OéN_1 H 1+Oég)
Poc l=N-5-1

S—
X(l —|—OéN—S_1)S+2 < BN,S A (1 _'_wa S— 1)S+2 (3)
So it suffices to findV such that3y s < 1. The relationsy,s < 1 is equivalent to the following:

In (i(X_%“ - 1)) B hﬂ()(_S%2 —1)—Inv

N-5-1> =
In x In x

JE
In(x S+2—-1)—Inv
Inx '

Hence, an explicit upper bound avi*(S) is T1x(S) = S + 1+
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We now move to find an explicit upper bound o (S). Note that
)\min(P) . )\min(P)

N-1

’A}/N7s S (1 — )2(1 + OéN_l)(l + OéN_Q)( max (1 — )(1 + OéN_g_l)) H (1 + Oég)
o0 setlSh 5 Poo (=N—-§
Amin(P) pls
<(1- %)SH@ +ay_)(L+ an—)(1+anv_s—)® " J] (1+ )
00 {=N-S
Amin(P
< (1 . mm( ))s+1(1 + aN—S—1)2S+1 — XS+1<1 + wa—S—l)QS—H.

- Poo
. ~ 35t
So, an explicit upper bound oiV*(S) is TI4(S) £ S + 1 + 2k lnx_l)

upper bounds clearly demonstrate that a higher computdtmomplexity; i.e., a largerV, is

—% This pair of

caused by a large$, indicating that the adversary is less energy constrai@adthe other hand,
the second term il 4(.S) approaches a constant 8sgoes to infinity. Sdl4(S) can be upper
bounded by an affine function. However, the second terii0S) dominates whers is large.
That is, exponential stability demands a much higher caamt #isymptotic stability whers' is

large.

C. A reverse scenario

Reciprocally, for any horizonV > 1, there is a largest intege$*(N) < N — 1 (resp.
S*(N) < N — 1) such that for allS < S*(N) (resp.S < S*(N)), it holds thatyy s < 1 (resp.
dn.s < 1). Theorem 2] still applies to this reverse scenario andacierizes the “security level”

or “amount of resilience” that the proposed receding-tmrizontrol algorithm possesses.

D. Optimal resilience management

The analysis of Theorer 2.1 quantifies the cost and conddrémat allow the AR-RHC
algorithm to work despite consecutive attacks under lichitemputation capabilities. These
metrics can be used for optimal resilience management otvaonle as follows.

As [3], we consider a set of playe¥s 2 {1,--- , N} where the players share a communication

network and each of them is associated with a decoupled dgneystem:

Each playeri implements his own AR-RHC with horizoW;. The notations in the previous
sections can be defined analogously for each player and tieé & notations of playei will

be indexed byi.
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By (3), we associate playeérwith the following cost function:

1
Ci(M) = (1+ ;" S(lTM))S(lTM)H + §aiM1'2> (5)

whereM; € [M; min, M; max] C Rso iS the security investment of playéra; € R~ is a weight
on the security cost the aridis the vector withN ones. The non-negative real valg¢l” M)
represents the security level given the investment vettaf all players, whereS : R>o — Rx
is convex, non-decreasing, and smooth. We assume that éagdr pas a fixed computational

power, and saV; is fixed. The players need to make the investment such that

S(A"M) < min S} (IV;). (6)

eV
Remark 3.1: Note thatS is an integer in[(8). In({5) and](6), we use the real valusdf’ M)
as an approximation. °
We now compute the first-order partial derivative@fas follows:

oC;
oM;

where we use the shorthand= 17 M. With this, we further derive the second-order partial

(4 TSI (1 VoSN SET M L gy NS (gj) A,

derivative as follows:

3;52 2 (In xi)*x; 2(N; =8 (17 M) (1+¢Z Ni S(lTM)) 1TM<ZS) L,
Y
+ (In(1 + ¥ -s(” M2 4 b —s(” MNSATMIFL () Iy —s5,T M)y (25)4
(14 g STID)(1 4 g NSNSy, 1y y M-S0 O
1A ’l 4 4 i ay
g T30S O*S
N S(l M) N S(l M)\S SATM)+1 N —8(1 )_—
+ 2(In(1 + ¥ x; N (1 + ix; ) Wi(—Inx;) X! 5 3t

Recall thaty; € (0,1] andS is non-decreasing and convex. % > 0 and(; is convex in
M;. Analogously, one can show thét is convex inM. Z

1) Competitive resource allocation scenario: Consider aresilience management game, where
each playeri minimizes his cost;(M), subject to the common constraiif (6) and his private
constraintM; € [M; min, Mimax] C Rso. SinceC; and S are convex in);, then the game
is a generalized convex game. The distributed algorithmf31j can be directly utilized to
numerically compute a Nash equilibrium of the resiliencanagement game, and the algorithms

in [31] are able to tolerate transmission delays and pactaiaiits.
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Remark 3.2: The paperl[3] considers a set of identical and independemtonked control
systems and each of them aims to solve an infinite-horizon lp@gblem. The authors study
a different security game where the decisions of each playerbinary, participating in the
security investment or not. °

2) Cooperative resource allocation scenario: Consider aresilience management optimization
problem, where the players aim to collectively minimi2e,_,, C;(M), subject to the global
constraint [(6) and the private constraiff; € [M; min, Mimax] C Rso. SinceC; and S are
convex, then the problem is a convex program. The distribatgorithms in[[34] can be directly
exploited to numerically compute a global minimizer of thimblem, and the algorithms in [34]

are robust to the dynamic changes of inter-player topotogie

E. Smulations

In this section, we provide a numerical example to illugtithie performance of our algorithm.

The set of system parameters are given as follows:

2 1 p
A= . B= , K=[-325 —3], P=1I Q=1,
12 1

_ _ 25.6667 13.3333
Q=1 P= . ¢=100, Umax = 500.
13.3333  8.2963

Figure[2 shows the temporal evolution [bf(k)||? under three attacking horizorts= 0,2, 5.
One can see that a largér induces a longer time to converge, and larger oscillaticioree
reaching the equilibrium. In our simulations, a smallerinam N = 15 than the one determined

theoretically is already sufficient to achieve system $itzdiion.

I[V. CONCLUSIONS

In this paper, we have studied a resilient control probleneneha linear dynamic system is
subject to the replay and DoS attacks. We have proposed atigariof the receding-horizon
control law for the operator and analyzed system stabihity performance degradation. We have
also studied a class of competitive (resp. cooperativeureg allocation problems for resilient

networked control systems. Extension to multi-agent systevill be considered in the future.
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Fig. 2. The trajectories ofz(k)||*> under the attack-resilient receding-horizon control et

V. APPENDIX: TECHNICAL PROOFS

The proofs toward Theorem 2.1 are collected in this sectionparticular, the proofs for
the intermediate lemmas are based on the correspondintjsr@swur previous papef [33] on
deception attacks. The proofs for the main theorem are nelvnan included in([33]. In the
proof of Theoreni 2]1, we choos$&,_,.—1)(x(k)) as a Lyapunov function candidate. To analyze
its convergence, we first establish several instrumentgeties ofl/y, including monotonicity,
diminishing rations with respect t&¢ and decreasing property.

Recall the definitions of, ay, ¢n, and¢,, summarized in Tablg I. It follows from [20] that
A€ (0,1), and clearly,l < ¢y < ¢ for any N € Z-,. Observe that the following holds for
any k € Z-y:

)\min(P) . )\min(P) )\min(P) 1—-A > )\min(P) )\min(P)
¢n+1 B )\max(P + KTQK) )\max(P) 1 — An+2 = )\max(P+ KTQK) )\max(p)

This ensures the monotonicity efy and, moreover, thaty \,0 asN * +oo.

(I—=2X)€(0,1).

We show the forward invariance property of systém (1)Xinunder K x.

Lemma 5.1 (Forward invariance in X;): The setX, is forward invariant for systeni|1)
under the auxiliary controlleix with the control constraint/; i.e., for anyz € X, it holds
thatu = Kz € U and Az € X,.

Proof: The differences oft” along the trajectories of the dynami€s (1) undér) = Kux(k),
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x(k) = = can be characterized by:
W(z(k+1)) = W(z) = [[Ax(k + 1[5 = [l2(&)[F = —ll23 < =Amin(@)]2]*, (7)

whereW (x), A, P andQ are given in Tablé I, and in the second equality we apply thaplyov
equation[(2). Sinc€) > 0, thenW (z(k+1)) < W (x). Sincex belongs toX,, so does(k +1).
Since X, C X, we know thatu(k) € U by Assumption 2J2. The forward invariance property of
X, for system|[(Il) follows. [ |

On the other hand, one can see that MeQP parameterized by € X, has at least one
solution generated by the auxiliary controller.

Lemma 5.2 (Feasibility of the N-QP): For anyz € X,, consider systeni{1) with(k|k) =
x andu(k + 7|k) = Kz(k + 7]k), for 0 < 7 < N — 1. Then,u(k) is a feasible solution to the
N-QP parameterized by(k) € X.

Proof: It is a direct result of Lemmg5.1 and Assumption] 2.2. u

The following lemma demonstrates thet; is bounded above and below by two quadratic
functions, respectively.

Lemma 5.3: (Positive-definite and decrescent properties dfy) The functionVy is quadrat-
ically bounded above and below agin(P)|z||* < Vi (x) < ¢nl|z||* for any z € X.

Proof: Consider anyr € X,. It is easy to see thdty(z) > Amin(P)||x||?, and thus positive
definiteness o¥/y follows. We now proceed to show th&l, is decrescent. In order to simplify
the notations in the proof, we will drop the dependency oretinin what follows. Toward this
end, we let{x(7)},>, be the solution produced by the systerfr + 1) = Az(7), that is, the
closed-loop system solution of the dynamiCk (1) under théliaty controller Kz, with initial

statex(0) = =z € X,. We denoter(7]0) = z(7) andu(7|0) = u(7). Recall the estimaté(7):

Wia(r +1) < Wla(r) = dun@ ()P < Wia(r) = "= DW (). @

where we use the property thagi,(P)||z|> < W (z) < Amaxd(P)||z||%. It follows from Lemmd5.2

that the sequence of control commands) = Kxz(7) for 0 < 7 < N — 1 consists of a feasible
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solution to theN-QP parameterized by € X,. Then we achieve the following oviy (z):

N-1

V(@) < (lemlp + 1 K2(m)13) + l=(V)][

=]

3

N—

IN

Amax( P + KT QK)||(7)|* + Amax(P)|(N)|*

[e=]

K

< Ama(P 4+ KTQF) = Amax( P)

S weyo e DU R waryo MO ©)

7=0

Substituting inequality((8) intd {9), we obtain the follovg estimates oy (z):

Vi(a) < 2mtEE EQR) ) S e 4 dmadl Py

)\min(P) )‘min(P)
= Amin(P) 1—x i

Am“(% € (0,1) in [20]. The decrescent property b, immediately

)\max(
follows from the above relations. [ ]

where we use the fact = 1—

Next, one can show that for anye X, Vy(x) does not decrease &$ increases.

Lemma 5.4 (Monotonicity of Vy): The optimal value functioiVy is monotonic inN;; i.e.,
for anyz € X, Vai(z) < Vy(z) for N' < N.

Proof: ConsiderN’ < N, and denote by/y and Jy the objective functions of thév-

QP and theN’-QP, respectively. Letiy, be a solution to theV-QP parameterized by, with
uy = [u(0),...,u(N —1)], and letuy, with uy = [u(0),...,u(N’ — 1)], be a solution to the
N’-QP parameterized by € X,. We constructiiy: € UV, a truncated version afi, in such
a way thati(k) = u(k) for 0 < k < N’ — 1. Sinceuy is a solution to theV-QP parameterized
by z, then one can show thaty. is a feasible solution to th&/’-QP parameterized by. This

renders the following upper bound dn (z):
VN/(.T) = JN/(.T, lle) < JN/(l’,le/). (10)

Denote byxy £ [2(0),---,x(N)] the corresponding trajectory toy with initial statez(0) =
and byxy = [Z(0),---, 2] the corresponding trajectory generated by the sequendey.of

with the initial statez(0) = x. Sinceuy- is a truncated version afy, we have that (k) = z(k)
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for 0 < k < N'. Denote furthefiy: = [4(0), - -+, @(N' — 1)]. Then we have

Iyl i) = Y (I2R)IE + 1a(k)13) + 12N
k=1
—Z (lz®) 3 + lu)lE) + N5 < Y (le®) 15 + lu®)lE) + la(N)E = Va(e).
k=1

The combination of[(10) and the above relation establishasity () < Vy(x) for z € X,.
[

The following lemma formalizes that for any € X, the difference betweely.;(z) and
Vn(x) decreases a& increases by noting thaty (z) < Vi1 (x) anday is strictly decreasing
in N, whereVy,,; and V) are the optimal value functions for thevV + 1)-QP and theN-QP,
respectively. This property is referred to as the propeftgiminishing ratios ofVy in N by
noting thatay \,0 as N " +o0.

Lemma 5.5: (The diminishing ratios of Vi in N) The optimal value functionVy is
diminishingly increasing inV in such a fashion tha% < ay for anyz € Xo.

Proof: Let uy, with uy = [u(0),...,u(N — 1)], be a solution to théV-QP parameterized
by z € Xo. Let xy = [2(0),...,z(N)], (0) = z, be the corresponding trajectory. Notice
that z(k) € X, for 0 < k < N. We construct an extended versianR,,; € UN*! of uy as
Uy = [u(0),...,u(N — 1), Kz(N)]. Sincex(N) € X,, theni(N + 1) := Az(N) € X, by
Lemmal5.1, implying thafiy,; consists of a feasible solution to t&" + 1)-QP parameterized
by z. Then we establish the following upper boundsian, ; (z):

Vi (2) < Ivia(@, 8y) = v (@, ay) + [Ka(N)[g + 12V + DIE < V(@) + <lla(N)]1%,
(11)

wheres := A\nax( KTQK +AT P A). We now turn our attention to find a relation betweerNV) |?

andVy(z). To achieve this, we will show the following holds férc {0, ---, N} by induction:
N-1 A

(N — 1)) < min V ). 12

H %1 )i (@) (12)

It follows from Bellman’s principle of optimality that

Viv(@) = 2(0)[[5 + [lu(0)[[§ + V-1 ((1)).
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We can further see thaty(z) — Viy_1(z(1)) is lower bounded in the following way:

)\mm(P)
oN

where we use the decrescent property in Lemima 5.3 in the dasjuality. Rearrange terms
in (13) and it renders that (I12) holds fé= N — 1.
Assume that[(12) holds for sonfet 1 € {1,--- , N — 1}; i.e., the following holds:

Viv(@) = Vv-1(2(1)) = Amin(P)||2]* > ==V (), (13)

VeV - 1) < [T 0

r=0+1

Similar to (13), it follows from Bellman’s principle of optiality and Lemma 5]3 that

)\min(P)
Pet1

VN( )- (14)

Verr(2(N — €= 1)) = Ve(@(N = £)) = Amin(P)|[2(N — £ = 1)[|* >

Viri(z(N — £ —-1)).
(15)
Combining [(14) and’(15) renders that
Amm( )
Pet1
This implies [I2) holds for. By induction, we conclude thaf (IL2) holds fére {0,---, N}.
Let ¢ = 0 in (I2), and we have thaky(z(N)) < [I\o, (1 — 2Py (1), implying that

Gl
l2(N)[1? < 5= IS0 (1 — 2242 Vi (2) by Lemm&5.B. By combining this relation with {11),
we obtain the desired relatlon betweiz(nH and Vy. [ |
A relation betweenVy (z(k + 1]k)) and Vy(x(k)) for z(k) € X,, andz(k + 1|k) generated

through theN-QP, is found next.

)\mll’l( )

k+1

Vi(x(N —£)) < (1 - Wera(x(N = £ 1)) th 1- JVa ().

Lemma 5.6 (Decreasing property ofVy in Xy): With x(k+1|k) generated through th¥-
QP starting fromz(k), the following decreasing property holds for anfk) € Xo:

Vn(z(k +11k)) < py Vi (2 (k).

Proof: With Lemma[5.8 an@ 515, we reach the following relation bemwey (z(k + 1|k))
and Vi (z(k)) for any z(k) € X:

Viv(@(k + 1[k)) < (1 + an-1)Vi-1(2(1)) < (1 + an-1)(Vv(2(k)) — [l=(k)][7)

A”‘;;(VP Nk,

< (1+ an-1) (Vi (@(k) = Amin(P)l|2(£)[*) < (1+ ay-1)(1 -
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where Lemma_5]5 and Lemma b.3 are used in the first and lastialiggs, respectively, by
noting thatz(k + 1|k) andz(k) in X. u
Proof of Theorem[2.1:

Proof: [Part 1: Exponential stability] Let us consider the first part df > max{N*(S)+
1,S+1}. Recall thatz(0) € X, and the state constraiti, is enforced in theV-QP. Repeatedly
apply Lemmd 52 and we have thatk) € X, for all £ > 0. We now distinguish four cases:

Case 1. (k) =1 andd¥(k — 1) = 0. For this cases(k) =1, s(k — 1) = 0, and we have

V—stry(x(k +1)) = Vna(z(k+ 1)) < py-1V-a(z(k))
< pnaaVn(z(k)) = pn 1 Vvos—1) (2(K)),

where the first inequality uses Lemmal5.6 and the principleptimality, and the second one
exploits Lemma 5J4.
Case 2: ¥(k) = 9(k — 1) = 0. Here,s(k) = s(k — 1) = 0. By Lemma[5.B, we have

V_sty(z(k+1)) = Vy(z(k + 1)) < pn Vi (2(k)) = pnVi—s—1) (2 (k).
Case 3: ¥(k) = ¢¥(k — 1) = 1. Note thats(k) = s(k — 1) + 1, and then
V—stey(@(k +1)) < pres) Vv—se)(2(R)) < pv—se)Vv—s@—1)(z(k)),

where the first inequality utilizes Lemmas 5.6 and the ppleciof optimality, and the second
one exploits Lemma5.4.
Case 4: J(k) = 0 andd(k — 1) = 1. For this case, we havgk) =0, s(k —1) > 1 and thus

N-1

V—siy(@(k +1)) = Vy(z(k + 1)) < pnVn(z(k)) < pn H (1 + o) V_se—1)(x(k)),

(=N—s(k—1)
where the last inequality repeatedly applies Lenima 5.5.
Combine the above four cases, and it renders the following:

N-1

IT 0+ e Va—sw-n(@(k))

—S

% —s k 1)) < —sJ>
N—s(k) (2(k + ))_max{sel{fg{%?fs}{pzv }/)ngﬁ?fs{é

< VN,SVN—s(k—n(x(k))- (16)

Since0 < yy,s < 1, {Vy_sx-1)(2(k))} exponentially diminishes, and the following holds:

Vi—se-1) (2 (k)) < 7,5V (2(0)). (17)

DRAFT



17

Recall N > S+ 1. It follows from (17) that the infinite-horizon cost is chaterized as follows:

2 (B + lluk)IZ) < D Vesgn (@(k) < D 7KsVin(2(0) = 5 _1’7NSVN($<O)).

We then have finished the proofs for the first part.

[Part 2: Asymptotic stability] We now proceed to show the second parNof> max{N*(S)+
1,5+ 1}. Towards this end, we partition the time horizfi 1, - - - } into a sequence of subsets
{C1,A1,Co, Ay, - -} whereC; = {cF,--- &V} and 4; = {aF,---,dV} with for k € C;, then
J(k) = 0; andk € A;, thend(k) = 1. Note thatc) = 0 anda? = ¥ + 1.

Case 1. k € C; \ {cF}. Note thats(k) = s(k — 1) = 0 for all k € C; \ {cF'}. By Lemmal5.5,

we have
Vs (z(k + 1)) < pxVv_sg—ny (2(k)),  VE € Ci\{c]}.

Case 2: k = al. Note thatd(al) = 1 andd(al — 1) = 0. By Case 1 in Part 1, we have

VN—s(aiL)(x(a’iL + 1)) < pN—lVN—s(aiL—l)(x(aiL))‘

Case 3: k = A; \ {ar}. Recall thaty(k) = 1 for k € A;. By repeating the result of Case 3 in

Part 1, we have
k—aiL

Voo 2k + 1) < T pv-eVi—aary (el +1)), VE € A\ {af}.
=2

Case 4: k = ¢k, = aY + 1. Note thatd(cZ ;) = 0 andd(ct, — 1) = 1. By Case 4 in Part 1,
it holds that

N-1

VN—s(cf+1)(x<cf+1 + 1)) < PN H (1 + QZ)VN—s(ciL+1—1) (x(ciL—H))'
Z:N—s(ciL+1—1)
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The combination of the above four relations renders thewahg:
N-1
VN—s(ciL+1)(x(ciL+l +1)) < pn H (1+ QZ)VN—s(c§+1—1)(1’(CiL+1))
6=N—s(ck, 1)
N-1
=ov ] @+ ) Vy_yer,, -1 (2(af +1))
(=N—s(ck, 1)
al —al N—1
< p H pv—e [ QU+ an)Va e, (@l +1))
¢=N—s(ck 1)

U L

a; —ay; N-1
< PNPN-1 H PN—¢ H (1+ QZ)VN—S(C§+1—1)($(%L))
(=2 t=N—s(ck 1)
af —al N-1
= PNPN-1 H PN—¢ H (1+ aZ)VN—s(Cf+1—1)(x(0g +1))
=2 f=N-s(ck,—1)

S ’?N,SVN—S(cZﬂl—l) (l’(CZL)),

where the four inequalities sequentially apply Cases 4 ®iriceyy s € (0, 1), the subsequence

{VN s(ck 1
By the above four cases, it is not difficult to verify that thaldwing holds for allk €
A; UG\ {ct):

y(z(cf,))} exponentially decreases.

s N-1
Viv—s(e-1)(2(k)) < max{py-1, 1}pn ax HPN ¢ H (1+ ) Viy_y(er, -1 (@(e]))-

{=N— scl 1~ 1
Hence, the whole sequené®y_._1)(z(k))} diminishes. It establishes the asymptotical stabil-
ity.
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