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Abstract—UAV networks consisting of low SWaP (size, weight,
and power), fixed-wing UAVs are used in many applications,
including area monitoring, search and rescue, surveillance, and
tracking. Performing these operations efficiently requires a
scalable, decentralized, autonomous UAV network architecture
with high network connectivity. Whereas fast area coverage is
needed for quickly sensing the area, strong node degree and
base station (BS) connectivity are needed for UAV control and
coordination and for transmitting sensed information to the BS
in real time. However, the area coverage and connectivity exhibit
a fundamental trade-off: maintaining connectivity restricts the
UAVs’ ability to explore.

In this paper, we first present a node degree and BS
connectivity-aware distributed pheromone (BS-CAP) mobility
model to autonomously coordinate the UAV movements in a
decentralized UAV network. This model maintains a desired con-
nectivity among 1-hop neighbors and to the BS while achieving
fast area coverage. Next, we propose a deep Q-learning policy
based BS-CAP model (BSCAP-DQN) to further tune and improve
the coverage and connectivity trade-off. Since it is not practical
to know the complete topology of such a network in real time, the
proposed mobility models work online, are fully distributed, and
rely on neighborhood information. Our simulations demonstrate
that both proposed models achieve efficient area coverage and
desired node degree and BS connectivity, improving significantly
over existing schemes.

Index Terms—Unmanned aerial vehicles, autonomous UAV
swarm, autonomous UAV networks, pheromone mobility model,
node degree, base station connectivity, network connectivity, deep
Q-learning.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) equipped with self-
localization and sensing capabilities have become popular for
applications such as search-and-rescue, surveillance and area
monitoring, and target tracking [1]–[3]. We focus on low SWaP
(size, weight, and power), fixed-wing UAVs, which offer a
balance of portability and area coverage (with higher speeds
and longer lifetimes than rotor-based UAVs). However, low
SWaP UAVs face several practical difficulties: they have a
limited range of communication and are more prone to failure
than larger UAVs. These issues motivate a decentralized and
autonomous network of UAVs, in which the nodes explore
an area, perform local sensing, and communicate with their
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neighbors without any global knowledge of network topology.
While decentralized networks are easily scalable and have
no single point of failure, the autonomous node movement
generates uncertain trajectories, leading to disconnected net-
works and unstable communication routes. To gather the
sensed information and allow real-time coordination without
dedicated communications infrastructure (which is typically
unavailable in the target environments), the UAVs must act
so as to maintain connectivity. In particular, they must trade
off between area coverage and network connectivity, since
dispersing the UAVs to improve coverage can negatively
impact their connectivity, and vice-versa [3].

More concretely, we consider a scenario consisting of a
swarm of 30-50 low SWaP fixed-wing UAVs (e.g., [4]–[7])
performing area monitoring and surveillance in a 6 km × 6
km area, in which no fixed communication infrastructure, such
as a cellular network, is available. The inexpensive, low SWaP
UAVs have a communication range of around 1000 m (e.g.,
[8]–[10]) and fly at low altitudes at speeds varying from 20
m/s to 40 m/s (e.g., [5]). Fig. 1 illustrates an area monitoring
application in an inaccessible, disaster-hit area. With no central
authority in charge of path planning, each UAV autonomously
determines its trajectory based on its local neighborhood
information. The individual UAVs collaboratively explore the
area to collect information, which must then be reliably sent
to an aerial base station (BS). The aerial BS can then forward
the information to a control center to make informed decisions
in real time.

These settings require a moderate to high density of UAVs in
the target area, since too few low SWaP UAVs flying at low al-
titudes cannot cover the area in a limited operational time. The
network’s decentralized nature enables it to be robust to loss of
UAVs (due to limited battery power, hostile environments, or
other failures); by acting autonomously, the network can react
to such changes, including enduring periods of disconnection,
and UAVs do not need to maintain communications with a
pilot. The UAVs continuously monitor the area, find objects
of interest, and then report back. When they find a target of
interest, they initiate a connection to the BS (located at the
boundary of the monitored area) and communicate the sensed
information to the BS in real time.

One common method to coordinate and control the UAV
movement is to use stigmergic digital pheromones [1], [11],
[12]. Pheromone-based mobility models are simple, scalable,
and robust, and can be implemented in both centralized or
decentralized systems. However, these models focus only on
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Fig. 1: Decentralized, autonomous UAV network performing monitoring, search and surveillance in inaccessible disaster areas.

the area coverage while ignoring the connectivity among the
UAVs.

Many existing schemes for maintaining connectivity in UAV
networks are either centralized or use hierarchical architecture
or relay nodes [11], [13], [14]. These approaches are plagued
by scalability issues and delays, and are vulnerable to attacks
(such as in battle-field deployments) or node failures [15].
Other methods (e.g., [1], [16], [17]) modify the UAV mo-
bility model to maintain local connectivity among the nodes.
However, few UAV mobility schemes attempt to address both
local connectivity (node degree) and BS connectivity in a
decentralized, non-hierarchical UAV network [8], [18].

In previous work, we proposed a distributed, connectivity-
aware pheromone mobility model (CAP) [19] and a deep Q-
learning based CAP model (CAP-DQN) [20] that balance
efficient area coverage with a desired node degree in au-
tonomous UAV networks. Importantly however, it did not
consider BS connectivity. In this work, we extend our approach
to address the problem of achieving fast area coverage while
maintaining both local (node degree) and BS connectivity in
an autonomous, decentralized, non-hierarchical UAV network.

We make several specific contributions beyond [19], [20]:

• We design a heuristic-based node degree- and BS-
connectivity aware pheromone mobility model (BS-
CAP), by modifying the CAP scheme [19] trajectory
selection and its hello information exchanges to support
BS connectivity information.

• We then adapt and improve on our heuristic policy
using reinforcement learning. We use deep Q-learning to
train a neural network model mapping the UAV’s locally
available information to each action’s expected utility, and
use this to select the optimal policy. Compared to the
CAP-DQN scheme [20], our model includes additional

state information and an updated reward function that
accounts for both connectivity criteria.

• We include two new performance measures (Percentage
of Time Connected to BS and Giant Component), com-
pare our method to an additional reference scheme, and
evaluate the impact of node failures.

• Since it is not practical to know the complete topology
of a decentralized network in real-time, both mobility
models work online and are fully distributed, enabling
the UAVs to make autonomous decisions in an unknown
environment.

• Both proposed models achieve a fast area coverage,
strong node degree, high BS connectivity, and robustness
to node failures. This provides fast information sensing
from the monitored area and delivers the information to
the BS in real time.

Paper Organization: We first review several existing UAV
mobility models in Section II, followed by an overview of
the pheromone-based mobility model on which our approach
is based in Section III. We then describe our proposed node
degree and BS connectivity aware pheromone (BS-CAP) mo-
bility model in Section IV, followed by our proposed deep Q-
learning based BSCAP-DQN model in Section V. We evaluate
the performance of our approaches in simulation and discuss
the results in Section VI, followed by concluding remarks in
Section VII.

II. RELATED WORK

Several algorithms, such as particle swarm optimization,
artificial bee colony, and ant colony optimization, have been
proposed to coordinate swarms for various search, rescue, and
tracking applications [21]. One widely used approach is the
use of stigmergic digital pheromones [1], [11], [12], which act
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as spatio-temporal potential fields to coordinate and control
the UAV movements. In digital pheromone schemes, infor-
mation about the pheromone map is communicated between
agents in the network through direct or indirect communica-
tion. In decentralized UAV networks, each UAV maintains a
pheromone map of its neighborhood through direct commu-
nication, wherein the pheromone deposits are communicated
only locally. Some proposed schemes use a fusion of digital
pheromone algorithm and flocking behaviors to coordinate
a group of UAVs for performing distributed target search
and tracking [1], [16]. These schemes do not maintain BS
connectivity.

Decentralized and non-hierarchical UAV networks that mod-
ify the mobility model to prioritize BS connectivity include
[8], [18]. The ConCov model [8] is a distributed, hybrid
mobility scheme that focuses on fast area coverage and BS
connectivity. It uses artificial potential fields to minimize
overlap in the areas sensed by neighboring UAVs. It also uses
local neighbor locations and routing information to tune its
performance between area coverage and BS connectivity.

Messous et al. [18] studied BS connectivity in UAV swarms
by using a fuzzy inference system to compute a weight for the
UAV’s connectivity to its neighbors, hop count to the BS, and
energy level. However, designing the fuzzy inference system
can be difficult for complex systems where the relationships
among different inputs are not well understood. The schemes
proposed in [17], [22] consider coverage of ground users and
reliable network connectivity. However, they do not explicitly
consider BS connectivity; instead, they assume that one of
the UAVs is connected to the BS (a sink or gateway node).
Another related body of literature is connectivity preservation
schemes for multi-robot systems using algebraic connectivity
[23], [24]. These schemes assume the network is initially
connected and do not typically consider BS connectivity.

Another set of approaches uses a centralized or hierarchical
network architecture. A centralized scheme was proposed in
[14] to position the UAVs to maximize coverage and sensor
data acquisition while maintaining BS connectivity, where a
topographical map is known beforehand. A clustering ap-
proach proposed in [11] uses dual pheromones for target track-
ing and area coverage, while cluster head (CH) nodes maintain
stable network connectivity. Relay UAVs may be deployed
as a separate layer to provide continuous BS connectivity
in a hierarchical network [13], [25]. However, the selection
and placement of relay nodes add additional complexity and
require network topology information. Moreover, CH or relay
UAVs in hierarchical networks can become bottleneck nodes,
leading to delays and congestion, and can be vulnerable to
attacks [15]. Our proposed decentralized scheme avoids these
issues.

Next, we review reinforcement learning (RL) based schemes
for UAV mobility. The highly dynamic and complex nature
of UAV networks means that a UAV’s actions can have
long-term consequences on the system’s evolution, making
reinforcement learning an appealing framework [26]. How-
ever, using multi-agent deep reinforcement learning (DRL)
algorithms in UAV networks presents several challenges, such
as high dimensional states and observations with increasing

node density, which make it difficult to find optimal policies
[27]. Moreover, communication range constraints make the
environment only partially observed to each UAV. Yue et
al. [28] use RL for multi-UAV search of targets but do not
consider the connectivity. In [29], a group of rotary-wing
UAVs act as aerial BS to provide communication coverage
to ground users. A distributed UAV control is designed to
maximize communication coverage and fairness and minimize
UAV energy consumption via DRL. However, the connectivity
and coverage trade-off is not evaluated. In [30], DRL is used
for UAV path planning with connectivity constraints. Here,
the UAV learns to fly to its destination in the shortest time
while maintaining reliable communication to the ground BS
in a cellular network.

We use DRL to optimize the trade-off between area cover-
age and connectivity (node degree as well as BS connectivity)
using only local pheromone and connectivity information. In
our scheme, we consider the multi-agent RL problem as a
single-agent RL scenario, using centralized training with a
distributed evaluation approach.

A few UAV mobility schemes consider the impact of node
failures due to the energy consumption [18], [29]. These are
more important for the rotary-wing UAVs (which have a higher
power consumption and lower endurance [31]). Simulations
show that our proposed schemes are robust and experience
only a limited impact when nodes fail. Our mobility models
form a network with built-in redundancy (strong average node
degree and BS connectivity). Moreover, UAVs in our network
design are not used as CH, gateway or relay nodes and
hence the failure of a few nodes does not significantly impact
network performance.

A. ConCov Mobility Model

Given the disadvantages of schemes that use centralized or
hierarchical architectures or dedicated relay nodes, we focus
on decentralized, non-hierarchical, and autonomous UAV net-
work architectures. There are relatively few such distributed
and connectivity-aware UAV mobility models in the literature;
we compare our proposed schemes against the ConCov model
[8], which uses a modified flocking behavior that can trade off
between coverage and BS connectivity.

Separate models for area coverage (for target detection) and
BS connectivity (for notification of targets to BS) were studied
in [3]. Later, in [8], the author presented the ConCov model
which is a distributed, hybrid mobility scheme that focuses on
fast area coverage and BS connectivity. The ConCov model
utilizes artificial potential fields to minimize the overlap in the
area sensed by neighboring UAVs. It also uses local neighbor
locations and routing information to tune its performance
between area coverage and BS connectivity. The heading of a
UAV is given by,

R⃗v = ω
⃗Rcov
v

| ⃗Rcov
v |

+ (1− ω)
⃗Rcon
v

| ⃗Rcon
v |

(1)

where ⃗Rcov
v is a “repellent” force to reduce the coverage

overlap, ⃗Rcon
v is an “attraction” force to prevent disconnections

from the BS, and ω is a weight to balance the two forces.
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Each UAV uses its current and next positions, the headings of
neighboring UAVs, the resulting network graph, and the route
to BS to calculate the two forces.

The repellent force, ⃗Rcov
v , is defined by a combination of

the force vector F⃗ii along the current heading direction θci ,
and the sum of the repel force vectors F⃗ij from its neighbors
j ∈ Ns

i along θij . The θ̂ notation is used to represent a unit
vector with direction θ.

⃗Rcov
v = F⃗ii +

∑
j∈Ns

i

F⃗ij (2)

where, F⃗ii =
1

r
θ̂ci and F⃗ij =

1

dij
θ̂ij (3)

while r is the UAV’s sensing range and dij is the distance
between UAVs i and j.

The attraction force, ⃗Rcon
v , is applied to a UAV i to maintain

BS connectivity [3]. If UAV i remains connected to BS
after the sensing period ts, ⃗Rcon

v = θ̂ci . If UAV i becomes
disconnected from the BS after ts, then

⃗Rcon
v = J⃗ii + J⃗ik, (4)

where J⃗ii = θ̂ci and J⃗ik = θ̂ik. (5)

Here, J⃗ii is the vector along the current direction θci and J⃗ik is
the vector from UAV i to its 1-hop neighbor k that has a route
to the BS. The ConCov algorithm is described in Pseudocode
1.

Pseudocode 1: ConCov
1 At each UAV i with current direction θci ;
2 if time interval of ts has elapsed since last direction change

then
3 // Update UAV’s direction
4 Compute repulsive force, ⃗Rcov

v from (2);
5 Compute attractive force, ⃗Rcon

v ;
6 if there exists a route to BS from UAV i after a time

interval of ts then
7 ⃗Rcon

v = θ̂ci ;
8 else
9 //No route to BS exists

10 ⃗Rcon
v = J⃗ii + J⃗ik from (4);

11 end
12 Compute resultant force R⃗v from (1);
13 // New UAV direction
14 θci = ∠R⃗v

15 else
16 Maintain current direction θci ;
17 end

III. OVERVIEW OF PHEROMONE MOBILITY MODEL

The pheromone mobility model uses repel digital
pheromones to promote exploration and fast coverage of
an area with no prior information [1], [12], [19]. A dig-
ital pheromone has characteristics modeled after natural
pheromones, such as deposition, evaporation and diffusion,
with values stored in a digital pheromone map. We assume the
UAVs move in a two-dimensional space (i.e., at constant alti-
tude) to search a given area; although the UAVs’ positions and

trajectories are continuous-valued, to represent the pheromone
map we divide the area into a grid of C2 cells, each identified
by its (x, y) coordinates.1 Each UAV moves towards the cells
with minimum repel pheromone value and deposits a repel
pheromone of magnitude ‘1’ in the cells scanned along its
trajectory. After a UAV deposits pheromone in a cell (x, y), it
is progressively diffused to the surrounding cells at a constant
diffusion rate ψ ∈ [0, 1]. This encourages UAVs to disperse
towards unvisited cells. The pheromone value of each cell also
evaporates, decreasing its intensity over time by a constant rate
λ ∈ [0, 1]. This evaporation allows the UAVs to revisit already
scanned cells after some time gap, for example if environment
or target locations change over time [19].

Mathematically the pheromone value p(x,y) in a cell (x, y)
at time t is described as [1], [19],

p(x,y)(t) = (1− λ) · [(1− ψ) · p(x,y)(t− 1)+

∂p(x,y)(t− 1, t) + ∂d(x,y)(t− 1, t)] (6)

where (1 − ψ) · p(x,y)(t − 1) is the pheromone value re-
maining in cell (x, y) after diffusion to the surrounding cells,
∂p(x,y)(t − 1, t) is the new pheromone value deposited in
the update interval (t − 1, t), and ∂d(x,y)(t − 1, t) is the
additional pheromone diffused to the current cell from its eight
surrounding cells in the update interval (t − 1, t), which is
described as [1], [19],

∂d(x,y)(t− 1, t) =
ψ

8
·

1∑
a=−1

1∑
b=−1

p(x+a,y+b)(t− 1) (7)

In a decentralized UAV network, the UAVs exchange their
digital pheromone maps with their 1-hop neighbors by using
the periodic ‘hello messages’ [19].

IV. NODE DEGREE AND BS CONNECTIVITY AWARE
PHEROMONE MOBILITY MODEL (BS-CAP)

Pheromone mobility models achieve fast area coverage by
pushing the UAVs away from each other and recently visited
cells. However, this can lead to a weak node degree and
BS connectivity due to the limited transmission range of the
UAVs, especially when the UAV density is low. Maintaining
strong node degree is required in a decentralized network
to ensure robust network communication and coordination
among UAVs. Similarly, strong BS connectivity enables robust
transmission of information from UAVs to the BS.

In this section, we describe our proposed BS-CAP mobility
model for decentralized, autonomous UAV networks to bal-
ance strong average node degree and BS connectivity with
fast area coverage. Our model uses a weighted combination
of the repel pheromone value (see Section IV-A and IV-B)
and node degree (see Section IV-C) at the cells, along with
‘route availability to BS’ information, to determine a UAV’s
trajectory (see Section IV-E). Since it is not practical to
know the complete topology of such a network in real-time,
the proposed scheme is fully distributed and relies only on
neighborhood information (see Section IV-D).

1For convenience, we use the same discrete grid to track our area coverage
(in our experimental evaluations), and to define the waypoints used in our
trajectory selection policies.
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Fig. 2: UAV headings and next-waypoints. (a) Given its current
heading, a UAV selects one (green) of the five forward-facing
cells out of its eight possible next-waypoint cells (gray). (b)
Arriving at this waypoint, the UAV selects its new next-
waypoint; discretizing its current heading, waypoint 2 is the
closest to straight, so that its forward-facing options are
{0, 1, 2, 3, 4}.

A. Next-Waypoint

As the UAVs fly over the monitored area, we use the
pheromone map grid to determine where each UAV should fly
next. The location on the grid toward which a UAV decides
to fly is called the ’next waypoint’; the distance between
the current and next-waypoints is a function of the UAV
speed. We restrict our choice of waypoints based on the flight
trajectory constraints of a fixed-wing UAV, giving smooth turn
trajectories [19]. Concretely, the current (continuous) heading
of each UAV (0 to 360 degrees) is discretized into 8 possible
directions, each corresponding to a possible next-waypoint a
distance away. However, for our trajectory, we only consider
up to five “forward-facing” next-waypoints: the one along the
current (discretized) heading, and two each to the left and
right (corresponding to sharper or more gradual turns). Fig. 2
illustrates an example of a UAV’s next-waypoint cells: initially,
the UAV has a current (discretized) heading of ‘0’, and moves
to cell ‘1’ out of the five possible next-waypoint cells (6, 7, 0,
1, 2). Upon reaching cell ‘1’, the UAV has current (discretized)
heading direction of ‘2’; it then moves next-waypoint cell ‘1’
out of the possible options (0, 1, 2, 3, or 4).

B. “Look-Ahead” Pheromone Value

In a basic pheromone mobility model, each UAV moves
towards an unvisited region in the map by selecting the cell
with the minimum repel pheromone value. In contrast, our
scheme computes a ‘look-ahead pheromone’ value, P ′ ∈ [0, 1],
for each potential next-waypoint cell, equal to a weighted
average of the repel pheromone at that cell and its eight 1-
hop neighbors. Concretely, for next-waypoint cell (x, y),

P
′

(x,y) =
1

12
·
(
3 · P(x,y) +

∑
a,b∈{−1,0,1}

P(x+a,y+b)

)
(8)

where P(x′,y′) ∈ [0, 1] is the pheromone value in cell (x′, y′)
[19].

Moving to cells with minimum P ′ value, the UAV is more
likely to steer toward unvisited regions of the map, increasing
the area coverage.

C. Distance-Weighted Node Degree
The node degree of a UAV represents the number of its

1-hop neighbors. Since UAV pairs that are close to their
maximum transmission range are more likely to lose their con-
nection in the near future, we calculate a distance-weighted
connectivity (γuv) between two UAVs u, v as a function of
their Euclidean distance duv and transmission range Tx. It is
defined as [19],

γuv =


1 duv ≤ (0.6 · Tx)
2.5(1− duv

Tx
) (0.6 · Tx) < duv ≤ Tx

0 duv > Tx

(9)

The distance-weighted node degree Ku of UAV u is defined
as the sum of its γuv over its N 1-hop neighbors [19]:

Ku =
∑
v∈N

γuv. (10)

Intuitively, we set γuv = 1 when the distance between UAVs is
within 60% of the transmission range, because the probability
they will remain connected is high. Beyond 60%, the value
γuv decreases linearly with distance duv , discounting more
distant neighbors that are less likely to remain connected in
the near future.

D. Distributed Information Exchange using ‘Hello Messages’
To share information in the distributed network, a Hello

message containing each UAV’s updated local information is
propagated to its 1-hop neighbors. The pheromone value and
connectivity information of a UAV’s neighbors is obtained
from the Hello messages and used to select the next-waypoint
cell. In our scheme, each UAV exchanges Hello messages with
its 1-hop neighbors every 2 seconds. Each Hello message is 24
bytes, and consists of the UAV Id (7 bits), its current location
(18 bits with 10 m resolution), next-waypoint cell (12 bits
for the cell id, assuming 60 x 60 cells of 100 m x 100 m
resolution in a 6 km x 6 km area), and a local pheromone
map (6-bit pheromone values in the 5 x 5 cells centered at the
UAV’s current cell, for 150 bits total). The Hello packet of a
UAV also includes the hop count of the shortest route to BS
(4 bits). Thus, every UAV can compute the node degree Ki

and availability of a route to BS at the next-waypoint cell i.

E. Next-Waypoint Selection
Of the five possible next-waypoint cells, we consider only

cells where a UAV can maintain a route to the BS, and select
a cell i with maximum score Wi, where:

Wi =

{
αi(1− P ′

i ) if ∃ route to BS
0 if ∄ route to BS

(11)

where P ′
i is the ‘look-ahead pheromone’ value from (8)

at next-waypoint cell i, calculated using the UAV’s own
pheromone map and pheromone information received from its
neighbors’ Hello messages. The value αi ∈ [0, 1] is the UAV’s
normalized Ki at cell i:

αi =


Ki

β Ki ≤ β

1 β < Ki ≤ β′

1/3 Ki > β′
(12)
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We compute Ki from (10) using the heading information of the
UAV’s 1-hop neighbors in their most recent Hello messages.
Selecting the values β, β′ in (12) allows the designer to
tune the connectivity and coverage balance in our model. For
example, selecting a small β (e.g., β = 0.5) results in a model
with faster area coverage at the cost of connectivity (node
degree). On the other hand, a larger β (e.g., β = 2.5) results
in better node degree at the cost of a higher coverage time.
Intuitively, UAVs with a Ki = β′ are considered to have strong
node degree; even higher values of Ki are discouraged by
decreasing α when Ki > β′ in (12). This is desirable behavior
since too-high node degrees correspond to congregations of
UAVs, which can degrade the area coverage performance at
low to moderate node densities.

Each UAV maintains connectivity by selecting the next-
waypoint with maximum Wi as per (11), provided a route
exists to the BS. If no route from the UAV to the BS exists at
any of the 5 possible next-waypoint cells, we select the next-
waypoint closest to that UAV’s 1-hop neighbor which does
have a route to the BS. The next-waypoint selection process
of a UAV is described in Pseudocode 2.

Pseudocode 2: UAV Next-Waypoint Cell Selection
1 if UAV reaches next-waypoint cell then
2 // Deposit repel pheromone
3 Add repel pheromone value = 1 for the current cell in its

digital pheromone map;
4 // Select a new next-waypoint cell (i)
5 Identify the next-waypoint cells (out of 5 possible cells),

where the UAV can maintain a route to BS;
6 if there exists a route to BS from at least one of the

next-waypoint cells then
7 Calculate the ‘look-ahead pheromone’(P ′

i ) value for
each of the next-waypoint cells using (8);

8 Calculate estimated node degree Ki of the UAV at
each of the next-waypoint cells via (10) ;

9 Calculate the Wi value for each of these
next-waypoint cells using (11);

10 Select cell i = argmaxi Wi as the UAV’s
next-waypoint;

11 else
12 //No route to BS exists from the next-waypoint cells
13 Select a next-waypoint cell i closest to the UAV’s

1-hop neighbor which has a route to BS.
14 end
15 else
16 // Follow smooth-trajectory towards the selected

next-waypoint cell
17 end

All values required for the calculation of P ′
i and αi are

received from the neighbors through Hello messages. Com-
putation of P ′

i at a next-waypoint involves 10 additions and
2 multiplications. Similarly, the computation of αi involves
a maximum of 11 multiplications and 5 additions, assuming
5 1-hop neighbors. Therefore, the computation of Wi for
each next-waypoint cell in (11) requires 16 additions and 14
multiplications. Since our scheme uses up to 5 possible next-
waypoint cells, at most 80 additions and 70 multiplications
may be required to select the best next-waypoint.

V. DEEP Q-LEARNING BASED BS-CAP (BSCAP-DQN)
MOBILITY MODEL

In the BS-CAP model, we use local connectivity informa-
tion (node degree) to augment the pheromone information
and allow trade-offs between coverage and connectivity in
our network, while information on the availability of routes
to the BS from the next-waypoint cells is used to maintain
BS connectivity. In this section, we use the framework of
reinforcement learning (RL), in particular, deep Q-Learning
(DQN) [32], [33] to train a policy (BSCAP-DQN) for the
UAVs that explicitly optimizes a trade-off between coverage,
node degree and BS connectivity. RL [34] attempts to optimize
an agent’s policy, represented as a distribution over actions
given the current state, in order to maximize a (discounted)
cumulative reward to that agent over time. So-called “online”
RL training methods use agent’s current policy to decide
what actions to take, influencing the evolution of the system
and subsequent experiences used for training. 2 Typically, the
experience is gathered by following an “exploration policy”
which is related to, but may be more random than, the model’s
current estimate of the best policy; for example, ϵ-greedy
policies mostly follow the currently estimated best action, but
take a random action with probability ϵ instead. “Offline”
training [35], in contrast, gathers and stores experience by
following some (possibly unknown) policy, which can then
be used for training the agent’s policy [20].

In practice, since the evolution of our system depends on
the behavior of multiple UAVs (all following the same policy
and using limited state information), it is important to use
online training so that changes to the policy can propagate
to affect the experience and outcomes observed by other
UAVs. However, starting with a purely random policy leads
to slow learning since the UAVs must spend time to learn the
rewards associated with exploration. Thus, to make training
more efficient, we first perform pre-training using offline DQN
on a database of experience obtained by following an ϵ-
greedy exploration variant of our fixed BS-CAP policy from
Section IV. After this pre-training, we perform online training
using DQN with experience replay [32] to further refine the
agents’ policy. Our implementation uses standard modeling
and training libraries from PyTorch [36]. Fig. 3 illustrates the
use of offline pre-training followed by online reinforcement
learning [20].

Since our system consists of multiple UAVs, it can be con-
sidered an example of multi-agent reinforcement learning [27].
However, the structure of our problem constrains the nature
of our agents. In “centralized” multi-agent RL, the agents
coordinate through a central decision-maker that incorporates
all agents’ observations and determines a set of actions jointly.
However, large numbers of agents lead to an exponential
explosion in the size of the observation and action spaces.
Moreover, we would like our agents to continue operating

2Although the training method is called “online RL”, our policy is fully
trained in simulation beforehand, and held fixed during the actual UAV
deployment. The short lifetime of the UAVs does not allow for significant
exploration of policies during any single deployment. In this sense our DQN
policy defines a comparable but explicitly optimized alternative to the BS-
CAP policy.
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Fig. 3: We use offline pre-training, followed by online training,
to improve training efficiency while accounting for the effect
of policy changes in our multi-UAV setting [20].

even when out of contact with one another, making centralized
reasoning unsuitable.

“Concurrent” multi-agent RL allows each agent to learn its
own individual policy. This allows, for example, agents to
learn complementary policies that perform different roles in
order to achieve a shared objective. However, in our setting, we
prefer to select a homogeneous policy for the agents (i.e., each
UAV follows the same behavior given its local observations),
since we would like to apply our policy in settings where there
may be more or fewer UAVs than during training.

Our approach is thus an example of “parameter-sharing”
multi-agent RL, in which the agents share the parameters of
a single policy, which is trained using the experiences of
all agents simultaneously (based on each agent’s individual
observations). Compared to other multi-agent approaches, this
method is highly scalable, and can use a variety of training
techniques, including DQN and deep deterministic policy
gradient methods [33].

A. DQN Problem Formulation

In DQN, we model the state-action value function q(s, a)
using a neural network. The function q captures the long-term
value associated with being in a state s and taking action a.
Given a current estimate of q, our agent can select its next
action a to maximize q(s, a) given its current state s.

In our setting, each UAV moves from its current waypoint to
its selected next waypoint. Upon reaching the next-waypoint,
the UAV must choose a new next-waypoint from a set of
five possibilities based on the “look-ahead” pheromone (P ′),
distance-weighted node degree (K), route availability to BS
at those next-waypoints, normalized distances from the next-
waypoint cells to the UAV’s 1-hop neighbor that has the
shortest route to BS, the normalized distance from the UAV to
BS, and the node degree of BS. Thus our input state s consists
of 22 real values. Note that the P ′ and K help to learn a policy

with faster map coverage and better node degree, while route
availability to BS at next-waypoint cells, normalized distances
from the next-waypoint cells to the UAV’s 1-hop neighbor with
a route to BS, the normalized distance from the UAV to BS,
and the node degree of the BS help in learning to maintain
strong BS connectivity.

Our action space consists of five possible actions corre-
sponding to the five forward-facing directions (next-waypoint
cells) with respect to the current UAV heading.

Our RL setting also requires us to define a set of rewards r,
which are obtained when the agent takes action a from state
s. We provide three sources of reward: one for area coverage
(rc), one for node degree (rk) and one for BS connectivity
(rb). The total reward (r) is defined as,

r = m · rc + rk + n · rb (13)

Here, the coverage reward, rc, is defined as the difference
between the number of new cells scanned and the number
of already-scanned cells along the path taken by the UAV
between its two waypoint cells. This favors the paths that
improve rapid coverage of the environment assuming that the
UAVs scan any cells as they pass overhead. Our node degree
reward, rk, is calculated based on Ki of the UAV when it
reaches its next waypoint i; specifically,

rk =


−1 1 < Ki ≤ 2

0 2 < Ki < 3

−4 otherwise.
(14)

Ki ≤ 2 incurs a penalty to avoid very low node degree. A
value of 2 < Ki < 3 gives adequate node degree. Ki ≥ 3
incurs a penalty to avoid very high node degree that causes
multiple UAVs to congregate, which can degrade the area
coverage performance.

The BS connectivity reward, rb is given for maintaining
connectivity to the BS:

rb =

{
0 if ∃ route to BS
−3 if ∄ route to BS

(15)

The model’s preferred balance between area coverage and BS
connectivity can be changed by varying m and n in the total
reward function in (13). Q-learning then optimizes the agent’s
policy to maximize the expected sum of rewards, discounted
by a geometric weighting γk for rewards k steps in the future.
For our environment, we use discount factor γ = 0.9.

Ideally, we would train our reinforcement agent to directly
optimize the performance objectives used to evaluate in Sec-
tion VI-A. However, these evaluation metrics are holistic,
global run-based quantities that are difficult to use as reward
functions due to their long feedback delays, and generating
a sufficiently large number of full system trajectories is
computationally prohibitive. For these reasons, we train our
agent using local rewards at each step that provide immediate
feedback toward behaviors that benefit our overall objectives,
learning a good policy faster with fewer runs. One potential
direction for future research is to develop local reward struc-
tures that could more closely align with our desired holistic
objectives to improve BSCAP-DQN’s performance.
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TABLE I: Neural Network Description

Layers Layer type Size Activation function
Input layer - (22) -
Hidden layer 1 Fully connected (24) Leaky ReLU
Hidden layer 2 Fully connected (16) Leaky ReLU
Output layer - (5) -

Our DQN neural network consists of two dense, fully
connected hidden layers with Leaky ReLU activation functions
of size 24 and 16 hidden nodes, respectively. The input layer
takes in the length-22 state vector s, and the output layer corre-
sponds to 5 Q-function values, i.e., Q(s, a) for each possible
action a, as described in Table I. During development, we
experimented with a number of other similar network archi-
tectures but concluded that this two-layer network performed
sufficiently well and used it in all reported experiments.

B. Offline Pre-training Using BS-CAP

Like in [20], an offline static dataset D for pre-training our
DQN is generated using a randomized exploration version of
our BS-CAP model policy, πh. Since our BS-CAP policy is
deterministic, we alter it to take a uniformly-at-random action
with some probability ϵ = 0.1 to ensure that the learner
can see the outcome of actions that would not normally be
followed by BS-CAP. We build a dataset consisting of state (s),
action (a), reward (r), and next-state (s′) transition sequences
from 10,000 episodes under simulation settings as described
in Section VI. Each episode is run for 2000 seconds.

For pre-training, we initialize the DQN with weights using
the default (“kaiming uniform”) PyTorch weight initialization.
We then train on our offline dataset for N = 50 epochs (passes
through the data), using stochastic gradient descent with mini-
batch size M = 1024, which are randomly sampled to avoid
temporal correlation. We implement our model in PyTorch and
use the SGD optimizer with a decaying learning rate initialized
to 0.0001 to optimize the squared error,

(
Q(st, at) − yt

)2
,

where yt is the Bellman target, yt = rt + γmaxa′ Q(s′t, a
′)).

The DQN pre-training process is given in Pseudocode 3.

C. Online Training

Like in [20], after pre-training, we simulate additional
environmental interactions while UAVs follow an ϵ-greedy
exploration version of the current DQN policy. We update
a single, universal policy from transition sequences obtained
from all agents and stored in a replay memory. Samples from
the replay memory are then used to update the DQN’s value
function Q. Online training ensures that changes to the UAV
policy are reflected in the behavior of the other UAVs as well,
so that the policy will be optimized to perform well within a
network of identical agents.

We train the DQN online for a total of N ′= 4000 episodes
and stop each episode at 2000 seconds. During each episode,
the transition sequences (s, a, r, s′) of individual UAVs are
stored into a replay memory of 10,000 transitions. We update
our Q-network after every B′ = 30 UAV steps (i.e., transitions
saved to replay memory) by sampling a minibatch of size

Pseudocode 3: Offline DQN Pre-Training
1 Initialize Q-network with random weights θ;
2 Initialize target network Q̂ with weights θ̂ = θ;
3 Load Offline Experience D = {(st, at, rt, s

′
t)};

4 Initialize minibatch size M , total epochs N ;
5 t=1,U=3000;
6 for epoch = 1 . . . N do
7 Partition D into minibatches {Bi} of size M = 1024 at

random
8 for each Bi do
9 t=t+1;

10 for each (st, at, rt, s
′
t) ∈ Bi do

11 Calculate targets,
yt = rt + γmaxa′ Q(s′t, a

′; θ̂);
12 end
13 Calculate MSE loss on minibatch Bi:

Li =
1
M

∑
t

(
yt −Q(st, at; θ)

)2;
14 Take a gradient step on θ at rate α;
15 if t mod U == 0 then
16 Copy Q-network to target network: θ̂ = θ;
17 end
18 end
19 Update learning rate scheduler α;
20 end

M ′ = 512 at random from the replay buffer. During online
training, we use the ADAM optimizer to adaptively select
the learning rate (initialized to 0.0001), and estimate our
target values yt using a target network Q̂ [32], i.e., yt =
rt + γmaxa′ Q̂(s′t, a

′)), where Q̂ is a periodically updated
copy of Q, updated after every C = 100 gradient steps. The
online DQN training process is shown in Pseudocode 4.

Pseudocode 4: Online DQN Training
1 Initialize θ using offline trained network weights;
2 Initialize target network Q̂ with weights θ̂ = θ;
3 Initialize replay memory R; t = 1;
4 for episode = 1 . . . N ′ do
5 while time ≤ 2000s do
6 UAV selects action at via ϵ-greedy

[
Q(st, at; θ)

]
;

7 Execute action at, and observe reward rt and next
state s′t;

8 Store (st, at, rt, s
′
t) in R;

9 t = t+ 1;
10 if t mod B′ == 0 then
11 Sample random minibatch of M ′ = 512

transitions (sj , aj , rj , s
′
j) from R;

12 Calculate target Q values,
yj = rj + γmaxa′ Q̂(s′j , a

′
j ; θ̂);

13 Calculate MSE Loss,
L = 1

M′
∑M′−1

j=0

(
yj −Q(sj , aj ; θ)

)2;
14 Take a gradient step on θ using ADAM;
15 if t mod B′ · C == 0 then
16 Copy Q-network to target network: θ̂ = θ;
17 end
18 end
19 end
20 end

Hyperparameters such as episode value, batch size and
gradient steps were selected based on empirical trials on small
systems and then used in the larger training process. Although
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training can be slow, it is accomplished beforehand and does
not affect the efficiency of the resulting policy. For the neural
network in Table I, evaluating the trained DQN policy requires
about 992 multiplications and 907 additions to compute the
best next-waypoint among the five possibilities. Since the next-
waypoint is computed only periodically, the DQN adds little
energy consumption or device complexity.

VI. SIMULATION RESULTS AND DISCUSSION

The performance of our proposed BS-CAP and BSCAP-
DQN models are compared against the repel pheromone
and ConCov [8] models, discussed in Sections III and II-A,
respectively. The UAV network is simulated in Python3, and
Table II shows the simulation parameters.

As in our introduction’s scenario, we consider a swarm
of 30 to 50 low SWaP fixed-wing UAVs (e.g., [4]–[7]) for
monitoring a 6 km × 6 km area where fixed communication
infrastructure, such as a cellular network, is not available. The
aerial BS is located at the bottom center of the map, and the
UAVs are launched from the vicinity of the BS. The UAVs are
equipped with GPS and have a transmission range of 1 km
(e.g., [4]). We assume a multihop topology with free space
propagation (e.g., [10]). For simplicity, the UAVs are assumed
to be point masses, and their mobility is limited to the X-Y
plane flying at a constant altitude (typically from 200m to 1km
above the ground [5]–[7]). UAVs perform collision avoidance
through trajectory modifications. To facilitate representing the
pheromone map, waypoints, and coverage statistics, the area is
divided into grid cells of 100 m × 100 m each, consistent with
other literature [1], [8], [20], [37], [38]. A UAV scans the cell
in which it currently resides and deposits a repel pheromone of
magnitude 1. We use pheromone evaporation λ and diffusion
ψ rates of 0.006 each. Each simulation is run for 3000 s, and
performance parameters are averaged over 30 simulation runs
to study the coverage and connectivity behavior of the network
at different stages.

TABLE II: Simulation Parameters

Parameters Values

Simulation Time 3000 s
Map Area 6 km × 6 km
Cell Size 100 m × 100 m
Transmission Range 1 km
Number of UAVs 30, 50
UAV Speed 20 m/s, 40 m/s
Evaporation Rate 0.006
Diffusion Rate 0.006
BS Location Bottom center of map
Number of Runs 30

Both our models and ConCov [8] contain parameters that
control the balance of coverage versus connectivity. In our
experiments, we vary these parameters to produce behaviors
with differing emphases. For ConCov, we select values of
ω ∈ (0, 1) in Eq. (1), which emphasizes connectivity as ω
decreases; we use a sensing period of 5 s to update the UAV
headings. In our BS-CAP model, we vary β ∈ [0.5, 2.5] in
Eq. (12), where increasing β results in a higher node degree;

there is no explicit tuning parameter for BS connectivity. In
our BSCAP-DQN model, the balance between coverage and
connectivity, including the BS connectivity, can be varied by
setting n ∈ [1, 4] in the reward function (13).

A. Performance Metrics

We measure the behavior and performance of our UAV
swarm using a number of summarizing statistics. The coverage
properties of the swarm are measured by:

• Coverage (Cv): The average percentage of cells in the
map visited by UAVs at least once within a given duration
of time; we prefer a higher Cv in a given duration of time.

• Coverage Time (Tc): The average time taken to scan 90%
of cells in the map. A lower value of Tc indicates faster
area coverage.

• Coverage Fairness (F ): Represents how equally all the
cells of the map are visited during a given time period,
as measured by Jain’s fairness index [39],

F =
(
∑

i xi)
2

n
∑

i x
2
i

(16)

where xi is the number of scans of cell i, and n is the
total number of cells in the map. A higher value of F is
desired.

The connectivity properties are measured by:
• Number of Connected Components (NCC): Average

number of disjoint components in the UAV network
(with no path between them), sampled every 10 s. NCC
measures how disconnected the network is; its optimal
(minimal) value is 1.

• Average Node Degree (AND): The node degree of a node
u (ND(u)) is its number of links (or 1-hop neighbors).
AND is the average node degree of all V nodes in the
network, computed by sampling the network every 10 s.

AND =

∑
uND(u)

V
(17)

• Percentage of Time Connected to BS (Tbs): Average
percentage of time a UAV is connected, directly or
indirectly (through a multihop path), to the BS throughout
the simulation.

• Giant Component (G): Average size of the connected
subgraph (component) with the largest number of nodes
in the network; larger G indicates that fewer UAVs are
isolated.

B. Results and Discussion

We evaluate the coverage (Tc, F ) and connectivity (NCC,
AND, and Tbs) statistics of three connectivity-aware models:
BS-CAP, BSCAP-DQN, and ConCov, as well as a basic
pheromone model, under four different conditions: densities
of 30 or 50 UAVs, at speeds of either 20 m/s or 40 m/s.
In general, better connectivity comes at the cost of slower
coverage; by varying parameters in each scheme, we can
trade off between these quantities. We select three parameter
settings for each connectivity-aware method: in BS-CAP, we
take β ∈ {0.5, 1.5, 2.5} and β′ = 3; in BSCAP-DQN, we



10

Better

(a)

Better

(b)

Better

(c)

Better

(d)

Fig. 4: Coverage vs. Time plots for 30 and 50 UAVs at 20 m/s and 40 m/s. While more coverage in less time is preferred,
we experiment with several parameter settings to balance coverage with connectivity (illustrated in subsequent plots); the
parameter values are chosen to produce similar coverage curves among the three tested algorithms (BS-CAP, BSCAP-DQN,
and ConCov). The intermediate parameter settings (β = 1.5, n = 3, and ω = 0.3) are omitted from these plots for clarity.

take m = 3 and n ∈ {2, 3, 4}; and in ConCov, we take
ω ∈ {0.5, 0.3, 0.1}. Figures 4-8 show performance plots for
each method, on average over the 30 runs, with error bars
representing the standard error of the averages. Suffix “-20”
(e.g., BS-CAP-20, ConCov-20) indicate results at 20 m/s,
while “-40” indicates UAVs at 40 m/s speeds.

1) Coverage Performance: The Coverage vs. Time plots
in Figure 4 represent the total map area covered in a given
time. We illustrate each algorithm with its largest and small-
est parameter settings, omitting the middle values to reduce

clutter. As expected, increasing β or n, or decreasing ω in
their respective models increases the emphasis on connec-
tivity over coverage performance. Increasing node density
and/or speed leads to a faster coverage of a given area for
all models. By design, at our parameter settings we have
relatively similar coverage profiles among the three methods;
the basic pheromone model gives the fastest coverage (with
no consideration for connectivity). Their comparable coverage
profiles allow us to see clear distinctions between the methods
when comparing their performance under the other metrics,
illustrated in Figures 5–7.
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Fig. 5: Coverage Fairness performance plots for 30 and 50 UAVs, at 20 m/s and 40 m/s. (a) For 30 UAVs, ConCov achieves
higher F values than BS-CAP and BSCAP-DQN at lower Tc values. The F values of all the models converge when Tc
increases. (b) For 50 UAVs, BSCAP-DQN achieves higher F values than BS-CAP and ConCov at lower Tc values.

The F vs. Tc performance plots for 30 UAVs and
50 UAVs at both speeds are shown in Figures 5a and 5b,
respectively. For 30 UAVs, ConCov achieves a higher F
value than our proposed models at lower Tc values, but
its connectivity performance is worse (see Section VI-B2
below). The F values of all the models converge when Tc
increases. With 50 UAVs, BSCAP-DQN achieves higher F
values than BS-CAP and ConCov for lower Tc values, even
though we do not have an explicit reward for fairness in our
BSCAP-DQN formulation.

2) Connectivity Performance: The number of connected
components (NCC) measures the “disconnectedness” of the
network. In Figures 6a and 7a, we see NCC vs. Tc per-
formance plots for 30 and 50 UAVs, respectively. For fast
area coverage and strong connectivity, we prefer low NCC
along with a low coverage time Tc. For both UAV densities
and speeds, BS-CAP and BSCAP-DQN achieve better NCC
performance than the ConCov model for a given Tc value.
Our optimized BSCAP-DQN gives a similar or slightly better
(lower) NCC than our fixed BS-CAP heuristic for a given
Tc value. For example, in Figure 6a we see that at Tc ≈750
s for 30 UAVs, BSCAP-DQN-40 and BS-CAP-40 achieve
NCC of 2.9, while ConCov-40 has NCC ≈ 4.6. Similarly,
50 UAVs at 40 m/s (Figure 7a) with policies giving Tc ≈ 500
s, BSCAP-DQN-40 and BS-CAP-40 achieve NCC of 1.4 and
1.5, respectively, while ConCov-40 has NCC ≈ 2.9.

Average node degree (AND) captures a more local con-
nectivity assessment. Figures 6b and 7b show AND vs. Tc

performance plots for 30 and 50 UAVs at both speeds. For
both node densities and speeds, the BS-CAP and BSCAP-
DQN achieve reasonably high AND ≥ 3, maintaining a

sufficient number of neighbor UAVs for network connectivity.3

The ability to tune the BSCAP-DQN model by setting reward
rk in (14) allows us to maintain an almost constant AND
of around 3.5 and 4 for 30 and 50 UAVs, respectively. In
comparison, for 30 UAVs (Figure 6b), AND values for BS-
CAP models vary from 3 to 4, while ConCov models vary
from 2.9 to 4.2. Similarly, for 50 UAVs (Figure 7b), BS-CAP’s
AND values vary from 3.9 to 4.9, while ConCov’s vary from
3.5 to 5.6.

Perhaps most importantly, we would like to maintain con-
nection to the BS as much as possible. The Tbs vs. Tc

performance plots are shown in Figures 6c and 7c. We see
that BS-CAP and BSCAP-DQN achieve higher BS connection
time Tbs than ConCov, at smaller Tc values (faster coverage)
for both settings of density and speed. For example, at Tc ≈
2000 s for 30 UAVs at 20 m/s, BSCAP-DQN-20 and BS-CAP-
20 achieve Tbs of above 80%, compared to 72% by ConCov-
20. When we tune the models to achieve higher Tbs (stronger
BS connectivity), the coverage time Tc increases due to the
stricter connectivity constraints. We find that the BSCAP-DQN
model outperforms the BS-CAP model at higher Tbs, perhaps
because the value of n in (13) allows more direct control over
the coverage vs. BS connectivity trade-off in BSCAP-DQN,
compared to BS-CAP.

The G vs. Tc performance plots for 30 and 50 UAVs are
shown in Figures 6d and 7d, respectively. At both densities,
BS-CAP and BSCAP-DQN achieve a larger giant network

3We consider that a model with AND ≥ 3 represents reasonably strong
node degree. In fact, a higher value of AND may increase the co-channel
interference and the probability of packet collisions during communication.
Moreover, maintaining higher connectivity typically degrades coverage, espe-
cially at low UAV densities.
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Fig. 6: Connectivity performance plots for 30 UAVs at 20 m/s and 40 m/s. (a) At comparable coverage time, BS-CAP and
BSCAP-DQN provide a smaller NCC (indicating better connectivity). The three tested parameter settings for each method
are joined by lines, suggesting how intermediate values might fare. (b) All three methods maintain an average node degree
between 3 - 4, providing a sufficient neighborhood. (c) BS-CAP and BSCAP-DQN provide more time connected to the base
station than ConCov at similar coverage times. (d) Our methods’ better connectivity also results in a larger giant component
G, with fewer isolated UAVs.

component (G) than ConCov for faster coverage times (low
Tc). A larger value of G indicates that fewer isolated UAVs are
present in the network; its increase is related to our methods’
improved NCC and Tbs connectivity statistics. For example, at
Tc ≈ 800 s for 30 UAVs at 40 m/s (Figure 6d), BS-CAP and
BSCAP-DQN achieve a G value of 24, compared to ConCov’s
G value of 19.5. The component size G improves in all three
models as we increase the emphasis on connectivity.

Comparing Tbs vs. Tc Performance of CAP-DQN
and BSCAP-DQN: To study the impact of considering the

BS connectivity on coverage performance, we compare the
coverage (Tc) and BS connectivity (Tbs) performance of
BSCAP-DQN model with an earlier version which did not
consider BS connectivity, denoted CAP-DQN [20]. We find
that BSCAP-DQN achieves around 300% and 125% increase
in Tbs compared to the CAP-DQN policy for 30 and 50
UAVs, respectively; see Figure 8. Since CAP-DQN has no
BS connectivity constraints, it provides faster coverage times
(Tc) with good node degree, but fails to maintain a strong BS
connectivity.
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Fig. 7: Connectivity performance plots for 50 UAVs at 20 m/s and 40 m/s. (a) At comparable coverage time, BS-CAP and
BSCAP-DQN provide a smaller NCC (indicating better connectivity). (b) BS-CAP and BSCAP-DQN maintain an average node
degree between 3.9 - 4.9, providing a sufficient neighborhood. (c) BS-CAP and BSCAP-DQN provide more time connected
to the base station than ConCov at similar coverage times. (d) Our methods’ better connectivity also results in a larger giant
component G, with fewer isolated UAVs.

3) Impact of Node Failures: Low SWaP UAVs are prone to
failure due to mechanical malfunctions or energy consumption.
In this section, we study the area coverage and connectivity
performance of our mobility models when a fraction of nodes
randomly fail during the simulation time of 2000 s. We
consider networks at both densities (30 and 50 nodes), at
a speed of 20 m/s. Nodes fail progressively with 10% and
30% nodes failing by the end of simulation. Other simulation
parameters are kept as in Table II. We evaluate using parameter
values: β = 1.5 and β′ = 3 in BS-CAP, m = 3 and n = 3 in

BSCAP-DQN, and ω = 0.3 in ConCov.
The Coverage vs. Time plots in Figure 9 show the total

map area covered in a given time by the three mobility
models. We see coverage performance decreases gracefully,
in proportion to the number of node failures. For example, the
area coverage by BS-CAP decreases from ≈80% to ≈78.5%
and ≈76%, when 10% and 30% nodes fail, respectively.

In Table III, we show the connectivity (NCC, AND, Tbs,
G) and coverage fairness (F ) performance for 10% and 30%
node failures. Both NCC and AND are hardly impacted,
while Tbs, G and F decrease gracefully in proportion to the
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Fig. 8: Tbs BSCAP-DQN vs. CAP-DQN performance plots for 30 and 50 UAVs, at 20 m/s and 40 m/s. BSCAP-DQN achieves
higher Tbs than the CAP-DQN since CAP-DQN does not consider the BS connectivity constraints.

number of node failures. This indicates all three mobility
models are relatively robust to node failure.

In conclusion, at both densities of UAVs and both speeds,
the pheromone model provides the best coverage perfor-
mance (Tc, F ), but has the worst connectivity performance
(NCC, AND, Tbs, G) since it does not consider any
connectivity information. Our proposed BSCAP-DQN and BS-
CAP models outperform the pheromone and ConCov models
by providing better connectivity performance (lower NCC,
higher AND, and higher Tbs). BSCAP-DQN and BS-CAP
provide better connectivity at a similar coverage performance
compared to ConCov. Finally, we find that our RL-based
BSCAP-DQN model performs only slightly better than our
heuristic BS-CAP model, suggesting that our heuristic weight-
ing performs reasonably well. BSCAP-DQN and BS-CAP are
relatively robust to the node failures.

VII. CONCLUSION

We considered a decentralized, multi-hop UAV network
consisting of low SWaP fixed-wing UAVs. When monitoring
an area autonomously, the area coverage and connectivity
requirements of the UAV network exhibit a fundamental trade-
off. Although fast area coverage is needed to quickly scan
the area, strong node degree and BS connectivity are needed
to coordinate the UAVs and transmit sensed information to
the BS. To facilitate reliable communication among UAVs
and to the BS in an autonomous UAV network, we designed
a connectivity-aware pheromone (BS-CAP) mobility model.
We then developed a deep Q-learning policy based BS-
CAP model (BSCAP-DQN). Both BS-CAP and BSCAP-DQN
facilitate efficient area coverage while maintaining strong node
degree and BS connectivity, and significantly improve over
existing schemes. Our proposed schemes work online, are fully

distributed, rely only on neighborhood information, and are
robust to node failures, making them practical for real-time
coordination in a decentralized UAV network.

Our RL-based model provides slightly better performance
than our heuristic BS-CAP model. This both suggests that
the BS-CAP heuristic performs reasonably well, and that to
improve significantly further we may need to incorporate
more information into the state representation of our RL
agent. For example, we could expand the state to include
a history of pheromone and connectivity observations or
additional information (obtained in a distributed manner) from
the UAV’s neighbors, such as their recent trajectories or their
own pheromone information. We leave these as avenues for
future research.
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