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Processes
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Abstract

Although the Poisson point process (PPP) has been widely used to model base station (BS) locations in

cellular networks, it is an idealized model that neglects the spatial correlation among BSs. The present paper

proposes the use of determinantal point process (DPP) to take into account these correlations; in particular

the repulsiveness among macro base station locations. DPPsare demonstrated to be analytically tractable by

leveraging several unique computational properties. Specifically, we show that the empty space function, the

nearest neighbor function, the mean interference and the signal-to-interference ratio (SIR) distribution have

explicit analytical representations and can be numerically evaluated for cellular networks with DPP configured

BSs. In addition, the modeling accuracy of DPPs is investigated by fitting three DPP models to real BS location

data sets from two major U.S. cities. Using hypothesis testing for various performance metrics of interest, we

show that these fitted DPPs are significantly more accurate than popular choices such as the PPP and the perturbed

hexagonal grid model.

Index Terms

Cellular networks, determinantal point process, stochastic geometry, SIR distribution, hypothesis testing

I. INTRODUCTION

Historically, cellular base stations have been modeled by the deterministic grid-based model, especially

the hexagonal grid. However, the increasingly dense capacity-driven deployment of BSs, along with other

topological and demographic factors, have made cellular BSdeployments more organic and irregular.

Therefore, random spatial models, in particular the PPP, have been widely adopted to analyze cellular
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networks using stochastic geometry [2]–[11]. However, since no two macro base stations are deployed

arbitrarily close to each other, the PPP assumption for the BS locations fails to model the underlying

repulsion among macro BSs and generally gives a pessimisticsignal-to-interference-plus-noise ratio

(SINR) distribution [2]. In this paper, we propose to use DPPs [12] to model the macro BS locations.

We demonstrate the analytical tractability of the proposedmodel and present statistical evidence to

validate the accuracy of DPPs in modeling BS deployments.

A. Related Works

Cellular network performance metrics, such as the coverageprobability and achievable rate, strongly

depend on the spatial configuration of BSs. PPPs have become increasingly popular to model cellular

BSs not only because they can describe highly irregular placements, but also because they allow the use

of powerful tools from stochastic geometry and are amenableto tractable analysis [2]. While cellular

networks with PPP distributed BSs have been studied in earlyworks such as [13]–[15], the coverage

probability and average Shannon rate were derived only recently in [2]. The analysis of cellular networks

with PPP distributed BSs has been widely extended to other network scenarios, including heterogeneous

cellular networks (HetNets) [3]–[7], MIMO cellular networks [8], [9], and MIMO HetNets [8], [10],

[11].

Real (macro) BS deployments exhibit “repulsion” between the BSs, which means that macro BSs

are typically distributed more regularly than the realization of a PPP. Although the statistics of the

propagation losses between a typical user and the BSs converge to that of a Poisson network model

under i.i.d. shadowing with large variance [16], these assumptions are quite restrictive and may not

always hold in practice. Therefore, several recent research efforts have been devoted to investigating

more accurate point process models for representing BS deployments. One class of such point processes

is the Gibbs point process [17]–[19]. Gibbs models were validated to be statistically similar to real

BS deployments using SIR distribution and Voronoi cell areadistribution [17]. The Strauss process,

which is an important class of Gibbs processes, can also provide accurate statistical fit to real BS

deployments [18], [19]. By contrast, the PPP and the grid models were demonstrated to be less accurate

models for real BS deployments [17], [18]. A significant limitation of Gibbs processes is their lack

of tractability, since their probability generating functional is generally unknown [18]. Therefore, point

processes that are both tractable and accurate in modeling real BS deployments are desirable.

For several reasons, determinantal point processes (DPPs)are a promising class of point processes to

model cellular BS deployments. First, DPPs have soft and adaptable repulsiveness [20]. Second, there

are quite effective statistical inference tools for DPPs [12], [21]. Third, many stationary DPPs can be
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easily simulated [21]–[23]. Fourth, DPPs have many attractive mathematical properties, which can be

used for the analysis of cellular network performance [24],[25].

The Ginibre point process, which is a type of DPP, has been recently proposed as a possible model for

cellular BSs. Closed-form expressions of the coverage probability and the mean data rate were derived

for Ginibre single-tier cellular networks in [25], and heterogeneous cellular networks in [26]. In [27],

several spatial descriptive statistics and the coverage probability were derived for Ginibre single-tier

networks. These results were empirically validated by comparing to real BS deployments. That being

said, the modeling accuracy and analytical tractability ofusing general DPPs to model cellular BS

deployments are still largely unexplored.

B. Contributions

In this work, we derive several key performance metrics in cellular networks with DPP configured

BSs for the first time. Then we use statistical methods to showthat DPPs indeed accurately model

cellular BSs. Finally, we describe the gains provided by theuse of DPPs for the performance evaluation

of cellular networks. The main contributions of this paper are now summarized.

DPPs are tractable models to analyze cellular networks:We summarize three key computational

properties of the DPPs, and derive the Laplace functional ofthe DPPs and independently marked DPPs

for functions satisfying certain conditions. Based on these computational properties, we analytically

derive and numerically evaluate several performance metrics, including the empty space function, nearest

neighbor function, mean interference1 and SIR distribution. The Quasi-Monte Carlo integration method

is used for efficient evaluation of the derived empty space function, nearest neighbor function, and

mean interference. Finally, the SIR distribution under thenearest BS association scheme is derived, and

a close approximation is proposed for efficient numerical evaluation in the high SIR regime.

DPPs are accurate models for macro BS deployments:We fit three stationary DPP models—the

Gauss, Cauchy and Generalized Gamma DPP—to real macro BS deployments from two major U.S.

cities, and show that these DPP models are generally accurate in terms of spatial descriptive statistics

and coverage probability. We find that the Generalized GammaDPP provides the best fit to real BS

deployments in terms of coverage probability, but is generally less tractable. In contrast, the Gauss DPP

model also provides a reasonable fit while offering better mathematical tractability. Compared to other

DPP models, the fitted Cauchy DPP provides the least precise results in terms of coverage probability.

We also show that the fitted Generalized Gamma DPP is the most repulsive while the fitted Cauchy

DPP is the least repulsive.

1By interference, we mean the sum interference power, which is a random shot-noise field [28].
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DPPs outperform the PPPs to predict key performance metricsin cellular networks: By

combining the analytical, numerical and statistical results, we show that DPPs are more accurate than

PPPs to model BS deployments in terms of the empty space function, the nearest neighbor function,

the mean interference and most importantly, the coverage probability.

II. M ATHEMATICAL PRELIMINARIES ON DETERMINANTAL POINT PROCESSES

A. Definition of DPPs

DPPs are defined based on theirn-th order product density. Consider a spatial point processΦ defined

on a locally compact spaceΛ; thenΦ hasn-th order product density functionρ(n) : Λn → [0,∞) if for

any Borel functionh : Λn → [0,∞):

E

6=
∑

X1,...,Xn∈Φ
h(X1, ..., Xn) =

∫

Λ

· · ·
∫

Λ

ρ(n)(x1, ..., xn)× h(x1, ..., xn)dx1· · · dxn, (1)

where 6= meansX1, ..., Xn are pair-wise different.

Let C denote the complex plane; then for any functionK : Λ×Λ → C, we use(K(xi, xj))1≤i,j≤n to

denote the square matrix withK(xi, xj) as its(i, j)-th entry. In addition, denote bydetA the determinant

of the square matrixA.

Definition 1: The point processΦ defined on a locally compact spaceΛ is called a determinantal

point process with kernelK : Λ× Λ → C, if its n-th order product density has the following form:

ρ(n)(x1, ..., xn) = det(K(xi, xj))1≤i,j≤n , (x1, ..., xn) ∈ Λn. (2)

Throughout this paper, we will focus on DPPs defined on the Euclidean planeR2, and we denote the

DPPΦ with kernelK by Φ ∼ DPP(K). The kernel functionK(x, y) is assumed to be a continuous,

Hermitian, locally square integrable and non-negative definite function2.

Remark1: The soft-core repulsive nature of DPPs can be explained by the fact that when two points

xi ≈ xj for i 6= j, we haveρ(n)(x1, ..., xn) ≈ 0.

A DPPΦ is stationary if itsn-th order product density is invariant under translations.A natural way

to guarantee the stationarity of a DPP is that its kernelK has the form:

K(x, y) = K0(x− y), x, y ∈ R
2.

In this case,K0 is also referred to as the covariance function of the DPP. Forstationary DPPs, the

intensity measure (i.e., first order product density) is constant overR2. Further if the stationary DPP is

isotropic, i.e., invariant under rotations, its kernel only depends on the distance between the node pair.

Another important property of stationary DPPs is their spectral density.

2This is not a sufficient condition to guarantee the existenceof the DPP. Readers are referred to [12], [21] for more details.
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Definition 2: (Spectral Density [21]) The spectral densityϕ of a stationary DPPΦ with covariance

functionK0(t) is defined as the Fourier transform ofK0(t), i.e.,ϕ(x) =
∫

R2 K0(t)e
−2πix·tdt for x ∈ R

2.

The spectral density is useful for simulating stationary DPPs. In addition, the spectral density can

also be used to assess the existence of the DPP associated with a certain kernel. Specifically, from

Proposition 5.1 in [21], the existence of a DPP is equivalentto its spectral densityϕ belonging to[0, 1].

B. Computational Properties of DPPs

We now list the computational properties which make DPPs mathematically tractable for analyzing

cellular networks.

1. DPPs have closed-form product densities of any order. Specifically, for anyn ∈ N, then-th order

product density ofΦ ∼ DPP(K) is given by (2). Therefore, higher order moment measures of shot

noise fields such as the mean/variance of interference in cellular networks can be derived. In addition,

the factorial moment expansion approach of [20] can also be applied to derive the success probability

in wireless networks, which only depends on the product density [20, Theorem 3].

2. DPPs have a closed-form Laplace functional for any nonnegative measurable functionf on R2

with compact support [24, Theorem 1.2].

Lemma1 (Shirai et al. [24]): ConsiderΦ ∼ DPP(K) defined onR2, where the kernelK guarantees

the existence ofΦ. ThenΦ has the Laplace functional:

E

[

exp

(

−
∫

R2

f(x)Φ(dx)

)]

=

+∞
∑

n=0

(−1)n

n!

∫

(R2)n
det (K(xi, xj))1≤i,j≤n

n
∏

i=1

(1− exp(−f(xi))) dx1...dxn, (3)

for any nonnegative measurable functionf on R
2 with compact support.

In the next lemma, we relax the strong requirement forf to have compact support, and show (3)

holds for more general functions.

Lemma2: ConsiderΦ ∼ DPP(K) defined onR2, where the kernelK guarantees the existence

of Φ. Then for any nonnegative measurable functionf which satisfies the following conditions3: (a)

lim
|x|→∞

f(x) = 0; (b) lim
r→∞

∫

R2\B(0,r)
K(x, x)f(x)dx = 0; and (c)

∫

R2 K(x, x)(1− exp(−f(x)))dx < +∞,

the Laplace functional ofΦ is given by (3).

Proof: The proof is provided in Appendix A.

Based on Lemma 2, we can easily derive the probability generating functional (pgfl) [28] ofΦ ∼
DPP(K), which is given in the following corollary.

3For x ∈ R
2 and r ≥ 0, B(x, r) (Bo(x, r)) denotes the closed (open) ball with centerx and radiusr. In addition,Bc(x, r) denotes

the complement ofB(x, r).
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Corollary 1: If K guarantees the existence ofΦ ∼ DPP(K), then the pgfl ofΦ is:

G[v] , E

(

∏

x∈Φ
v(x)

)

=
+∞
∑

n=0

(−1)n

n!

∫

(R2)n
det (K(xi, xj))1≤i,j≤n

n
∏

i=1

(1− v(xi)) dx1...dxn, (4)

for all measurable functionsv : R2 → [0, 1], such that− log v satisfies the conditions in Lemma 2.

This corollary can be derived using Lemma 2, thus we omit the detailed proof.

In the next lemma, we extend the Laplace functional of DPPs toindependently marked DPPs, where

the marks are independent and identically distributed (i.i.d.) and also independent of the ground point

process.

Lemma3: Consider a DPPΦ =
∑

i δxi
, whereΦ is defined onR2 with kernelK. Each nodexi ∈ Φ

is associated with an i.i.d. markpi, which is also independent ofxi. Denote the probability law of the

marks asF (·). Then the Laplace functional of the independently marked point processΦ̃ =
∑

i δ(xi,pi)

is given by:

LΦ̃(f) , E

[

exp

(

−
∑

i

f(xi, pi)

)]

=
+∞
∑

n=0

(−1)n

n!

∫

(R2)n
det (K(xi, xj))1≤i,j≤n

n
∏

i=1

(

1−
∫

R+

exp(−f(xi, pi))F (dpi)

)

dx1...dxn, (5)

for any nonnegative measurable functionf on R2, such that− log
∫

R+ exp(−f(x, p))F (dp) satisfies

the conditions in Lemma 2.

Proof: The proof is provided in Appendix B.

The Laplace functional provides a strong tool to analyze theshot noise field of a DPP. In particular,

it facilitates the analysis of interference and coverage probability in cellular networks.

3. Under the reduced Palm distribution4, the DPP has the law of another DPP whose kernel is given

in closed-form [24, Theorem 1.7].

Lemma4 (Shirai et al. [24]): ConsiderΦ ∼ DPP(K), where the kernelK guarantees the existence

of Φ. Then under the reduced Palm distribution atx0 ∈ R2, Φ coincides with another DPP associated

with kernelK !
x0

for Lebesgue almost allx0 with K(x0, x0) > 0, where:

K !
x0
(x, y) =

1

K(x0, x0)
det





K(x, y) K(x, x0)

K(x0, y) K(x0, x0)



 . (6)

This property shows that DPPs are closed under the reduced Palm distribution, which provides a tool

similar to Slyvniak’s theorem for Poisson processes [29]. In cellular networks, whenx0 is chosen as the

serving base station to the typical user, this property shows that all other interferers will form another

DPP with the modified kernel provided in (6).

4For a spatial point processΦ, denoteP!
x0
(·) as the reduced Palm distribution givenx0 ∈ Φ. For any eventA, a heuristic definition of

P
!
x0
(·) is: P!

x0
(A) = P(Φ\{x0} ∈ A|x0 ∈ Φ). The readers are referred to [29, p. 131] for formal definitions.
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In addition, it has been proved in [24, Theorem 6.5] that ifK(x0, x0) > 0, we have:

det(K !
x0
(xi, xj))1≤i,j≤n =

1

K(x0, x0)
det(K(xi, xj))0≤i,j≤n. (7)

Therefore, under the reduced Palm distribution atx0 with ρ(1)(x0) > 0, a DPPΦ with n-th order

product density functionρ(n)(x1, ..., xn) will coincide with another DPP withn-th order product density:

ρ
(n)
x0 (x1, ..., xn) = ρ(n+1)(x0, x1, ..., xn)/ρ

(1)(x0).

C. Examples of Stationary DPP Models

We will study three DPP models which were proposed in [21].

1. (Gauss DPP Model): A stationary point processΦ is a Gauss DPP if it has covariance function:

K0(x) = λ exp(−‖x‖2/α2), x ∈ R
2. (8)

In the above definition,λ denotes the spatial intensity of the Gauss DPP, whileα is a measure of its

repulsiveness. In order to guarantee the existence of the Gauss DPP model, the parameter pair(λ, α)

needs to satisfy:λ ≤ (
√
πα)−2.

2. (Cauchy DPP Model): The Cauchy DPP model has a covariance function:

K0(x) =
λ

(1 + ‖x‖2/α2)ν+1 , x ∈ R
2. (9)

In this model,λ describes the intensity, whileα is the scale parameter andν is the shape parameter.

Both α andν affect the repulsiveness of the Cauchy DPP. To guarantee theexistence of a Cauchy DPP,

the parameters need to satisfy:λ ≤ ν
(
√
πα)2

.

3. (Generalized Gamma DPP Model): The Generalized Gamma DPPmodel is defined based on its

spectral density:

ϕ(x) = λ
να2

2πΓ(2/ν)
exp(−‖αx‖ν), (10)

whereΓ(·) denotes the Euler Gamma function. The existence of a Generalized Gamma DPP can be

guaranteed whenλ ≤ 2πΓ(2/ν)
να2 .

D. Two Base Station Deployment Examples

BS deployments in two major U.S. cities are investigated in this paper5. Fig. 1 shows the BS

deployment of 115 BSs in a 16 km× 16 km area of Houston, as well as the deployment of 184

BSs in a 28 km× 28 km area of Los Angeles (LA). Both deployments are for sprawling and relatively

flat areas, where repulsion among BSs is expected.

5BS location data was provided by Crown Castle.
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(a) Houston data set (b) LA data set

Fig. 1: Real macro BS deployments.

(a) Gauss DPP (b) Cauchy DPP (c) Generalized Gamma DPP

Fig. 2: DPP models fitted to the Houston BS deployment.

Based on the maximum likelihood (ML) estimate method which is implemented in the software

package provided in [21], we have summarized the estimated parameters for different DPPs fitted to

the Houston and LA data set in Table I and Table II. Realizations of the Gauss DPP, Cauchy DPP and

Generalized Gamma DPP fitted to the Houston urban area deployment are shown in Fig. 2. From these

figures, it can be qualitatively observed that the fitted DPPsare regularly distributed and close to the

real BS deployments. In Section V, we will rigorously validate the accuracy of these DPP models based

on different summary statistics.

TABLE I: DPP Parameters for the Houston Data Set

Model λ α ν
Gauss DPP 0.4492 0.8417 −

Cauchy DPP 0.4492 1.558 3.424
Generalized Gamma DPP0.4492 2.539 2.63

TABLE II: DPP Parameters for the LA Data Set

Model λ α ν
Gauss DPP 0.2347 1.165 −

Cauchy DPP 0.2347 2.13 3.344
Generalized Gamma DPP0.2347 3.446 2.505
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III. A NALYZING CELLULAR NETWORKS USINGDETERMINANTAL POINT PROCESSES

In this section, based on the three important computationalproperties discussed in Section II-B, we

analyze several fundamental metrics for the analysis of downlink cellular networks with DPP configured

BSs: (1) the empty space function; (2) the nearest neighbor function; (3) the mean interference and (4)

the downlink SIR distribution.

A. Empty Space Function

The empty space function is the cumulative distribution function (CDF) of the distance from the

origin to its nearest point in the point process. It is also referred to as the spherical contact distribution.

ConsiderΦ ∼ DPP(K) and letd(o,Φ) = inf{‖x‖ : x ∈ Φ}; then the empty space functionF (r) is

defined as:F (r) = P (d(o,Φ) ≤ r) for r ≥ 0 [29].

In cellular networks, when each user is associated with its nearest BS, the empty space function

provides the distribution of the distance from the typical user to its serving BS, which further dictates

the statistics of the received signal power at the typical user.

Lemma5: For anyΦ ∼ DPP(K), the empty space functionF (r) for r ≥ 0 is given by:

F (r) =
+∞
∑

n=1

(−1)n−1

n!

∫

(B(0,r))n
det (K(xi, xj))1≤i,j≤n dx1...dxn. (11)

Proof: Choosef(x) = − log1{‖x‖>r} for x ∈ R2, we have:

E

[

exp

(

−
∫

f(x)Φ(dx)

)]

= E

[

exp

(

−
∑

xi∈Φ
− log1‖xi‖>r

)]

= P [d(o,Φ) > r] .

Therefore, based on Lemma 2, the empty space function is given by:

F (r) = 1− E

[

exp

(

−
∫

f(x)Φ(dx)

)]

= 1−
+∞
∑

n=0

(−1)n

n!

∫

(R2)n
det (K(xi, xj))1≤i,j≤n

n
∏

i=1

(

1− exp(log 1{‖xi‖>r})
)

dx1...dxn

=

+∞
∑

n=1

(−1)n−1

n!

∫

(B(0,r))n
det (K(xi, xj))1≤i,j≤n dx1...dxn.

Based on Lemma 5, we can also characterize the probability density function (PDF)f(r) of the

distance from the origin to its nearest point for all stationary and isotropic DPPsΦ.

Corollary 2: Let F (r) denote the empty space function for a stationary and isotropic DPPΦ with
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covariance functionK. Thenf(r) , dF (r)
dr

is given by:

f(r) = 2πr

+∞
∑

n=0

(−1)n

n!

∫

(B(0,r))n
det(K(xi, xj))0≤i,j≤n

∣

∣

∣

∣

x0=(r,0)

dx1...dxn. (12)

Proof: The proof is provided in Appendix C.

B. Nearest Neighbor Function

The nearest neighbor function gives the distribution of thedistance from the typical point of a point

process to its nearest neighbor in the same point process. For all stationary DPPsΦ, the nearest neighbor

function can be defined based on the reduced Palm distribution of Φ as:D(r) = P!
o(d(o,Φ) ≤ r) [29].

In cellular networks, the nearest neighbor function provides the distribution of the distance from

a typical BS to its nearest neighboring BS, which can be used as a metric to indicate the cluster-

ing/repulsive behavior of the network. Specifically, compared to the PPP, a regularly deployed network

corresponds to a larger nearest neighbor function, while a clustered network corresponds to a smaller

nearest neighbor function. Therefore, when each user is associated with its nearest BS, the dominant

interferers in regularly deployed networks are farther from the serving BS than a completely random

network.

Lemma6: For anyΦ ∼ DPP(K) defined onR2, its nearest neighbor functionD(r) is given by:

D(r) =

+∞
∑

n=1

(−1)n−1

n!

∫

(B(0,r))n
det
(

K !
o(xi, xj)

)

1≤i,j≤n
dx1...dxn, (13)

whereK !
o(x, y) is:

K !
o(x, y) =

1

K(0, 0)
det





K(x, y) K(x, 0)

K(0, y) K(0, 0)



 . (14)

Proof: DenoteΦ̃ ∼ DPP(K !
o(x, y)); then it follows from Lemma 4 that:

P
!
o(d(o,Φ) ≤ r) = P(d(o, Φ̃) ≤ r).

Therefore, the proof can be concluded by applying Lemma 5 to the DPPΦ̃.

C. Interference Distribution

In this section, we analyze properties of shot noise fields associated with a DPP. Our aim is to evaluate

interference in cellular networks under two BS associationschemes. Firstly, the BS to which the typical

user is associated is assumed to be at an arbitrary but fixed location6. We show that in this case, the

6This simple conditional interference scenario provides fundamental understanding of interference in wireless networks with DPP
configured nodes. The results in this case can be extended to ad-hoc networks as well.
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mean interference is easy to characterize with DPP configured BSs. Secondly, each user is assumed to

be associated with its nearest BS. In this case, we derive theLaplace transform of interference.

Throughout this part, the cellular BSs are assumed to be distributed according to a stationary and

isotropic DPPΦ ∼ DPP(K), while the mobile users are uniformly distributed and independent of the

BSs. SinceΦ is invariant under translations, we focus on the performance of the typical user which can

be assumed to be located at the origin. The location for the serving BS of the typical user is denoted

by x0. Each BSx ∈ Φ has single transmit antenna with transmit powerP , and it is associated with an

independent markhx which represents the small scale fading effects between theBS and the typical

user. Independent Rayleigh fading channels with unit mean are assumed, which meanshx ∼ exp(1)

for ∀x ∈ Φ. The shadowing effects are neglected, and the thermal noisepower is assumed to be

0, i.e., negligible compared to interference power. In addition, the path loss function is denoted by

l(x) : R2 7→ R+, which is a non-increasing function with respect to (w.r.t.) the norm ofx.

1) Interference with fixed associated BS scheme:SinceΦ is invariant under translation and

rotation, we assume the typical user located at the origin isserved by the base station atx0 = (r0, 0),

wherer0 denotes the distance from the origin tox0. Conditionally onx0 ∈ Φ being the serving BS, the

interference at the origin is:I =
∑

xi∈Φ\x0
Phxi

l(xi).

Lemma7: Givenx0 = (r0, 0) is the serving BS for the typical user located at the origin, the mean

interference seen by this typical user is:

E[I|x0 = (r0, 0)] = P

∫

R2

K !
x0
(x, x)l(x)dx, (15)

whereK !
x0
(·, ·) is given in (6)7.

Proof: From Lemma 4, the mean interference can be expressed as:

E[
∑

xi∈Φ\x0

Phxi
l(xi)|x0 = (r0, 0)] =E[

∑

xi∈Φ̃

Phxi
l(xi)]

(a)
=P

∫

R2

∫

R+

hl(x)K !
x0
(x, x) exp(−h)dhdx

=P

∫

R2

K !
x0
(x, x)l(x)dx,

whereΦ̃ ∼ DPP(K !
x0
) follows from Lemma 4, and (a) follows from Campbell’s theorem.

In fact, all the higher order moment measures of the interference can be calculated similarly based

on Definition 1 and Lemma 4.

2) Interference with nearest BS association scheme:In this part, we consider the BS association

scheme where each user is served by its nearest BS. In single tier cellular networks, the nearest BS

7This lemma can be seen as a general property of the shot noise field I created by a DPP, since it holds for all functionl(·).
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association scheme provides the highest average received power for each user.

For a user located aty ∈ R
2, its associated BS is denoted byx∗(y) = argmin

x∈Φ
‖x− y‖. Consider the

typical user located at the origin and its associated BSx∗(0). The interference at the typical user is then

given byI =
∑

xi∈Φ\x∗(0)

Phxi
l(xi), wherehxi

∼ exp(1) denotes the Rayleigh fading variable fromxi to

the origin. In the next theorem, we provide the general result which characterizes the Laplace transform

of interference conditional on the position of the BS nearest to the typical user.

Theorem1: Conditionally onx∗(0) = x0 being the serving BS of the typical user at the origin, if

f(x, hx) = sPhxl(x)1|x|≥r0− log 1|x|≥r0 satisfies the conditions in Lemma 3, then the Laplace transform

of the interference at the typical user is:

E[e−sI |x∗(0) = x0] =

+∞
∑

n=0

(−1)n

n!

∫

(R2)n det(K !
x0
(xi, xj))1≤i,j≤n

n
∏

i=1

[1− 1|xi|≥r0

1+sP l(xi)
]dx1...dxn

+∞
∑

n=0

(−1)n

n!

∫

B(0,r0)n
det(K !

x0
(xi, xj))1≤i,j≤ndx1...dxn

, (16)

wherer0 = |x∗(0)| andK !
x0
(·, ·) is given in (6).

Proof: DenoteΦ̃ ∼ DPP(K !
x0
), we have:

E[exp(−sI)|x∗(0) = x0] =E[exp(−sI)|x0 ∈ Φ,Φ(Bo(0, r0)) = 0]

(a)
=E

!
x0
[exp(−s

∑

xi∈Φ∩Bc(0,r0)

Phxi
l(xi))|Φ(Bo(0, r0)) = 0]

(b)
=E[exp(−s

∑

xi∈Φ̃∩Bc(0,r0)

Phxi
l(xi))1Φ̃(Bo(0,r0))=0]/P[Φ̃(B

o(0, r0)) = 0] , (17)

where (a) follows from the Bayes’ rule, and the fact that conditionally onx0 ∈ Φ, (Φ−δx0
)(Bo(0, r0)) =

0 is equivalent toΦ(Bo(0, r0)) = 0 sincex0 lies on the boundary of the open ballBo(0, r0). In addition,

(b) follows from the fact that for all random variablesX and eventsA, E[X|A] = E[X1A]
P(A)

.

Next, it is clear that the denominator in (17) is given by:

P[Φ̃(Bo(0, r0)) = 0] =

+∞
∑

n=0

(−1)n

n!

∫

B(0,r0)n
det(K !

x0
(xi, xj))1≤i,j≤ndx1...dxn. (18)

The numerator in (17) is calculated as:

E[exp(−s
∑

xi∈Φ̃∩Bc(0,r0)

Phxi
l(xi))1Φ̃(Bo(0,r0))=0]

(a)
=

+∞
∑

n=0

(−1)n

n!

∫

(R2)n

∫

(R+)n
det(K !

x0
(xi, xj))1≤i,j≤n

n
∏

i=1

[(1−

exp(−sPhxi
l(xi)1|xi|≥r0 + log 1|xi|≥r0)) exp(−hxi

)dhi]dx1...dxn

=
+∞
∑

n=0

(−1)n

n!

∫

(R2)n
det(K !

x0
(xi, xj))1≤i,j≤n

n
∏

i=1

[1− 1|xi|≥r0

1 + sP l(xi)
]dx1...dxn, (19)

where (a) is obtained from Lemma 3. Finally, substituting (18) and (19) into (17) yields the result.
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Remark2: In contrast with what happens in the PPP case, because of the repulsion among DPP

points,Φ ∩ Bc(0, r0) andΦ ∩ Bo(0, r0) are not independent.

Remark3: If Φ is a stationary PPP with intensityλ, then by substitutingdet(K(xi, xj))1≤i,j≤n =

det(K !
x0
(xi, xj))1≤i,j≤n = λn, Theorem 1 gives the Laplace transform of the interference at the typical

user to be:

E[e−sI |x∗(0) = x0] = exp

(

−λ

∫

Bc(0,r0)

(1− 1

1 + sP l(x)
)ds

)

,

which is consistent with (12) in [2].

Since the Laplace transform fully characterizes the probability distribution, many important perfor-

mance metrics can be derived using Theorem 1. Specifically, the next lemma gives the mean interference

under the nearest BS association scheme.

Lemma8: The mean interference at the typical user conditional onx∗(0) = x0 is:

E[I|x∗(0) = x0] =

+∞
∑

n=0

(−1)n

n!

∫

(B(0,r0))n

∫

Bc(0,r0)
det(K !

x0
(xi, xj))1≤i,j≤n+1P l(x1)dx1...dxn+1

+∞
∑

n=0

(−1)n

n!

∫

B(0,r0)n
det(K !

x0
(xi, xj))1≤i,j≤ndx1...dxn

, (20)

wherer0 = |x0|.
Proof: The proof is provided in Appendix D.

Since the DPPs are assumed to be stationary and isotropic, thus only the distance from the origin to

its nearest BS will affect the mean interference result, which can be observed from Lemma 8.

D. SIR Distribution

Based on the same assumptions as in Section III-C, we derive the SIR distribution as the com-

plementary cumulative distribution function (CCDF) of theSIR at the typical user under the nearest

BS association scheme. Denote byx∗(0) the BS to which the typical user at the origin associates, its

received SIR can be expressed as:

SIR(0,Φ) =
Phx0

l(x∗(0))
∑

xi∈Φ\x∗(0) Phxi
l(xi)

. (21)

Lemma9: The SIR distribution for the typical user at the origin, given x∗(0) = x0 is:

P[SIR(0,Φ) > T |x∗(0) = x0]

=

+∞
∑

n=0

(−1)n

n!

∫

(R2)n
det(K !

x0
(xi, xj))1≤i,j≤n

n
∏

i=1

[1− 1|xi|≥r0

1+T l(xi)/l(x0)
]dx1...dxn

+∞
∑

n=0

(−1)n

n!

∫

B(0,r0)n
det(K !

x0
(xi, xj))1≤i,j≤ndx1...dxn

, (22)

wherer0 = |x0|.
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Proof: Since the channels are subject to Rayleigh fading with unit mean, we have:

P[SIR(0,Φ) > T |x∗(0) = x0] =P[
h0l(x0)

I
> T |x∗(0) = x0]

=E[exp(− T

l(x0)
I)|x∗(0) = x0],

and the result follows from Theorem 1.

In Corollary 2, the probability density function for the distance from the origin to its nearest BS has

been characterized. Therefore, by combining Corollary 2 and Lemma 9, we are able to compute the

SIR distribution of the typical user under the nearest BS association scheme.

Theorem2: The SIR distribution of the typical user at the origin is given by:

P(SIR(0,Φ) > T )

=

∫ +∞

0

λ2π

[

+∞
∑

n=0

(−1)n

n!

∫

(R2)n
det(K !

x0
(xi, xj))1≤i,j≤n

n
∏

i=1

[1− 1|xi|≥r0

1 + T l(xi)/l(x0)
]

∣

∣

∣

∣

x0=(r0,0)

dx1...dxn

]

r0dr0.
(23)

Proof: When expressing the location of the closest BS to the typicaluser in polar form as

x∗(0) = (r0, θ), we know thatx∗(0) admits the probability densitydθ
2π
f(r0)dr0, wheref(r0) is given in

Corollary 2. Therefore, we have:

P(SIR(0,Φ) > T ) =

∫ +∞

0

∫ 2π

0

P[SIR(0,Φ) > T |x∗(0) = (r0, θ)]
1

2π
f(r0)dθdr0

(a)
=

∫ +∞

0

P[SIR(0,Φ) > T |x∗(0) = (r0, 0)]f(r0)dr0,

where (a) is because the DPP is stationary and isotropic, so that the angle ofx0 will not affect

the result ofP[SIR(0,Φ) > T |x∗(0) = (r0, θ)]. It follows from (7) that det(K !
x0
(xi, xj))1≤i,j≤n =

1
K(x0,x0)

det(K(xi, xj))0≤i,j≤n, then the proof is completed by applying Corollary 2 and Lemma 9.

Remark4: If we chooseΦ as a stationary PPP with intensityλ, i.e., det(K(xi, xj))1≤i,j≤n =

det(K !
x0
(xi, xj))1≤i,j≤n = λn, then Theorem 2 leads to the same result as [2, Theorem 2].

IV. NUMERICAL EVALUATION USING QUASI-MONTE CARLO INTEGRATION METHOD

In this section, we provide the numerical method used to evaluate the analytical results derived in

Section III. The Laplace functional of DPPs involves a series representation, where each term is a multi-

dimensional integration. Therefore, we adopt the Quasi-Monte Carlo (QMC) integration method [30]

for efficient numerical integration.

The QMC integration method approximates the multi-dimensional integration of functionf : [0, 1]n →
R as:

∫

[0,1]n
f(x)dx ≈ 1

N

N−1
∑

n=0

f(xn).

The sample pointsx0, ..., xN−1 ∈ [0, 1]n are chosen deterministically in the QMC method, and we use

the Sobol points generated in MATLAB as the choice for samplepoints [31]. Compared to the regular
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Fig. 3: Empty space function of the fitted Gauss DPP.

Monte Carlo integration method which uses a pseudo-random sequence as the sample points, the QMC

integration method converges much faster.

In the following, we will focus on the numerical results using the Gauss DPP fitted to the Houston

and LA data set. The modeling accuracy of the fitted Gauss DPPscompared to the real data sets will

be validated in Section V. In addition, our simulation results for each metric are based on the average

of 1000 realizations of the fitted Gauss DPP.

A. Empty Space Function

Since the QMC integration method requires integration overthe unit square, (11) can be rewritten as:

F (r) =
+∞
∑

n=1

(−1)n−1(2r)2n

n!

∫

([0,1]×[0,1])n
det (K0(2r(xi − xj)))1≤i,j≤n

∏

i

1{‖xi−( 1
2
, 1
2
)‖≤ 1

2
}dx1...dxn, (24)

whereK0(x) is the covariance function for the DPPΦ.

The accuracy of (24) is verified by computing the empty space function of the Gauss DPP fitted to the

Houston and LA data set respectively. Specifically, for the Gauss DPP model,K0(x) = λ exp(−‖x/α‖2),
whereλ andα are chosen according to Table I and Table II. Fig. 3 shows the QMC integration results

of (24) with different numbers of Sobol points, as well as thesimulation result for the fitted Gauss DPP.

We have observed that when the number of Sobol points is211, (24) can be computed very efficiently

(in a few seconds) and the QMC integration results are accurate except for the part whereF (r) is over

95%. In contrast, if the number of Sobol points is increased to 215, the QMC integration method is

almost 10 times slower while the results are accurate for a much larger range ofr.

B. Nearest Neighbor Function

The QMC integration method is also efficient in the numericalevaluation of the nearest neighbor

function. Similar to the empty space function, the QMC integration method withN = 211 takes a

few seconds to returnD(r) in Fig. 4, which is accurate up to 95%. By contrast, the QMC integration
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Fig. 4: Nearest neighbor function of the fitted Gauss DPP.

method is more accurate but almost ten times slower when the number of sample points is increased

to N = 215.

C. Mean Interference

In this part, the mean interference of the Gauss DPP is numerically evaluated for the two BS

association schemes discussed in Section III-C. The path loss model is chosen asl(x) = min(1, |x|−β),

whereβ > 2 is the path loss exponent.

1) Mean interference with fixed associated BS scheme:

Corollary 3: Conditionally onx0 = (r0, 0) as the serving BS for the typical user, the mean interfer-

ence at the typical user when BSs are distributed according to the Gauss DPP with parameters(λ, α)

is given by:

E[I|x0 = (r0, 0)] =
Pπλβ

β − 2
− 2Pπλ exp(−2r20

α2
)(A1(r0) + A2(r0)),

where A1(r0) =
∫ 1

0
exp(−2r2

α2 )I0(
4rr0
α2 )rdr, and A2(r0) =

∫∞
1

exp(−2r2

α2 )r
1−βI0(

4rr0
α2 )dr. Here I0(·)

denotes the modified Bessel function of first kind with parameter ν = 0 [32].

Proof: Based on the fact that
∫ 2π

0
exp(±β cos(x))dx = 2πI0(β) [32, p. 491], this corollary can be

derived by substituting the Gauss DPP kernel into Lemma 7.

In Fig. 5, the mean interference for the Gauss DPP fitted to theHouston and LA data sets are

provided under different path loss exponents withP = 1. From Fig. 5, it can be observed that the mean

interference increases asr0 increases; this is because it increases the probability forthe existence of a

strong interferer close to the typical user. In addition, givenr0, the mean interference is decreasing when

the path loss exponentβ increases; this is because the path loss function is decreasing with respect to

β for all interferers.

2) Mean interference with nearest BS association scheme:The Quasi-Monte Carlo integration

method is adopted to evaluate the mean interference under the nearest BS association scheme, which
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Fig. 5: Mean interference under the fixed associated BS scheme.
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Fig. 6: Mean interference under the nearest BS association scheme.

is given in (20). In Fig. 6, the mean interference is evaluated when the path loss exponentβ is 3, 3.5,

4. It can be observed from Fig. 6 that whenr0 (i.e., the distance from the typical user to its nearest

BS) increases, the mean interference decreases. This is because the strong interferers are farther away

from the typical user whenr0 increases, which leads to a smaller aggregate interference. This is quite

different from the case when the BS associated to the typicaluser is assumed to be at some fixed

location. In addition, since the path loss functionl(x) is non-increasing with respect toβ given the

norm of x, the mean interference decreases whenβ increases for a givenr0.

D. SIR Distribution

The QMC integration method can, in principle, be used to numerically evaluate (23). However,

it is time consuming due to the need to evaluate multiple integrations overR2. Therefore, we use

the diagonal approximation of the matrix determinant [33] to roughly estimate (23). Specifically, the

determinant of matrix(K(xi, xj))1≤i,j≤n is approximated8 asdet((K(xi, xj))1≤i,j≤n) ≈
∏n

i=1K(xi, xi)

8The relative error bound for diagonal approximation is provided in [33, Theorem 1].
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Fig. 7: Diagonal approximation to the SIR distribution of the fitted Gauss DPP.

under the diagonal approximation.

Lemma10: Under the diagonal approximation, the SIR distribution forthe typical user is approxi-

mated as:

P(SIR(0,Φ) > T ) ≈
∫ +∞

0

λ2πr0 exp

(

−
∫

R2

K !
x0
(x, x)(1− 1|x|≥r0

1 + T l(x)/l(x0)
)

∣

∣

∣

∣

x0=(r0,0)

dx

)

dr0. (25)

Lemma 10 can be proved by applying diagonal approximation toTheorem 2, thus we omit the proof.

Next, we evaluate the accuracy of Lemma 10 by assuming the BSsare distributed according to the

Gauss DPP. In addition, the power-law path loss model with path loss exponentβ > 2 is used for

simplicity, i.e., l(x) = ‖x‖−β for x ∈ R2.

Corollary 4: When BSs are distributed according to the Gauss DPP with parameters(λ, α), the SIR

distribution can be approximated under the diagonal approximation as:

P(SIR(0,Φ) > T ) ≈
∫ +∞

0

λ2πr0 exp

(

−λ2π

[
∫ r0

0

(1− exp(−2(r2 + r20)

α2
)I0(

4rr0
α2

))rdr

+

∫ +∞

r0

(1− exp(−2(r2 + r20)

α2
)I0(

4rr0
α2

))
Trβ0 r

Trβ0 + rβ
dr

])

dr0, (26)

whereI0(·) denotes the modified Bessel function of first kind with parameter ν = 0.

Proof: Based on the fact that
∫ 2π

0
exp(±β cos(x))dx = 2πI0(β) [32, p. 491], this corollary can be

derived by substituting the Gauss DPP kernel into Lemma 10.

The QMC integration method is used to evaluate (26) with pathloss exponentβ = 4, and the result

for the Gauss DPP fitted to Houston data set is plotted in Fig. 7. It can be observed that the diagonal

approximation to the coverage probability is accurate compared to the simulation result in the high SIR

regime, i.e., when the SIR threshold is larger than 6 dB. The same trend can also be found for the LA

data set. Therefore, we can use the diagonal approximation as an accurate estimate for the coverage

probability in the high SIR regime.
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V. GOODNESS-OF-FIT FOR STATIONARY DPPS TO MODEL BS DEPLOYMENTS

Given that the stationary DPP models are tractable, we provide rigorous investigation of their

modeling accuracy to real BS deployments in this section. Our simulations are based on the publicly

available package for DPP models [21] implemented in R, which is used as a supplement to the Spatstat

library [34].

A. Summary Statistics

To test the goodness-of-fit of these DPP models, we have used Ripley’s K function and the coverage

probability as performance metrics, which are described below:

Ripley’s K function: Ripley’s K function is a second order spatial summary statistic defined for

stationary point processes. It counts the mean number of points within distancer of a given point in

the point process excluding the point itself. Formally, theK functionK(r) for a stationary and isotropic

point processΦ with intensityλ is defined as:

K(r) =
E!
o (Φ(B(0, r)))

λ
, (27)

whereE!
o(·) is the expectation with respect to the reduced Palm distribution of Φ.

The K-function is used as a measure of repulsiveness/clustering of spatial point processes. Specifically,

compared to the PPP which is completely random, a repulsive point process model will have a smaller

K function, while a clustered point process model will have alarger K function.

Coverage Probability: The coverage probability is defined as the probability that the received SINR

at the typical user is larger than the thresholdT . When measuring the fitting accuracy of spatial point

processes to real BS deployments, metrics related to the wireless system such as the coverage probability

are more practical. In particular, the coverage probability also depends on the repulsive/clustering

behavior of the underlying point process used to model the BSdeployment. Compared to the fitted PPP,

due a larger empty space function, the distance from the typical user to its serving BS is stochastically

less in a fitted repulsive point process. Similarly, due to a smaller nearest neighbor function, the fitted

repulsive point process has stochastically larger distance from the serving BS to its closest interfering

BS than the PPP case. Therefore, from (21), a larger coverageprobability is expected when the BS

deployments are modeled by more repulsive spatial point processes. We will use the same parameter

assumptions as in Section IV-D for evaluating the coverage probability. Since the thermal noise power

is assumed to be 0, the CCDF of SIR at the typical user, i.e.,P(SIR(0,Φ) > T ), coincides with its

coverage probability with thresholdT .
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Fig. 8: K function of the fitted Gauss DPP.
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Fig. 9: Coverage probability of the fitted Gauss DPP.

B. Hypothesis Testing using Summary Statistics

In this part, we evaluate the goodness-of-fit of stationary DPP models using the summary statistics

discussed above. Particularly, we fit the real BS deployments in Fig. 1 to the Gauss, Cauchy and

Generalized Gamma DPPs.

To evaluate the goodness-of-fit for these DPP models, we generate 1000 realizations of each DPP

model and examine whether the simulated DPPs fit with the behavior of real BS deployments in terms

of the summary statistics. Specifically, based on the null hypothesis that real BS deployments can be

modeled as realizations of DPPs, we verify whether the K-function of the real data set lies within the

envelope of the simulated DPPs. We use similar testing method for the coverage probability; a 95%

confidence interval is used for evaluation.

Goodness-of-fit for Gauss DPP Model:The testing results for the K function of the fitted Gauss

DPP are given in Fig. 8, which clearly show that the K functions of the real BS deployments lie within

the envelope of the fitted Gauss DPP. The coverage probability for the fitted Gauss DPP is provided in

Fig. 9, from which it can be observed that the coverage probabilities of the Houston and LA data sets
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Fig. 10: Goodness-of-fit for the Cauchy DPP fitted to the Houston data set.
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Simulation of Generalized Gamma
DPP: 95% Confidence Interval
Simulation of Generalized Gamma
DPP: Average Coverage Probability
Houston Data Set

(b) Coverage probability

Fig. 11: Goodness-of-fit for the Generalized Gamma DPP fittedto the Houston data set.

lie within the 95% confidence interval of the simulated GaussDPPs. In addition, the average coverage

probability of the fitted Gauss DPP is slightly lower than that of real data sets, which means that the

fitted Gauss DPP corresponds to a slightly smaller repulsiveness than the real deployments.

Therefore, in terms of the above summary statistics, the Gauss DPP model can be used as a reasonable

point process model for real BS deployments. In addition, due to the concise definition of its kernel,

the shot noise analysis of the Gauss DPP is possible, which further motivates the use of Gauss DPPs

to model real-world macro BS deployments.

Goodness-of-fit for the Cauchy DPP Model:Based on the same method as for the Gauss DPP

model, we tested the goodness-of-fit for the Cauchy DPP model. The fitting results for the Houston

data set are shown in Fig. 10, from which it can be concluded that the Cauchy DPP model is also a

reasonable point process model for real BS deployments. Similar fitting results are also observed for

the LA data set, and thus we omit the details. Compared to the fitted Gauss DPP, the average coverage

probability for the fitted Cauchy DPP in Fig. 10 is slightly lower than that in Fig. 9, which means the

fitted Cauchy DPP corresponds to a smaller repulsiveness than the Gauss DPP.
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Simulation of Perturbed
Hexagonal Model: 95%
Confidence Interval
Simulation of PPP: 95%
Confidence Interval
LA data set

(b) LA data set

Fig. 12: Coverage probability of the PPP and the perturbed grid model.

Goodness-of-fit for the Generalized Gamma DPP Model:The goodness-of-fit for the Generalized

Gamma DPP fitted to the Houston data set is evaluated in Fig. 11(the LA data set has similar fitting

results). The Generalized Gamma DPP provides the best fit among all these DPP models, especially

in terms of coverage probability. In Fig. 11, the average coverage probability of the fitted Generalized

Gamma DPP almost exactly matches the real BS deployment, while the average coverage probability

of the fitted Gauss DPP and the fitted Cauchy DPP all stay below the real data set. This is because the

Generalized Gamma DPP corresponds to a higher repulsiveness (which will be proved in Section V-C),

from which a larger coverage probability is expected.

Goodness-of-fit for the PPP and the perturbed hexagonal model: Finally, the goodness-of-fit

for the PPP and the perturbed hexagonal grid model are studied. The perturbed hexagonal grid model

is obtained by independently perturbing each point of a hexagonal grid in the random direction by a

distanced [17]. This distance is uniformly distributed between 0 andηr, with r being the radius of the

hexagonal cells andη is chosen as 0.5 in our simulation. Fig. 12 depicts the coverage probability of

the PPP and of the perturbed hexagonal grid model, which correspond to a lower bound and an upper

bound of the actual coverage probability respectively. This is because the PPP exhibits complete spatial

randomness while the perturbed grid model maintains good spatial regularity.

C. Repulsiveness of Different DPPs

In order to explain why the Generalized Gamma DPP has larger repulsiveness, we use the metric sug-

gested in [21] to measure the repulsiveness of different DPPs. Specifically, from Lemma 4, the intensity

measure of a stationary DPPΦ under its reduced Palm distribution isρ(1)o (x) = ρ(2)(0, x)/ρ(1)(x), where

ρ(2) andρ(1) are the second and the first order product density ofΦ. By calculating the difference of the

total expected number of points under the probability distribution P and the reduced Palm distribution

P!
o, the repulsiveness of a stationary DPPΦ with intensity λ can be measured using the following
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metric [21]:

µ =

∫

R2

[

λ− ρ(1)o (x)
]

dx =
1

λ

∫

R2

|K0(x)|2dx =
1

λ

∫

R2

|ϕ(x)|2dx, (28)

whereK0(x) andϕ(x) denote the covariance function and spectral density ofΦ respectively.

PPP hasµ = 0 due to Slivnyak’s theorem, while the grid-based model hasµ = 1 since the point

at the origin is excluded under reduced Palm distribution. Generally, larger value ofµ will correspond

to a more repulsive point process. This repulsiveness measure for the Gauss, Cauchy and Generalized

Gamma model can be calculated as:µgauss = λπα2/2, µcauchy = λπα2/(2ν + 1), and µgengamma=

λνα2/(21+2/νπΓ(2/ν)). Based on the parameters in Table I, we can calculate the repulsiveness measure

of each DPP model fitted to the Houston data set asµgauss= 0.4999, µcauchy= 0.4365 andµgengamma=

0.5905. Similarly, the repulsiveness measure of each DPP model fitted to the LA data set is given by

µgauss= 0.5004, µcauchy = 0.4351, µgengamma= 0.5479. Therefore, it can be concluded that the fitted

Generalized Gamma DPP has the largest repulsiveness, followed by the fitted Gauss DPP, while the

fitted Cauchy DPP is the least repulsive. Since higher repulsiveness will result in more regularity for the

point process, a Generalized Gamma DPP generally corresponds to a larger average coverage probability.

VI. PERFORMANCE COMPARISONS OFDPPS AND PPPS

Based on the analytical, numerical and statistical resultsfrom previous sections, we demonstrate that

the DPPs are more accurate than the PPPs to predict key performance metrics in cellular networks for

the following reasons.

Firstly, since the DPPs have more regularly spaced point pattern, they will have larger empty space

function than the PPPs. Equivalently, this means the distance from the origin to its closest point on the

DPPs fitted to real deployments is stochastically less than the PPPs, which can be observed in Fig. 13a

for the Gauss DPP. Therefore, if each user is associated withits nearest BS, DPPs will lead to a stronger

received power at the typical user compared to PPPs in the stochastic dominance sense.

Secondly, the fitted DPPs will have smaller nearest neighborfunction than the PPP, which can be

observed in Fig. 13b for the Gauss DPP. In addition, we can also observe from Fig. 13b that the nearest

neighbor function for the Gauss DPP is much smaller than the PPP whenr is small. This indicates that

the PPP will largely overestimate the nearest neighbor function whenr is small, which leads to much

closer strong interfering BSs compared to the Gauss DPP.

In addition to the empty space function and the nearest neighbor function, the DPPs are also more

accurate in estimating the interference and coverage probability than the PPP. When each user is

associated with an arbitrary but fixed BS, an immediate implication of Lemma 7 is that the mean

interference for a stationary DPPΦ with intensityλ is strictly smaller than that of the PPP with the
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Fig. 13: Comparison of the Gauss DPP and PPP fitted to Houston data set.

same intensity. This can be observed by separating (15) as:

E[I|x0 = (r0, 0)] = Pλ

∫

R2

l(x)dx− P

λ

∫

R2

|K(x, x0)|2l(x)dx, (29)

where the first term is equal to the mean interference under the PPP distributed BSs by Slivnyak’s

theorem, while the second term stems from the soft repulsionamong BSs in the DPPΦ.

Finally, under the nearest BS association scheme, the coverage probability estimated from the fitted

DPPs is validated to be close to the BS deployments in SectionV-B. In contrast, the PPP only provides

a lower bound to the actual coverage probability.

VII. CONCLUSION

In this paper, the analytical tractability and the modelingaccuracy of determinantal point processes

for modeling cellular network BS locations are investigated. First, cellular networks with DPP configured

BSs are proved to be analytically tractable. Specifically, we have summarized the fact that DPPs have

closed form expressions for the product density and reducedPalm distribution, then we have derived the

Laplace functional of the DPPs and of independently marked DPPs for functions satisfying certain mild

conditions. Based on these computational properties, the empty space function, the nearest neighbor

function, and the mean interference were derived analytically and evaluated using the Quasi-Monte

Carlo integration method. In addition, the Laplace transform of the interference and the SIR distribution

under the nearest BS association scheme are also derived andnumerically evaluated.

Next, using the K function and the coverage probability, DPPs are shown to be accurate by fitting

three stationary DPP models to two real macro BS deployments: the Gauss DPP, Cauchy DPP and

Generalized Gamma DPP. In particular, the Generalized Gamma DPP is found to provide the best fit

in terms of coverage probability due to its higher repulsiveness. However, the Generalized Gamma

DPP is generally less tractable since it is defined based on its spectral density. The Gauss DPP also

provides a reasonable fit to real BS deployments, but with higher mathematical tractability, due to the
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simple definition of its kernel. Compared to other DPP models, the fitted Cauchy DPP has the smallest

repulsiveness and also less precise results in terms of the summary statistics. Therefore, we conclude

that the Gauss DPP provides the best tradeoff between accuracy and tractability.

Finally, based on a combination of analytical, numerical and statistical results, we demonstrate that

DPPs outperform PPPs to model cellular networks in terms of several key performance metrics.

Future work may include finding different DPP examples that lead to more efficient evaluations of

the key performance metrics (i.e., without relying on Quasi-Monte Carlo integration), or extending the

SISO single-tier network model analyzed here to MIMO or HetNet models.
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APPENDIX A

PROOF OFLEMMA 2

For any functionf satisfying the conditions in Lemma 2, define the following function for k ∈ N:

fk(x) =







f(x), if x ∈ B(0, k),

0, otherwise.
(30)

Based on Lemma 1, since eachfk(x) has finite support, we have:E
[

exp
(

−
∫

R2 fk(x)Φ(dx)
)]

=
∑+∞

n=0
(−1)n

n!

∫

(R2)n
det (K(xi, xj))1≤i,j≤n

∏n
i=1 (1− exp(−fk(xi))) dx1...dxn.

From the monotone convergence theorem, we have:

1. lim
k→∞

E
[

exp
(

−
∫

R2 fk(x)Φ(dx)
)]

= E
[

exp
(

−
∫

R2 f(x)Φ(dx)
)]

.

Let us now show that:

2. lim
k→∞

∑+∞
n=0

(−1)n

n!

∫

(R2)n
det (K(xi, xj))1≤i,j≤n

∏n
i=1 (1− exp(−fk(xi))) dx1...dxn =

∑+∞
n=0

(−1)n

n!

∫

(R2)n
det (K(xi, xj))1≤i,j≤n

∏n
i=1 (1− exp(−f(xi))) dx1...dxn.

To prove this result, we use the following lemma [35, Theorem7.11]:

Lemma11: Supposefn → f uniformly on a setE in a metric space. Letx be a limit point onE

such thatlim
t→x

fn(t) exists for∀n ∈ N, then lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t).

Let hn(k) =
∑n

m=0

∫

(R2)m
(−1)m

m!
det (K(xi, xj))1≤i,j≤m

∏m
i=1 (1− exp(−fk(xi))) dx1...dxm. We prove

that {hn} converges uniformly∀k ∈ N. This is because:
∣

∣

∣

∣

∫

(R2)m

(−1)m

m!
det (K(xi, xj))1≤i,j≤m

m
∏

i=1

(1− exp(−fk(xi))) dx1...dxm

∣

∣

∣

∣
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(a)

≤ 1

m!

(
∫

R2

K(x, x)(1 − exp(−f(x)))dx

)m

, Mm,

where (a) follows from Hadamard’s inequality, i.e.,det((K(xi, xj))1≤i,j≤n ≤
∏n

i=1K(xi, xi) if K is

positive semi-definite. Since
∫

R2 K(x, x)(1− exp(−f(x)))dx is finite by assumption,
∑∞

m=0Mm is also

finite. Therefore, by Weierstrass M-test [35, Theorem 7.10], {hn} converges uniformly.

Next, we showlim
k→∞

hn(k) exists for∀n ∈ N. This is because for0 ≤ m ≤ n, we have:

lim
k→∞

∫

(R2)m

(−1)m

m!
det (K(xi, xj))1≤i,j≤m

m
∏

i=1

(1− exp(−fk(xi))) dx1...dxm

(a)
=

∫

(R2)m

(−1)m

m!
det (K(xi, xj))1≤i,j≤m lim

k→∞

m
∏

i=1

(1− exp(−fk(xi))) dx1...dxm

=

∫

(R2)m

(−1)m

m!
det (K(xi, xj))1≤i,j≤m

m
∏

i=1

(1− exp(−f(xi))) dx1...dxm. (31)

Step (a) follows from the dominated convergence theorem (DCT): givenm, denotex , (x1, ..., xm) and

gk(x) ,
(−1)m

m!
det (K(xi, xj))1≤i,j≤m

∏m
i=1(1− exp(−fk(xi))); then from the definition offk(x), gk(x)

converges pointwise to(−1)m

m!
det (K(xi, xj))1≤i,j≤m

∏m
i=1(1 − exp(−f(xi))). In addition, observe that

|gk(x)| ≤ 1
m!

∏m
i=1K(xi, xi)(1− exp(−f(xi))), we have

∫

(R2)m
1
m!

∏m
i=1K(xi, xi)

(1− exp(−f(xi)))dx1...dxm =
(
∫
R2

K(x,x)(1−exp(−f(x)))dx)
m

m!
< ∞. Since each term ofhn(k) has a finite

limit when k → ∞, thus lim
k→∞

hn(k) also exists.

Now we can apply Lemma 11 tohn(k) to derive the desired fact:

lim
k→∞

∞
∑

m=0

(−1)m

m!

∫

(R2)m
det (K(xi, xj))1≤i,j≤m

m
∏

i=1

(1− exp(−fk(xi))) dx1...dxm

= lim
k→∞

lim
n→∞

n
∑

m=0

(−1)m

m!

∫

(R2)m
det (K(xi, xj))1≤i,j≤m

m
∏

i=1

(1− exp(−fk(xi))) dx1...dxm

(a)
= lim

n→∞
lim
k→∞

n
∑

m=0

(−1)m

m!

∫

(R2)m
det (K(xi, xj))1≤i,j≤m

m
∏

i=1

(1− exp(−fk(xi))) dx1...dxm

(b)
=

∞
∑

m=0

(−1)m

m!

∫

(R2)m
det (K(xi, xj))1≤i,j≤m

m
∏

i=1

(1− exp(−f(xi))) dx1...dxm, (32)

where (a) is derived using Lemma 11, and (b) follows from (31).

The proof of the lemma follows from these two facts.

APPENDIX B

PROOF OFLEMMA 3

This can be proved by the following procedure:

E

[

exp(−
∑

i

f(xi, pi))

]
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(a)
=E

[

∏

i

∫

R+

exp(−f(xi, p))F (dp)

]

(b)
=

+∞
∑

n=0

(−1)n

n!

∫

(R2)n
det (K(xi, xj))1≤i,j≤n

n
∏

i=1

(

1−
∫

R+

exp(−f(xi, pi))F (dpi)

)

dx1...dxn,

where (a) is because all the marks are i.i.d. and independentof DPPΦ, while (b) comes from Corollary 1.

APPENDIX C

PROOF OFCOROLLARY 2

We start the proof with the following two lemmas:

Lemma12: Consider two non-negative functionsg(u, v) : R × R
d → [0,∞), and p(u) : R →

[0,+∞), which satisfy the following conditions: (1)g(u, v) is non-decreasing, right continuous w.r.t.

u, andg(u, v) = 0 for ∀u ≤ 0; (2) p(u) is bounded, right continuous, andlim
u→+∞

p(u) = 0; (3) p(u) and

g(u, v) do not have common discontinuities for Lebesgue almost allv. Let F (u) =
∫

Rd g(u, v)dv, we

also assume thatF (u) is continuous, non-decreasing and bounded onR. Then the following equation

holds:
∫

R

p(u)dF (u) =

∫

Rd×R

p(u)dug(u, v)dv, (33)

where the integrals w.r.t.dF (u) anddug(u, v) are in the Stieltjes sense.

Proof: Using Stieltjes integration by parts, we have the following:
∫

R

p(u)dF (u) =

∫

R

p(u)du

∫

Rd

g(u, v)dv

(a)
= −

∫

R

∫

Rd

g(u, v)dvdp(u)

(b)
= −

∫

Rd

∫

R

g(u, v)dp(u)dv

(c)
=

∫

Rd

∫

R

p(u)dug(u, v)dv, (34)

where (a) and (c) are derived using integration by parts for the Stieltjes integrals, and (b) follows from

Fubini’s theorem.

Lemma13 (Rubin [35]): Suppose{fn} is a sequence of differentiable functions on[a, b] such that

{fn(x0)} converges for some pointx0 on [a, b]. If {f ′

n} converges uniformly on[a, b] to f ′, then{fn}
converges uniformly on[a, b] to a functionf , andf

′
(x) = lim

n→∞
f

′

n(x) for a ≤ x ≤ b.

We can express the empty space function asF (r) = lim
n→∞

Fn(r), where:

Fn(r) =

n
∑

k=1

(−1)k−1

k!

∫

(B(0,r))k
det(K(xi, xj))1≤i,j≤kdx1...dxk.

From Lemma 5, we knowFn(r) converges pointwise toF (r) for any r ≥ 0. Let u(·) denote the unit

step function andδ(·) denote the Dirac measure. Note thatFn(r) is equal to 0 forr ≤ 0; then by taking
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p(v) = u(v)− u(v − r) with r ∈ [0,∞), we have:

Fn(r) =

∫

R

p(v)dFn(v)

(a)
=

n
∑

k=1

(−1)k−1

k!

∫

(R2)k×[0,r)

det(K(xi, xj))1≤i,j≤kd

[

k
∏

i=1

u(v − |xi|)
]

dx1...dxk

(b)
=

n
∑

k=1

(−1)k−1

k!

∫

(R2)k×[0,r)

det(K(xi, xj))1≤i,j≤k

k
∑

m=1

k
∏

i=1,i 6=m

u(v − |xi|)δ|xm|(dv)dx1...dxk

(c)
=

n
∑

k=1

(−1)k−1

k!

∫

(R2)k×[0,r)

k det(K(xi, xj))1≤i,j≤k

k
∏

i=2

u(v − |xi|)δ|x1|(dv)dx1...dxk

=

n
∑

k=1

(−1)k−1

(k − 1)!

∫ +∞

0

∫ 2π

0

∫

(R2)k−1

∫ r

0

det(K(xi, xj))1≤i,j≤k

∣

∣

∣

∣

x1=(r1,θ)

×
k
∏

i=2

u(v − |xi|)r1δr1(dv)dx2...dxkdθdr1

(d)
=

∫ r

0

n
∑

k=1

(−1)k−1

(k − 1)!
2πv

∫

(B(0,v))k−1

det(K(xi, xj))1≤i,j≤k

∣

∣

∣

∣

x1=(v,0)

dx2...dxkdv (35)

Step (a) is derived by applying Lemma 12 toFn(v) andp(v). Then (b) follows from the product rule for

differentials, and the fact that the Dirac measure is the distributional derivative of the unit step function.

Furthermore, (c) is because the determinantdet(K(xi, xj))1≤i,j≤n remains the same if we swap the

position ofx1 andxk, which is equivalent to exchanging the first row and thek-th row, and then the

first column and thek-th column ofK(xi, xj)1≤i,j≤n. Finally, (d) follows from the the defining property

of Dirac measure, and noting that sinceΦ is stationary and isotropic, the integration is invariant w.r.t.

the angle ofx1. Notice thatFn(r) can be expressed as (35), which shows it is differentiable.

Givenr ∈ [0,∞), we can checkF
′

n(v) converges uniformly forv ∈ [0, r] using Hadamard’s inequality

for positive semi-definite matrices. Then by applying Lemma13 to {Fn}, we have:

F (r) =

∫ r

0

lim
n→∞

F
′

n(v)dv

=

∫ r

0

+∞
∑

n=0

(−1)n

n!
2πv

∫

(B(0,v))n
det(K(xi, xj))0≤i,j≤n

∣

∣

∣

∣

x0=(v,0)

dx1...dxndv.

APPENDIX D

PROOF OFLEMMA 8

Denote the empty space function asF (r), then the mean interference is calculated as:

E[I|x∗(0) = x0] =− d

ds
[E[exp(−sI)||x∗(0) = x0]]

∣

∣

∣

∣

s=0
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(a)
= − 1

1− F (r0)

+∞
∑

n=0

(−1)n

n!

∫

(R2)n
det(K !

x0
(xi, xj))1≤i,j≤n

× d

ds

n
∏

i=1

[1− 1|xi|≥r0

1 + sP l(xi)
]dx1...dxn

∣

∣

∣

∣

s=0

(b)
= − 1

1− F (r0)

+∞
∑

n=1

(−1)n

n!

∫

(R2)n
det(K !

x0
(xi, xj))1≤i,j≤n

×
n
∑

k=1

n
∏

i=1,i 6=k

[1− 1|xi|≥r0

1 + sP l(xi)
]
P l(xk)1|xk|≥r0

(1 + sP l(xk))2
dx1...dxn

∣

∣

∣

∣

s=0

(c)
=

+∞
∑

n=1

(−1)n−1

n!

∫

(R2)n
det(K !

x0
(xi, xj))1≤i,j≤n × n

n
∏

i=2

1|xi|<r01|x1|≥r0P l(x1)dx1...dxn

1− F (r0)

=

+∞
∑

n=1

(−1)n−1

(n−1)!

∫

(B(0,r0))n−1

∫

Bc(0,r0)
det(K !

x0
(xi, xj))1≤i,j≤nP l(x1)dx1...dxn

+∞
∑

n=0

(−1)n

n!

∫

B(0,r0)n
det(K !

x0
(xi, xj))1≤i,j≤ndx1...dxn

.

Interchanging the infinite sum and the differentiation in (a) is guaranteed by Lemma 13. Then (b)

is derived by applying the derivative of product rule. In addition, (c) is true since considern points

x1, ..., xn ∈ R2 such that|xk| ≥ r0 and the rest are within the open ballBo(0, r0), then the determinant

det(K !
x0
(xi, xj))1≤i,j≤n remains the same if we swap the position ofx1 andxk.
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