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Abstract

Objective: This study was performed to evaluate how well states of deep sedation in ICU 

patients can be detected from the frontal electroencephalogram (EEG) using features based on the 

method of atomic decomposition (AD).
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Methods: We analyzed a clinical dataset of 20 minutes of EEG recordings per patient from 44 

mechanically ventilated adult patients receiving sedatives in an intensive care unit (ICU) setting. 

Several features derived from AD of the EEG signal were used to discriminate between awake and 

sedated states. We trained support vector machine (SVM) classifiers using AD features and 

compared the classification performance with SVM classifiers trained using standard spectral and 

entropy features using leave-one-subject-out validation. The potential of each feature to 

discriminate between awake and sedated states was quantified using area under the receiver 

operating characteristic curve (AUC).

Results: The sedation level classification system using AD was able to reliably discriminate 

between sedated and awake states achieving an average AUC of 0.90, which was significantly 

better (p < 0.05) than performance achieved using spectral (AUC = 0.86) and entropy (AUC = 

0.81) domain features. A combined feature set consisting of AD, entropy and spectral features 

provided better discrimination (AUC = 0.91, p < 0.05) than any individual feature set.

Conclusions.—Features derived from the atomic decomposition of EEG signals provide useful 

discriminative information about the depth of sedation in ICU patients.

Significance.—With further refinement and external validation, the proposed system may be 

able to assist clinical staff with continuous surveillance of sedation levels in mechanically 

ventilated critically ill ICU patients.

Keywords

Sedation level monitoring; Atomic decomposition; Support vector machine; Critical care; 
Intensive care unit

I. Introduction

Sedatives are often given to intensive care unit (ICU) patients to reduce agitation, help 

patients tolerate medical procedures, facilitate mechanical ventilation and reduce pain to 

ensure patient comfort and safety [1], [2]. However, it is important to maintain appropriate 

sedation levels as both over- and under sedation can result in adverse outcomes such as 

delirium, extended ICU stay and mechanical ventilation with increased risk of hospital-

acquired infections [3], [4]. Current state-of-the-art methods use subjective or numerical 

scoring methods to assess the level of sedation in ICUs such as the COMFORT scale, the 

Ramsay scale, and Richmond Agitation-Sedation Scale (RASS). These methods are based 

on descriptive behavioral assessments of patients’ responses to external stimuli and 

sometimes difficult to assess during deep sedation states [5].

Numerous EEG-based monitors have been developed to monitor patients’ level of 

consciousness under anesthesia using spectral and entropy features [6], [7], [8], [9], [10]. 

However, such methods have shown to be problematic in the operating room environment, 

and are largely untested in the ICU environment [11], [12], [13], [14]. Feature engineering 

for classification problems can be broadly divided into hypothesis driven, data driven and 

empirical (trial and error) approaches. Compelling scientific justification can be given for 

the first two approaches; the trial and error approach is less principled. In hypothesis driven 

approach, one selects one or a small number of hand-crafted features to use for EEG signal 
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analysis, based on a mechanistic, neurophysiological and/or statistical grounds, or by 

generalizing from prior observations. Examples include entropy- and complexity-based 

measures and bispectral analysis. A weakness of this approach is that it is often overly 

simplistic when applied to heterogenous populations, e.g. patients with varied medical 

conditions, as in the present study. While this variability can in principle be overcome by 

developing more complex statistical models and features, this approach is often slow and 

prone to human error. On the contrary, the data driven approach combines five ingredients: 

1) systematic automated processes for selecting features and tuning model parameters, 2) 

flexible models (i.e. numerous candidate features from which to select and/or flexible 

statistical models), 3) large data sets to provide sufficient power and variability to efficiently 

select features and tune model parameters, 4) methods to avoid overfitting, and 5) rigorous 

model validation procedures to provide unbiased estimates of performance. The data driven 

approach has the advantage of placing less emphasis on human judgement in tuning model 

parameters and selecting features. A potential danger of this approach is model overfitting, 

i.e. creating feature sets or models that perform well in training but do not generalize to new 

instances, hence the need for (4) [15]. The data driven approach is central to the field of 

machine learning. Examples of poorly-executed studies in which investigators neglect one or 

more of steps 1-5 are plentiful. Nevertheless, rigorous application of all five elements of the 

data-driven approach has allowed machine learning approaches to successfully address 

numerous real-world applications. We follow the data driven approach in this work.

In recent years, sparse representation methods have shown promise in EEG signal 

classification tasks. In these methods, the EEG signal is sparsely represented through linear 

combinations of basis functions (‘atoms’) from either a model-based or data-derived 

dictionary and classified based on several criteria. The objective of this paper is to 

investigate whether AD features are useful for classifying sedation levels in ICU patients. 

AD is a popular non-stationary signal analysis technique which is well suited for 

background EEG analysis [16], [17]. This method decomposes a given signal into a series of 

elemental signal templates or atoms. The atoms selected during the decomposition provide 

meaningful information about the underlying signal. The main advantage of using AD is that 

an application-specific dictionary can be easily designed. AD selects atoms from the 

dictionary that are highly correlated with the EEG signal under analysis. Features derived 

from these selected atoms during decomposition of EEG signals can be used to discriminate 

between sedated and non-sedated EEG classes. This data-driven approach using AD can be 

considered an “adaptive method” since AD can adapt itself to the data by selecting atoms 

from the dictionary coherent with the signal under analysis. This takes some burden/

opportunity for error away from the designer.

Further support for AD comes from contrasting it with alternative data-driven unsupervised 

feature learning methods. Unlike other popular unsupervised feature learning techniques 

such as principal component analysis, Wavelet decomposition, or independent component 

analysis, which produce compact representations of reduced dimensionality, AD learns a 

representation that is sparse and overcomplete: the dimension of the feature vector is larger 

than the input, but only a small number of components are non-zero for any given input [18], 

[19]. Sparse-overcomplete representations have been found to have several advantages in 

many different real-world problems. High-dimensional representations increase the 
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likelihood that signal categories will be easily separable, and sparsity often encourages 

features that admit an interpretation of the input data in terms of a small number of 

meaningful parts by extracting the structure hidden in the data. Finally, spare-overcomplete 

representations are motivated by substantial evidence that biological vision uses such 

representations in early visual areas [20], [21].

In this work, the potential of AD using Gabor representation of the signal (Gabor dictionary)

[22] to provide useful information for automatic classification of sedation levels is 

examined. First, optimal sparsifying bases from the dictionary of Gabor atoms are identified. 

After obtaining suitable dictionary atoms, several features are derived from the AD of the 

EEG signal. We use these features to train a binary classifier (SVM) to discriminate between 

two states : “awake” versus “sedated”. In addition, the performance of SVM classifier 

trained on several features commonly used in sedation level prediction system is compared 

with the SVM classifier trained using AD features.

II. Dataset

Medical grade Sedline brain function monitors (Masimo Corporation, Irvine, CA) were used 

to acquire electroencephalogram (EEG) signals from 200 ICU patients admitted at 

Massachusetts General Hospital (MGH), Boston, USA undergoing mechanical ventilation. 

Patients received several sedative and analgesic drugs simultaneously managed according to 

usual care in three different medical and surgical ICUs. Signals were recorded with a 

preamplifier bandwidth of 0.5 to 92 Hz, sampling rate 250 Hz, and 16-bit, 29 nV resolution. 

Recording electrodes were placed on the forehead approximately at positions Fp1, Fp2, F7, 

and F8, with reference 1 cm above Fpz and ground at Fpz. Electrodes were periodically 

monitored and adjusted or reapplied as needed to ensure impedances < 5 kΩ in each channel. 

The recordings were performed under an IRB approved protocol. Frontal EEG channels 

arranged in bipolar montage FP1–F7 (left hemisphere) and FP2–F8 (right hemisphere) were 

used in this study.

The Richmond agitation-sedation scale (RASS) was used to access the sedation levels of 

patients in this study. The RASS scale is presently among the best available tools for 

measuring sedation level in ICU patients, has been validated and shows good inter-rater 

reliability [23]. The scale ranges from −5 to +4 based on the patients’ level of consciousness: 

+1 to +4 = increasing level of agitation with +4 referring to combative state, 0 = calm and 

alert, and −1 to −5 = increasing level of sedation with −5 referring to unarousable state. 

RASS scores were assigned at approximately 2-hour intervals by trained ICU nurses and 

clinical research staff who received intensive, standardized training on performing RASS 

assessments, reducing between-rater variability. The ability of the proposed system was 

tested to discriminate between two RASS groups that are clearly distinguishable from a 

clinical viewpoint: awake [0,–1] versus sedated [–4, –5]. This grouping was done to 

determine if a combination of features obtained from the AD of the EEG signal contains 

useful information for determining a patients’ level of sedation.

In this study, since the primary intention was to develop a patient-independent binary 

classification system we only included patients who had both awake (0/−1) and sedated 
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(−4/−5) RASS assessments and the remaining patients were excluded. In addition, we 

excluded patients with brain injuries present on ICU admission, because these patients often 

have pathological EEG features that are only indirectly related to level of consciousness, 

thus including them would substantially complicate the analysis. This resulted in a total of 

44 patients (32 males, 12 females). Twenty minutes of EEG data preceding the time of 

RASS assessment from each patient (10 minutes awake and 10 minutes in the sedated state) 

were extracted for the analysis. In total, the dataset included a total of 880 minutes (44 

patients * 10 minutes awake + 44 patients * 10 minutes sedated = 880 minutes) of two 

channel EEG. Table I summarizes demographic and clinical characteristics of 44 patients 

used in this study.

III. Automatic Sedation Level Classification system Using Atomic 

Decomposition

The outline of the AD based sedation level classification system using support vector 

machine (SVM) is shown in figure 1. The initial step involves preprocessing signals and 

segmenting them into short duration epochs. Each EEG epoch is then decomposed using AD 

and several features are extracted from the parameters of atoms used during decomposition. 

The feature vectors are then fed to the classifier and the probability of each sedation level is 

obtained for each EEG epoch. The highest probability state is selected as the state estimate.

A. Preprocessing and epoch selection

The EEG signal is filtered using a bandpass filter set at 0.5-32 Hz since there is minimal 

neural activity in the EEG above 20 Hz or so that is directly relevant to sedation monitoring 

[24]. Using a 5 second moving window, we used the following criterions (satisfying at least 

one of them) to remove artifacts in the EEG signal: (1) abnormally high signal amplitude (> 

500 μV)–representing movement artifacts ; (2) average amplitude of signals across channels 

< 0.5* average amplitude of the first channel–representing loose electrode artifacts. In this 

study, the frequency range for analysis is restricted to 32 Hz to reduce the influence of 

muscle artifacts though there is minimal useful information in the EEG above the 20 Hz or 

so for the purpose of sedation monitoring [24], and there may be substantial noise or 

contribution from artifactual sources at higher frequencies (≥ 25 Hz) particularly in ICU 

EEG signals. Nevertheless, we elected to include information up to 32Hz. Including this 

higher frequency information might help for two reasons: First, some drugs which affect 

level of sedation induce high frequency effects (for example ketamine). Second, artifacts 

themselves, related to high frequency muscle artifact arising from facial tension or 

movements, may indicate the patient is awake. In addition, while we remove high amplitude 

segments (> 500 μV) and our bandpass filter has a low-frequency cutoff of 0.5Hz to remove 

baseline drift, neither of these choices completely remove low-frequency eye blink artifacts. 

This again is not necessarily a disadvantage, because eye blink artifact may provide useful 

information regarding level of consciousness (may provide evidence the patient is awake). 

We note that eye blinks are visible in the EEG but are not cortical in origin. For our purposes 

(inferring level of consciousness), this is not a problem: we aim to allow our algorithm to 

take advantage of any discriminative information that is present in the EEG signal. For these 
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reasons, we chose to include the full beta range up to 32 Hz, and to leave retain segments 

with amplitude > 500 μV.

The EEG signal is then divided into δ s short duration epochs with 50% overlap between 

epochs. This was performed to identify optimal EEG epoch duration that could best 

distinguish between awake and sedated states instead of fixed duration. The optimal value of 

δ will be obtained during cross validation of the proposed system and is reported in the 

results section.

B. Feature extraction using AD

AD technique uses a redundant time-frequency dictionary to sparsely represent a given 

signal. Let D ∈ ℝN × M (M ≥ N) be an overcomplete dictionary of M atoms, where each atom 

is of length N. Using the linear combination of atoms from the dictionary, any given EEG 

signal X ∈ ℝN × 1 can be represented (or approximated) as

X = Dγ, (1)

where γ ∈ ℝM × 1 is the weighted set of sparse coefficients associated with dictionary atoms 

[25]. This technique is used to find a suitable signal approximation within a given dictionary 

that concentrates the original signal energy in as few non-zero coefficients as possible. This 

means that the initial few atoms selected by the AD algorithm will contain the most salient 

information. Several AD methods are available to solve (1) which includes: Matching 

pursuit (MP) [26]. Orthogonal matching pursuit (OMP) [27] and Basis pursuit (BP) [28]. In 

this study, OMP is used to decompose EEG epochs [27]. It is a variation of the MP 

algorithm proposed by Mallat and Zhang [26] that uses a least-squares, rather than the inner 

product, to minimize the error in the signal approximation. An advantage of OMP is that the 

residual is always orthogonal to previously selected atoms. This means that the same atom 

can never be selected twice and therefore, requires fewer iterations to converge compared to 

MP [25], [27].

C. Dictionary for AD

Selection of a suitable decomposition dictionary influences the performance of the AD 

algorithm. Traditionally, dictionaries consisting of orthogonal bases such as Fourier and 

orthogonal wavelet bases have a minimum number of atoms to span the Hilbert space due to 

limitations in time (Fourier) and frequency (wavelet) localization [28]. However, sparse 

descriptive representations can be obtained using a time-frequency (TF) dictionary 

consisting of atoms completely spanning the time-frequency plane [29]. In this work, we use 

Gabor dictionary consisting of Gaussian functions that are scaled, translated and sine-

modulated [29] for decomposition given by,

ϕ(t; ξ) = 1
m

g t − α
m e jβt, (2)
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where ξ = [α, m, β]τ are the parameters of the Gabor atom and g(t) = e−πt2 is the Gaussian 

window function. The factor 1 ∕ m normalizes the function g(t). Here m > 0 is the scale of 

the function, α is the translation in time, and β is the frequency modulation. The dictionary 

is then defined as

D = ϕ (n; ξi) ∣t nTs
, 0 ≤ t < δ, ξi = [αi, mi, βi]

T, ∈ ℝNXM . (3)

Here Ts is the sampling time, n = 1, 2, …, N – 1 and δ is the duration of EEG epoch. Atoms 

are normalized to have unit energy. We use an overcomplete Gabor dictionary D with the 

following atom parameters: scale m which controls the time-width of the Gabor atom φ is 

obtained using a dyadic sequence m = 2q, where 0 ≤ q ≤ L, N is the length of the atom given 

by N = 2L, and we chose the values of α and β in the range α ∈ {21, 22, …, 210} and β ∈ 
{210, 29, …, 21}. We restricted the values of α and β in this range to reduce computational 

complexity.

D. AD Feature extraction

Let K be the number of atoms selected during AD of the EEG epoch. The following 6 

features are derived from AD of the EEG epoch described below:

1) Signal-to-error (SER) ratio: Let x be the short duration EEG epoch and x be the 

reconstructed EEG epoch using K number of atoms using AD. The signal-to-

error ratio can be obtained as

F1 = 20 log10
x 2

x − x 2
, dB (4)

2) Area under the inner product: This feature is defined as the area under the 

absolute value of the inner product between the atoms selected during AD and 

the signal given by

F2 = ∑
k = 1

K
∣ ϕk, x ∣

2
(5)

3) Atom parameters: The mean and standard deviation of the scale (m) parameters 

(F3, F4) and frequency (β) parameters(F5, F6) corresponding to K selected 

atoms during AD were obtained which resulted in four features. These features 

have been previously used for classifying different patterns in environmental 

sounds [30].

In total, six features are extracted from the AD of each δ sec EEG epoch for each channel. 

The median across channels is then obtained.
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IV. Classification and performance assessment

We used leave-one-subject-out cross-validation (LOSOCV) to train and validate the 

performance of the proposed sedation level classification system instead of k-fold cross-

validation for the following reasons: (i) Reducing the number of training samples (using k-

fold) reduces the amount of training data, increasing the likelihood of overfitting to the 

training sample. This reflects the well known bias-variance tradeoff (large training set, small 

testing set → reduced chance of overfitting, higher variance in estimates of average test 

performance; smaller training set, larger testing set → increased chance of overfitting, 

reduced variance in estimates of average test performance), (ii) The EEG can vary markedly 

between individuals in the same sedation level. Pooling the testing set for validation (using 5 

or 10-fold) would make it difficult to evaluate how well the model works in individual 

patients. Because it is important to us to know how well the method works in individuals, 

LOSOCV is the more appropriate approach for our study, and (iii) When compared to k-

fold, LOSOCV method provides a better estimates of the true generalization error [31]. This 

means that the classification system will provide similar or near-similar performance when 

tested on the unseen long recording testing data which is the case in the neuro iCUs where a 

patient can have EEG recording up to 3 days. In each iteration of LOSOCV, we used data 

from 43 patients as training and the one remaining patient’s data for testing. This process is 

repeated until the recording from each patient has been used once for testing (44 iterations in 

total).

The area under the receiver operator characteristic (AUC) was used as a performance metric 

in this study. Initially, the training set was formed using data from all patients except from 

the testing patient which divided overall data in the ratio 43:1 between training and testing 

sets. In each iteration, features in the training set were normalized using the box-cox 

transformation [32], which estimates a parameter λ. This value of λ, estimated from the 

training data, is used to normalize the testing data. During the procedure for optimizing 

SVM model and parameter tuning, we strictly did not include any data from the testing 

patient. The classification system requires selection of several parameters before testing on 

the testing set. During the training step, awake and sedated EEG epochs are labelled as 0 and 

1 respectively. For parameter optimization and model selection we employed a LOSOCV 

procedure, embedded within each iteration of the overall LOSOCV training procedure. That 

is, for each set of 43 patients in the LOSOCV training iteration, we identified the values of 

parameters [δ, σ, K, and C] that yielded the highest mean AUC on the LOSOCV. This 

procedure acted only on the 43 patients training data. In each iteration, the training set 

consisted of 86 samples from 43 patients (43 segments of 10 minutes each (1 segment per 

patient) during the awake state, and 43 segments of 10 minutes each (1 segment per patient) 

during the sedated state, resulting in 860 minutes of EEG epochs in total); it did not include 

the left-out test patient in any given round of LOSOCV. After obtaining optimized values for 

[δ, σ, K, and C], we used them to train the final SVM model and validate the trained 

classifier on the left-out patient. This resulted in a total of 43 LOSOCV iterations and for 

every iteration, the SVM model parameters for Gaussian kernel function: σ (kernel width) 

and C (regularization constant) were varied in the range [2−4, 2−3, …, 212] and [2−5, 2−4, …, 

28] respectively. In every training iteration, δ and K are varied in the range [1-20] s and 
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[2-100] atoms, respectively and the optimal parameters that maximized the AUC are 

obtained. It should be noted that at every LOSOCV iteration, different SVM model and 

parameters are obtained.

In the testing step, the trained binary classifier model using optimal parameters (δ, K, σ and 

C that maximize the mean AUC) is tested on the remaining (left out) patient to generate an 

automated annotation of sedation level. Using Platt scaling [33], the binary output of the 

SVM classifier is converted into a continuous probability scores through a sigmoid function 

to provide a probability of a patient being in a sedated state. Figure 2 illustrates the cross-

validation procedure used in this study.

V. Results

Results are reported as mean (IQR) unless otherwise stated.

The sensitivity, specificity and AUC of the proposed classification system using AD method 

are 81.33 (68.7 - 98.4)%, 81.06 (69.7 - 98.6)% and 0.9 (0.80 - 0.99) respectively. Different 

values of δ and K were selected in each iteration of LOSOCV. The maximum likelihood 

estimate of the hyperparameter values identified across the training iterations were an epoch 

duration of δ = 8 sec and a decomposition level of K = 10 atoms. Figure 3 demonstrates this 

process of decomposition using a sample EEG epoch.

For comparison, we also test the performance of the proposed system using features 

developed for measuring sedation levels which can be grouped into two categories:

1) Spectral (10 features): Power in sub-band: F7 = delta (0.5-4 Hz), F8 = theta (4-8 

Hz), F9 = alpha (8-12 Hz), F10 = spindle (12-16 Hz), F11 = beta (16-32 Hz) and 

F12 - F16 - their corresponding normalized power (normalized with total 

spectral power) [24], [34], [35]. These drug-specific spectral features showed 

significant correlation with level of consciousness in healthy volunteers during 

general anesthesia and sedation [24], [36].

2) Entropy (9 features): F17 = Lempel-ziv complexity [37], F18 = spectral entropy, 

F19 = state entropy [38], F20 = response entropy [38], F21 = Renyi entropy 

[39], F22 = Shannon entropy [40], F23 = sample entropy [41], F24 = 

approximate entropy [42], and F25 = permutation entropy [43].

The spectral features were estimated from the power spectral density (PSD) of the EEG 

epoch using Fast Fourier Transform (FFT). These additional features were also normalized 

using similar normalization scheme described in section IV. Table II compares the 

performance of the sedation level classification system using AD, spectral and entropy 

features. Figure 4 shows the distribution of individual features across all patients in 

classifying awake versus sedated EEG epochs. The performance of the system using AD 

features outperforms the system trained using either spectral or entropy features. The 

performance of the system using AD features is significantly better (p < 0.05 using 

Wilcoxon rank sum test) than the performance using spectral and entropy features. Figure 5 

shows the ROC curve for different feature sets using the SVM classifier model. It is clear 

from table II and figures 4, 5 that the combined feature set provides better discrimination 
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than any individual feature set. In the ICU, multiple drugs are given to the patient as a part of 

routine care and different sedative drugs have different effects (for example: 

dexmedetomidine operates differently than propofol [24] or benzodiazepines) on EEG 

independent of changes in sedation state. Moreover, the association between deeper levels of 

sedation and increasing levels of organ failure can significantly impact the EEG. As a result, 

there is a large heterogeneity in the dataset making it difficult to classify between sedated 

states (see figure 6) resulting in large variance in the performance of the classifier. In 

addition, this variability is a result of our use of evaluating the method on individual patients 

rather than on pooled data, coupled with the large between-patient variability in EEG 

signals. This highlights the challenge of creating reliable physiologically-based sedation 

monitoring in the ICU population. Additionally, we also performed 10-fold cross validation 

to assess the performance of the proposed system on an epoch-by-epoch basis. The results 

are summarized in the appendix table A1.

Since the proposed binary classification system provides a continuous probability score after 

post-processing the SVM output, it was observed that the probability score was higher 

during awake state and lower during sedated state. To test if the proposed method can be 

used to provide a meaningful continuous levels of sedation, we test the output of the binary 

SVM classifier (trained only on awake and sedated epochs) to assign a probability score to 

EEG epochs from the testing patient in all RASS states (+4 to −5). We then obtained the 

Spearmans rank correlation (ρ) between the probability score output from the binary SVM 

model and the continuous RASS scores which resulted in a mean ρ = 0.47(0.34 – 0.63), 

better than a chance-level mean correlation of ρ = 0.1(0.02 – 0.17) suggesting that the 

system can provide substantial, albeit imperfect, information about levels of sedation and 

with further development, the overall performance could be improved. An example 

illustrating this is shown in figure 7.

From the sample 8 s EEG epoch shown in figure 3, we would expect large EEG amplitudes 

with greater envelop variations in the awake state compared to the deep sedation where EEG 

may be greatly suppressed. This raises an important question: can we distinguish between 

awake and deep sedation states just by looking at the variations in the EEG envelope?. The 

background EEG signal is nonstationary with time varying amplitude and frequency 

characteristics which can be considered as a colored random noise with modulation in 

amplitude or amplitude modulation (AM). Therefore, features derived from AD (in this case 

F1 and F2) were more discriminative compared to other features (see figure 4). However, 

when only F1 and F2 features were used for classification, a mean AUC of 0.87 was 

obtained but when all the AD features were used (F1-F6) the system provided a mean AUC 

of 0.90. This suggests that the classification is not just based on EEG envelope variations at 

different sedation levels but also depends on the variations in the frequency. To demonstrate 

this, we used the Hilbert transform to obtain the EEG envelope (AM) of the bandpass 

filtered EEG epoch and used the mean AM as a feature to test the performance of the 

classification system. The classification system resulted an AUC = 0.76 (0.63 - 0.81) 

suggesting that variations in EEG envelop or signal amplitude differences in awake and deep 

sedation alone may not be sufficient to discriminate between two states.
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VI. Discussion

In this paper, we presented an AD-based approach to predict levels of sedation in 

mechanically ventilated ICU patients from the frontal EEG using features derived from 

atoms in the Gabor dictionary. The proposed method is patient-independent, i.e, the SVM 

model trained is independent of data from testing patients. In addition, the method predicts 

sedation levels on a continuous scale (probability estimates) which can be beneficial in 

continuous sedation level monitoring. Although several methods exist to estimate sedation 

levels, the potential of AD for this purpose has not been previously explored. We found that 

the highest classification performance is obtained by using a short duration 8 second EEG 

epoch. Clinically, this short duration segment analysis can be useful in reducing the “time-

delay problem” in implementations of realtime sedation level monitoring in the ICU [45]. In 

addition, we did not alter the EEG dataset to remove eye blinks and eye-movements 

artifacts. On the contrary, presence of eye-blinks adds additional information about the 

patients level of sedation: e.g. eye blinks may indicate the patient is awake. Therefore by 

using the dataset with artifacts encountered during real-time ICU EEG recordings, we 

obtained a robust assessment of our classification system.

AD methods provide sparse representation of the EEG signal. The primary intention of 

using AD in this study was to extract several discriminatory information for sedation level 

classification without any intention to recover or sparse representation of the actual EEG 

signal. We observed that the performance of the sedation level prediction system depends 

mainly on the number of decomposition atoms and the duration of the EEG epoch. The main 

assumption using AD for feature extraction is that the dominant characteristics of the EEG 

signal can be obtained by initial few atoms. By extracting several features from the AD 

representation of the EEG, it was possible to improve the performance of the proposed 

system when compared to other commonly used features.

To the best of our knowledge, this is the first attempt to study the potential of AD based 

features to assess sedation levels in ICU patients using EEG and is novel for this application 

(in ICU patients). We used following keywords in Pubmed and Google Scholar to search for 

literature using AD to assess the depth of anesthesia: Depth of Anesthesia+ Matching 
Pursuit, Depth of Anesthesia+ Atomic Decomposition, Sedation Level+ Atomic 
Decomposition, Sedation Level+ Matching Pursuit, Depth of Anesthesia + Gabor 
Dictionary. However, we did not find any existing literature using MP/AD for sedation level/

depth of anesthesia assessment. The closest work we found was the application of MP 

algorithm for spectral analysis of spindle activity during dexmedatomidine infusion in 

comparison with sleep spindles but not to assess sedation levels or depth of anesthesia [46].

The commercial BIS index is proprietary, and thus running it on our data to compare results 

was not possible. BIS is known to be based on features estimated from the power spectrum, 

burst suppression ratio, and the bispectrum of the EEG signal. This index was developed on 

adult patients under propofol general anesthesia in the surgical setting and has been shown 

to perform less well for other drugs and in ICU settings [11], [13]. Our proposed system is 

(i) based on a large set of quantitative EEG features different from those known to be 

included in BIS, and (ii) is tailored to assess depth of sedation for ICU patients.
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Though features obtained using AD show promise, the performance of the proposed system 

trained using other more conventional types of dictionaries, including Fourier, wavelet, the 

discrete cosine transform etc can improve the performance (in addition to gabor dictionary). 

Further, differences between datasets can have a high impact on the performance of the 

proposed system which makes it difficult to compare the results with other state-of-the-art 

methods.

Future work will address several limitations of this study. First, we did not provide any 

information about the sedative dosage and type of sedatives to the classifier. This is 

important as different sedatives produce different EEG signatures [24]. Second, we did not 

include a measure of severity of disease that affects the EEG morphology [47]. Several 

studies have demonstrated changes in EEG patterns in patients with conditions such as 

sepsis [48], encephalopathy [49], seizures [47] etc. This suggests that by adjusting for a 

measure of severity of illness (for example APACHE II), we might improve the performance 

of the proposed system. Third, we performed two-class classification in this study. As the 

goal of this paper was to explore the potential of AD method to distinguish between sedation 

states, we did not focus on multiclass RASS classification. The major reason for this 

approach was that we did not have enough dataset to support a 10-class RASS classification. 

In addition, intermediate RASS assessments are subject to inter-rater variability - for 

example, it is easy to distinguish between RASS= 0 and −5 but difficult to distinguish 

between RASS = −2 and −3, RASS =−3 and −4 and so on which can result in sedation level 

annotation noise. Due to this we evaluated the potential of AD features that can best 

discriminate between two extreme levels of sedation and later extend it to generate 

continuous levels of sedation (see figure 7). This technique of training the classifier on 

binary scores and testing it on continuous scores using probability output as a surrogate 

measure to predict sedation level is novel for this application (monitoring sedation levels in 

the ICU). We also hypothesize that including drug information to further specialize / tune 

the model might improve performance, at least in principle. In addition, future work on 

sedation monitoring may benefit from exploring ways to take into account EEG effects that 

are drug-specific [24], [36].

The proposed EEG-based patient independent automated system has advantages over 

conventional purely behavioral assessment-based methods for assessing depth of sedation in 

the ICU. First, EEG-based sedation level monitoring is objective, free from human inter-

observer variability. Second, it can be performed on a continuous basis. Third, interpreting 

the output of the classification system in a probabilistic way makes it flexible and suitable 

for following EEG trends at different sedation levels. Fourth, the AD method can be 

considered as an “adaptive” method in which the dictionary atoms can be designed and 

selected depending on the anesthetic or sedative used in the ICU. Finally, the results 

obtained in this study provide progress towards application of non-stationary signal analysis 

[50] and dictionary learning [51] methods for designing continuous sedation level prediction 

system.
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VII. Conclusion

The performance of several features for detecting sedation levels in ICu patients is 

presented. The classification system shows promising results using AD to differentiate 

between awake and sedated states when compared to spectral and entropy features. 

Combining all features together slightly improves system performance. The results obtained 

in this study represent progress towards developing a real-time automated sedation level 

monitoring system in ICU patients. In future work we will improve the performance of the 

proposed system by addressing several limitations outlined in this study.
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Appendix

TABLE A1

10-fold cross validation to compare the performance of the sedation level classification 

system on an epoch-by-epoch basis. The combined feature set (AD+Spectral+Entropy) 

outperformed individual feature set.

Feature set (No. of features) Mean AUC (IQR)

AD (6) 0.88 (0.86–0.89)

Spectral (10) 0.87 (0.86–0.88)

Entropy (9) 0.83 (0.82–0.84)

AD+Spectral (16) 0.90 (0.88–0.92)

AD+Entropy (15) 0.86 (0.84–0.88)

AD+Spectral+Entropy (25) 0.92 (0.89–0.93)
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Fig. 1. 
Architecture of the sedation level classification system used in this study.
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Fig. 2. 
Illustration of the LOSOCV procedure for performance assessment of the classification 

system.
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Fig. 3. 
A sample example to illustrate atomic decomposition (using 10 atoms) of an 8 s awake and 

sedated EEG epoch using Gabor dictionary. a is the original, b is the reconstructed and c is 

the residual of the awake EEG epoch. Similarly, d,e,f corresponds to the actual, 

reconstructed and residual of the sedated EEG epoch. Note that SER for sedated EEG epoch 

is higher (~ 7.5 dB difference) when compared to awake EEG epoch. This suggests that 

atoms selected from Gabor dictionary during AD are coherent with sedated EEG epochs.
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Fig. 4. 
The distribution of AUC (mean ± SD) to discriminate between awake and sedated EEG 

epochs using individual EEG features from different feature groups (F1–F25). Here vertical 

black line represents the mean value and rectangular box shows the standard deviation.
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Fig. 5. 
ROC curves for different feature set used in this study.
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Fig. 6. 
Two-dimensional visualization of the high-dimensional feature set (AD+Spectral+Entropy) 

using t-SNE algorithm [44] corresponding to all epochs from 44 patients. Due to the 

heterogeneous nature of patients, there are several overlapping clusters between awake and 

sedated states making it difficult to classify resulting in large variance of the classification 

performance. The t-SNE projection has 44× 150 = 6600 dots corresponding to all epochs 

from 44 patients (each patient has 150 dots: 75× 8 seconds epoch in awake state + 75 × 8 

seconds epoch in sedated state).
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Fig. 7. 
(a) Example of the correlation between the probability score of the SVM output with RASS 

assessments (ρ = 0.72 in this example). In this method, a trained binary SVM model (trained 

only on awake and sedated epochs) is used to obtain continuous probability score on the 

testing patient, (b) performance estimates of ρ using the actual predicted scores with actual 

RASS scores compared with chance level scores (by randomly shuffling the RASS scores on 

each bootstrap iteration)
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TABLE I

Summary of patient demographic and clinical characteristics used in this study.

Characteristic Value

Age (years), median (IQR) 61 (45-68)

Weight (kg), median (IQR) 91 (71-102)

Number of days in ICU, median (IQR) 15 (4-28)

Charlson comorbidity index, median (IQR) 4 (2-8)

APACHE II score at enrollment, median (IQR) 32 (14-38)

Infusion rate of sedative or analgesic agent in ICU - (mg h−1 kg−1)

 Propofol 2.31 ± 0.76

 Benzodiazepine 0.07±0.05

 Dexmedetomidine 0.011± 0.005

 Opiods 1.71± 1.03

Medical diagnosis during ICU admission - no.
++

 Sepsis 11

 Acute respiratory failure 29

 Cardiogenic shock, myocardial ischemia, or arrhythmia 7

 Neurologic disease or seizure 5

 Obstructive sleep apnea 18

 Other diagnosis 14

IQR = Interquartile range, SD = Standard deviation, APACHE = Acute Physiology and Chronic Health Evaluation II score.

**
Drug infusion rate within 12-24 hour before the RASS assessments. Values are reported as mean ± SD.

++
Number of patients with the given medical diagnosis used in this study. A patient can have multiple diagnosis during ICU admission.
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TABLE II

COMPARISON OF THE PERFORMANCE OF DIFFERENT FEATURE GROUPS

Feature set (No. of features) Mean AUC (IQR)

AD (6) 0.90 (0.79-0.97)

Spectral (10) 0.86 (0.71-0.91)

Entropy (9) 0.81 (0.69-0.95)

AD+Spectral (16) 0.88 (0.73-0.93)

AD+Entropy (15) 0.84 (0.72-0.94)

AD+Spectral+Entropy (25) 0.91 (0.81-0.98)
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