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Abstract—Hanabi is a cooperative game that brings the
problem of modeling other players to the forefront. In this
game, coordinated groups of players can leverage pre-established
conventions to great effect. In this paper, we focus on ad-
hoc settings with no previous coordination between partners.
We introduce a “Bayesian Meta-Agent” that maintains a belief
distribution over hypotheses of partner policies. The policies that
serve as initial hypotheses are generated using MAP-Elites, to
ensure behavioral diversity. We evaluate an “Adaptive” version
of the agent, which selects a response policy based on the
updated belief distribution and a “Generalist” version, which
selects a response based on the uniform prior. In short episodes
of 10 games with a consistent partner, the “Adaptive” version
outperforms the “Generalist” when the training and evaluation
populations are the same. This presents a first step towards an
agent that can model its partner and adapt within a time frame
that is compatible with human interaction.

I. INTRODUCTION

Many of the most visible successes of game AI research
have been systems (agents) for playing competitive, zero-sum
games such as Deep Blue [1] in Chess, Alpha Go [2] in Go and
Alpha Star [3] in Starcraft. Designers of such systems often
strive to make them robust in the sense that it should be hard
even for motivated, expert human players to find strategies that
beat the one used by the system. In other words, the system’s
strategy is meant to approximate a Nash Equilibrium.

However, these systems are typically not adaptive, in the
sense that they are not designed to modify their policies, with-
out designer intervention, based on a short number of games
played with humans after deployment. In competitive games,
adaptivity may or may not be desirable, as an adaptive agent
deviating from a Nash Equilibrium may be more exploitable.

Cooperative games, on the other hand, are a domain where
systems that can adapt on a time scale compatible with human
play would be attractive, for example, as a built-in AI partner
for a cooperative strategy game. As the player develops their
understanding of the game, an agent that is able to model and
adapt to the player’s current strategy might not only achieve
better scores but also enhance the player’s enjoyment or even
contribute to the player’s learning process, when compared
with a one-size-fits-all agent with a stationary policy.

In this paper, we provide an example of what such a system
might look like. We describe a “meta-agent” for the cooper-
ative card game Hanabi that is trained with a population of

behaviorally diverse rule-based agents, generated using MAP-
Elites. During training, the meta-agent collects information
meant to help it identify its training partners, conditioned on
the game history and the meta-agent’s own policy.

We evaluate the meta-agent in episodes played with diverse
ad-hoc partners. The meta-agent uses Bayesian inference to
maintain a belief distribution that assigns probabilities to the
hypotheses that the current anonymous partner uses the same
strategy as a given training partner. The meta-agent then
selects actions according to a strategy that maximizes the
expected rewards weighted by the belief distribution, which
is tracked over independent episodes consisting of 10 games
each.

This paper is an extension of our previous paper [4] pre-
sented at the 2019 IEEE Conference on Games (CoG). The
process of generating rule-based agents with MAP-Elites is
based on that paper. Our novel contributions are the meta-agent
itself, the introduction of a new behavioral metric (IPP) and
a more detailed discussion about the relevance of techniques
that account for behavioral diversity in the context of ad-hoc
cooperative game AI benchmarks.

The meta-agent is, as far as we know, the first agent for
collaborative play in Hanabi that adapts by switching between
policies and, to the best of our knowledge, the first that makes
decisions based on information collected across multiple
matches. This poses problems for evaluating the agent, as there
is no established baseline to beat. In this paper, we compare
the meta-agent’s performance both with a ”Generalist” (non-
adaptive) and ”Random-Response” baseline. The Adaptive and
Generalist versions handily outperform the Random-Response
baseline, with the Adaptive version achieving slightly higher
scores within its training distribution, but slightly lower when
evaluated outside its training distribution.

II. HANABI: THE GAME

A. Rules

Hanabi (Bauza, 2010) is a cooperative card game that won
the prestigious Spiel des Jahres award in 2013 [5]. It is played
by groups of 2-5 players with a deck of 50 cards, where each
card has one of five colors (B, R, Y, W and G) and a rank
(a numeric value from 1 to 5). The cards represent colored
fireworks and the goal is to build one stack of each color
by playing cards in ascending rank order. The twist of the
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game is that players play with their hands facing outwards, so
that every player can see the rank and color of cards in their
partners’ hands, but not of those in their own hand.

Players alternate turns by choosing one of three actions:
1) Play a card. The team then scores a point if the card

was played correctly (example, if the card is B2 where
B1 has already been played), but loses a life from a shared
pool if the card was incorrect (e.g. playing B2 if no Blue
cards have yet been played or if a Blue card with equal
or higher rank has been played previously). Note that the
player does not necessarily know the rank or color of a
card before committing to playing it.

2) Give a hint. This consumes a “hint” token from a shared
pool and allows the player to pick either a color or rank,
then identify all cards with that rank or color in a chosen
teammate’s hand (e.g. “your first, second and fourth cards
are all Red”). Note that the example also implies the
other cards are not Red. This is the only method of
communication allowed in the game.

3) Discard a card. This replenishes a hint token for the
team. Note that the number of duplicates of each card in
the deck is limited, so taking this action may lead to a
game state where it is not possible to fully build all piles
(e.g. discarding all 3s from a color would make the 4 and
5 of that color impossible to play in the future).

Whenever a card is played or discarded, players must draw
back to their hand limit. If the deck is exhausted, every player
gets one last turn, after which the game ends. In this case,
the players score from 0 to 24 points based on the number
of cards successfully played. If the five stacks are completed
with cards ranked 1 to 5 of each color, the team wins and
scores 25 points.

The game also ends with defeat if the group loses three
lives. In this paper, we use the “lenient” variant of the rules
used in [6] where the end score in this case is also equal to
the number of cards successfully played. There also exists a
“strict” variant, used in papers such as [7] and most editions of
the game, where this results in a score of zero. The complete
rules of the game can be found at [8].

B. Strategy and Conventions

All information in the game is observable by all players
except the content (card colors and ranks) of each player’s
own hand. The central theme of the game is that there are
generally not enough hints to reveal all relevant information to
every player, even accounting for discards. Therefore, players
typically rely on assumptions about other players to infer
additional meaning from each of their actions.

For example, a common assumption is that hints are usually
meant to be actionable: they should enable the receiver to
successfully play a card, discard a card that is no longer useful
or hold on to a card that might have otherwise been discarded.

Under this assumption, if Alice gives Bob a hint like “your
third card is a 2” and there is a B1 on the board, Bob might
reason that the card is likely to be the B2 even if its color
is unspecified. Therefore, the hint’s implicit meaning becomes

“play this now”. This allows the team to add a card to the
board using only one hint token (to identify only rank) rather
than two (to identify both rank and color).

Assumptions and the actions they enable are often inter-
changeably called conventions. They can be explicitly agreed
to or emerge naturally between players. They can be used to
predict future actions of other players (e.g. “If I hint 2 to Bob,
he will play the card”) or to reduce the number of different
game states a player believes themselves to possibly be in (e.g.
in a scenario where Alice had chosen not to give a hint, Bob
might reason “I probably have no playable cards”).

Conventions, either crafted by experts [9], [10] or implicitly
enacted by a learned policy [7], [11], [12] have been used to
create agents with near-perfect scores, as long as the entire
team shares the same convention or policy. However, these
agents tend to be brittle and to fail in uncoordinated teams.

To see why relying on the wrong assumptions can lead to
poor results, consider if Alice had been giving hints at random
in the example above: this would make the interpretation that
the card is playable unlikely to be correct, and playing it would
likely lead to a mistake.

A human player in this position might adjust their strategy:
if Bob played his third card and it turned out not to be playable,
he might stop assuming Alice is giving actionable hints and
start waiting until he knows both the color and rank of his
cards before playing them in the future.

Intuitively, Bob first hypothesizes a set of strategies Alice
could be using (e.g. “actionable hints” or “random hints”),
then adjusts hypotheses based on available evidence (the
card being unplayable is evidence against the “actionable
hints” hypothesis) and finally to select an appropriate response
strategy (e.g. “only play cards with full information”).

This is the intuition behind the meta-agent presented in
this paper. It uses rule-based agents generated by MAP-
Elites both as the set of hypotheses and the set of possible
response strategies, and measurable behavioral characteristics
(Communicativeness and Information per Play) as evidence for
which hypothesis best approximates its partner’s true policy.

III. RELATED WORK

A. Hanabi-Playing agents

Many published Hanabi agents fall into one of two broad
categories: rule-based agents and reinforcement learning (RL)
agents.

Unless otherwise specified, all agent scores in this section
refer to the average self-play score in the 2-player version of
the game as reported by the authors.

We define rule-based agents as agents that follow a list of
“rules” sorted by priority. Each rule has an optional condition
and a corresponding action. If the condition is true for a given
game state, the agent takes the corresponding action, otherwise
it moves on to the next rule in priority. Examples of rules are:
• If a card is guaranteed to be playable, play it.
• If a card has a probability of being playable over a

threshold, play it.
• If a card is known to be useless, discard it.



• Discard a random card.
• If a partner has a playable card, give a new piece of

information about that card, favoring rank over color.
The earliest agent in this category follows Osawa’s Self-

Recognition strategy [13], which assesses whether a card is
likely to be playable or useless by assuming its partner is
using the same strategy. It then filters out card combinations
that are incompatible with that strategy. Van den Berg [14]
uses simulations to determine the best parametrized variants
of similar agents. Walton-Rivers et al. [6] evaluate these and
other agents based on their performance when paired with an
evaluation pool of seven agents. Out of all the agents in [6],
the one with best self-play score in the 2-player version (as
evaluated by Canaan et al. in [15]) is Piers, with a score of
17.31 (out of 25).

The 2018 and 2019 Hanabi competitions [16] provided a
framework including implementations of all rules used in [6].
The competition had both a self-play (“Mirror”) track and a
track for playing with agents known only to the organizers
(“Mixed”).

Our work is based on an entry to the 2019 competition by
Canaan et al. which uses MAP-Elites to evolve behaviorally
diverse agents represented by sequences of rules [4]. The
rule set we use contains rules provided in the competition
framework as well as rules implemented for a 2018 entry, also
by Canaan et al. [17]. The best self-play agent of the 2019
entry had a score of 20.51.

Eger’s Intentional agent [18] and Liang’s Implicature
agent [19] could also be described as rule-based under our
definition. They are designed according to Grice’s maxims of
communication [20] and achieve average self-play scores of
17.1 and 18.9, respectively, in their best variants. When paired
with humans, Eger reports an average score of 14.99, while
visual inspection of Liang’s results suggests an average score
around 12 points.

The current state-of-the-art for self-play in Hanabi is a hy-
brid agent by Lerer et al [21]. It combines a public “blueprint
policy”, that serves as a baseline convention, with a distributed
search protocol that makes it possible for all players to deviate
from the blueprint policy when it is computationally feasible
to do so. The best blueprint policy is the one used by the RL
agent called Simplified Action Decoder (SAD) [12]. During
centralized training, SAD’s observation is enhanced with both
a “greedy” and an “exploratory” action to address the fact that
the randomness required for exploration during training makes
the agent’s actions less informative to other players. During
evaluation, only the “greedy” action is used and SAD achieves
a score of 24.01 in self-play. The hybrid agent that uses SAD
as blueprint achieves a score of 24.61.

SAD, as well as other RL agents that preceded it [7],
[11] all suffer from the problem that their learned policies
are extremely brittle, as observed by their authors and also
explored in [15]. Many of these agents seem to operate under
conventions that consist of arbitrary mappings of a hinted
color or rank to a desired action. For example, an agent might
interpret any hint towards the color Yellow as a command to

play their fourth card. This is similar to conventions used by
hat-guessing agents [9], [10] which can also achieve average
scores above 24 in at least some settings, depending on the
number of players and on rule variants.

The Other Play training regime [22] addresses this brittle-
ness by using known symmetries to randomly re-label, during
training, the actions and states observed by the agent. In doing
so, it achieves a self-play score of 24.09 and a cross-play score
(with similarly trained agents) of 22.49. SAD has also been
evaluated with human partners, scoring 9.15 and 15.75 in the
vanilla and Other Play variants respectively.

While SAD and other RL agents achieve higher self-
play scores than any rule-based agents, we nonetheless use
the latter as the foundation of this work. The main use for
these agents in this paper is as a set of cheap models of
diverse behavior. Current RL methods give little guarantees of
behavioral diversity, while diverse rule-based agents are very
cheap to generate with MAP-Elites. Furthermore, the main
advantage of RL agents is stronger performance, but this does
not necessarily make them the best to model human players,
especially novice players. For example, it is simpler to build a
rule-based agent that avoids certain variations of the “play this
now” convention explained in section II-B than to ensure that
an RL agent will never learn these conventions. Furthermore,
the resulting RL agents would likely not display near-SOTA
performances in the first place.

The only agent we are aware of that attempts to directly
model and adapt based on partner behavior in Hanabi is
IS-MCTS, winner of the 2018 and 2019 CIG/CoG competi-
tions [23]. Similar to the work discussed in this paper, IS-
MCTS uses Bayesian updates to model the belief that the
current ad-hoc partner is using one of a set of previously
known strategies, but they estimate the probability that each
strategy would produce the observed action using a neural
network instead of behavioral features. However, the author
does not provide a detailed analysis of how this adaptation
procedure affects ad-hoc performance or compare it with a
non-adaptive baseline. Another key difference is that the meta-
agent described in this paper adapts by explicitly switching
its own policy, while IS-MCTS uses a model of its partner’s
behavior to predict partner moves during tree search.

B. Ad-Hoc Team Play and Zero-Shot Coordination

There are two distinct but related theoretical frameworks
that attempt to formalize the notion of cooperation we are
interested in in this paper.

The first is Ad-Hoc Team Play, introduced by Stone et
al [24]. The goal is to design an agent that is able to cooperate
with a team of arbitrary partners, with no prior coordination.
The authors state that a good Ad-Hoc team player should
be capable of “assessing the capabilities of other agents,
especially in relation to its own capabilities”. The focus is
on modelling and adapting to other players. Episode lengths
are assumed to be long enough that changing one’s policy to
account for the characteristics of team mates is possible, such
as in a match of soccer.



The second is Zero-Shot Coordination, introduced with the
Other Play agent mentioned in section III-A [22]. The goal is
to maximize score when playing a single episode with agents
that were independently trained for the same task. The focus
is on developing policies that are, according to the authors,
“maximally robust to partners breaking symmetries in different
ways”.

Our work is more aligned with Ad-Hoc Team Play, focusing
on identifying and adapting to unknown partners. The original
framing of the problem can be stated as such: given a pool
of potential team mates A and a domain of potential tasks D,
create an agent a that maximizes the expected payoff when
asked to perform a randomly sampled task d ∈ D, paired
with a randomly sampled subset of teammates B ⊂ A.

It is important to consider that, while the set of current
teammates B is not known to the agent at the start of each
episode, the set of potential teammates A may or may not
be known to the designer of an agent. In the 2018 and
2019 Hanabi competitions, for example, A included a mix
of hand-crafted and evolved agents, which were not known to
participants.

If A is unknown, a designer may imbue an agent with
implicit or explicit priors that reflect the designer’s beliefs
(hypotheses) about A. In this paper, we make an explicit
distinction between the designer’s hypotheses H , from which
we sample partners during training, and the actual evaluation
pool E, from which we sample partners during evaluation.

In general, H and E could be arbitrary distributions sampled
using arbitrary strategies, but in our experiments we assume
them to be discrete “pools” from which we sample uniformly
for simplicity. In section V, we also introduce a third pool,
R, corresponding to a set of discrete strategies the agent can
choose to employ at any point during evaluation.

C. Quality Diversity and MAP-Elites

Quality Diversity [25] (QD) algorithms are a class of
population-based search algorithms that aim to generate a
large number of solutions that are behaviorally diverse and
of high quality. Behaviorally diverse means the agents are
distributed representatively across a behavior space induced
by one or more behavioral metrics. High quality means the
agent performs well according to some fitness function.

Diversity of behavior can be pursued either as a desirable
target in its own right or as an intermediate step to high-quality
solutions in deceptive fitness landscapes, as showcased by
novelty search [26]. QD differs from novelty search, however,
because it does not optimize for novelty alone, but searches for
both behavioral diversity and high fitness at once. QD also dif-
fers from Multi-Objective Optimization [27], which searches
for trade-offs between one or more objectives, because QD
actively attempts to find high-quality solutions in all regions
of the behavior space, not just the regions with good trade-offs.

MAP-Elites [28] is an example of QD algorithm that
attempts to “illuminate” the behavior space by mapping each
individual to a behavioral “niche”, while maintaining an

archive of the best individual (an elite) in each niche. MAP-
Elites was first proposed to pre-compute a variety of effective
gaits for a six-legged robot so that, when the robot suffers
damage, it can quickly search for a gait that adapts to the
damage and allows it to keep moving at a decent pace [29].

In this paper, we use MAP-Elites to generate the pools E,
H and R. The choice of a QD algorithm for the generation
of these pools represents the desire that the evaluation exper-
iments test for a wide range of skills (for E), that the agent
is able to model a varied set of ad-hoc partners (for H) and
that the agent is able to select from a varied set of response
strategies (for R).

Our implementation of MAP-Elites (described in sec-
tion VI) is relatively straight-forward, but the reader might also
be interested in recent improvements such as MAP-Elites with
sliding boundaries [30], which takes into account the density
of solutions in behavior space when drawing the boundaries
between niches, and Covariance Matrix Adaptation MAP-
Elites (CMA-ME) [31], which uses an adaptation mechanism
inspired by CMA-ES [32] for increased performance.

D. Bayesian Inference

There is a long history of using Bayesian Inference to model
the behavior of other agents, such as the Bayes formulation of
Hyper-Q learning [33] and Interactive Bayesian Reinforcement
Learning [34], [35]. While these may provide theoretical
frameworks and some guarantees of convergence or optimality,
they are usually evaluated using smaller environments such as
Rock-Paper-Scissors or small grid-worlds.

More recently, a method for Bayesian delegation of tasks
in a version of the cooperative real-time game Overcooked
was proposed by Wang et al. [36]. It uses Bayesian inference
to infer which sub-task the other player currently intends to
perform. In contrast, we use Bayesian Inference in this paper
to infer which class of agent (represented by one of several
known strategies) the other player belongs to.

MeLIBA (Meta Learning Interactive Bayesian Agents) [37]
is a method used to maintain beliefs over partner strategies
with similarities to our work. It uses the latent variables of
a hierarchical variational autoencoder to model beliefs over
agents in a treasure hunt task on a grid world. While their
method allows the modelling of non-stationary agents during a
single match, our approach assumes each partner comes from
a fixed pool of potential partners, but allows for adaptation
in-between matches.

As will be detailed in section IX-B, our adaptive step can
be seen as a Gaussian Naive Bayes Classifier [38] that uses
the pool H as classes. However, the Gaussian and naive
independence assumptions are not intrinsic to the method, and
the distribution for each dimension could be independently
modeled given a richer record of the training data.

IV. BEHAVIORAL FEATURES

Our goal is for the meta-agent to play well with partners
that exhibit diverse behavior. In this section, we present the
behavioral features used to characterize an agent’s behavior.



These are the metrics used in section VI to generate agents
with MAP-Elites and also used by the meta-agent itself in
section IX to estimate an unknown partner’s identity.

We also examine some previously published agents [6], [7],
[13]–[15] in light of these behavioral features, investigating
how they behave with respect to our chosen behavioral fea-
tures.

A. Definition of Behavioral Features

We defined the following behavioral features for Hanabi:

• Information per Play (IPP): whenever an agent plays
a card, we verify whether it knows its color and/or rank.
Each of these is considered one piece of information. The
verification takes into account both positive and negative
facts implied by hints (e.g. a hint of Red implies all other
cards to be non-Red) but, for simplification, does not take
into account facts that can be deduced through a process
of elimination by looking at the discard pile and other
players’ hands.
We count how many pieces of information the agent
knows (either 0, 1 or 2) for each card that is played,
then average this value across all played cards. Finally,
we divide by 2 to get a number between 0 and 1. An agent
scoring 1 in this dimension only plays cards that are fully
known (both color and rank), whereas an agent scoring
zero would only play cards it knows nothing about.

• Communicativeness: defined as the fraction of time an
agent will choose to give a hint if a hint token is available
at the start of the turn. An agent scoring 1 in this
dimension would always give a hint if possible, being
fully communicative, while an agent scoring 0 would
never give any hints.

These features were chosen because they are easy to mea-
sure and we believe that they are strategically meaningful. In
particular, IPP was meant as proxy for a pattern that can be
observed in game-play between humans: inexperienced players
usually only play cards they know everything about (which im-
plies IPP close to 1), where more experienced players are more
often comfortable playing cards under partial information as a
result of either accounting for other player’s apparent beliefs
and intentions (theory of mind) or of following a particular
pre-established convention.

IPP is a successor to the Risk Aversion feature used in [4].
Risk Aversion reflects the average probability that a card is
playable, from the perspective of the agent, over all played
cards. However, Risk Aversion is a hard metric to estimate
during gameplay because it relies on hidden information: the
probability that a card is playable from an agent’s perspective
depends on the cards it sees in the hands of its partners, which
is not known to the partners.

Agents with low IPP also have more intuitive behavior
than those with low Risk aversion: an agent with low IPP
simply plays cards of which little or no information is known
(possibly as result of a convention), whereas an agent with
low Risk aversion is defined as one that only plays cards that

are known to be very unlikely to be playable. Such an agent
could never achieve high scores.

We suspected that the highest-scoring behavior in self-play
would fall at some value much greater than 0, but lower
than 1 for both dimensions: a 0 in either dimension leads
to obviously degenerate play, but good play likely requires
playing cards under some uncertainty (implying IPP < 1) and
sometimes passing up the opportunity to give a hint so that
the other player can better utilize the hint token (implying
Communicativeness < 1).

Note also that, while these dimensions help describe an
agent’s play, they don’t completely determine it. Communica-
tiveness does not tell us which hint will be given, only the
likelihood that some hint will be given if a hint token is
available. Similarly, IPP does not tell us whether the agent
will play a card, only how much is known on average about
it given that it was played.

Each metric takes values in the range of [0,1], and we
discretize them for this paper at intervals of 0.2, defining
5 intervals in each dimension of the behavior space. This
amounts to a total of 25 niches, in contrast to the 20 by 20
discretization used in [4], which amounted to 400.

The smaller number of niches is due to the fact that the
number of match-ups between H and R scales quadratically
when H = R. This reduces the computational complexity of
the offline training step and also makes the behavior of the
meta-agent easier to manually inspect.

B. Evaluation of Behavioral Characteristics of Existing
Agents

Before discussing how the agents generated by MAP-Elites
are used by the meta-agent, it is worth looking at how
Communicativeness and IPP, the behavioral characteristics
chosen for use in MAP-Elites, can be used to analyse existing
agents in the literature.

To do this, we first looked at six rule-based agents from the
Hanabi literature: Internal and Outer by Osawa [13], Van den
Berg’s best-performing agent from [3] (which we refer to by
VDB), and Flawed, IGGI and Piers by Walton-Rivers et al. We
used the re-implemented versions of these agents by Canaan
et al. in [15]. We paired each of these agents with each other
for 1000 games per pair, measuring the Communicativeness
and IPP displayed by each agent in each paired match-up.

Tables I and II show, respectively, the Communicativeness
and IPP values resulting from this evaluation. One of the things
this evaluation allows us to see is the extreme degeneracy of
Flawed’s behavior: when playing with itself, it is the only
agent with both Communicativeness (0.06) and IPP (0.04)
close to zero. When playing with other agents, its partners also
exhibit uncharacteristic behavior. For example, IGGI exhibits
IPP > 0.9 with all partners, except when playing with Flawed,
in which case IGG exhibits IPP of only 0.68.

Ignoring the match-ups involving Flawed, Communicative-
ness varied over a wide range, from 0.36 to 0.91, while IPP
was relatively high across the board, varying from 0.73 to
0.98.



TABLE I
COMMUNICATIVENESS OF SIX RULE-BASED AGENTS FROM [15] PLAYING AMONG THEMSELVES. LINES REPRESENT THE AGENT BEING EVALUATED AND

COLUMNS REPRESENT EACH OF THEIR PARTNERS (E.G. WHEN IGGI PLAYS WITH INTERNAL, IGGI DISPLAYS COMMUNICATIVENESS OF 0.36)

IGGIAgent InternalAgent OuterAgent VanDenBerghAgent FlawedAgent PiersAgent Self Min Max Average
IGGIAgent 0.50 0.36 0.41 0.38 0.46 0.42 0.51 0.36 0.51 0.43

InternalAgent 0.89 0.88 0.83 0.90 0.99 0.87 0.88 0.83 0.99 0.89
OuterAgent 0.89 0.89 0.84 0.91 0.99 0.85 0.84 0.84 0.99 0.89

VanDenBerghAgent 0.63 0.36 0.36 0.50 0.52 0.53 0.50 0.36 0.63 0.48
FlawedAgent 0.28 0.17 0.17 0.36 0.06 0.26 0.08 0.06 0.36 0.20
PiersAgent 0.64 0.47 0.56 0.53 0.50 0.58 0.58 0.47 0.64 0.55

TABLE II
IPP OF SIX RULE-BASED AGENTS FROM [15] PLAYING AMONG THEMSELVES. LINES REPRESENT THE AGENT BEING EVALUATED AND COLUMNS

REPRESENT EACH OF THEIR PARNTERS (E.G. WHEN IGGI PLAYS WITH INTERNAL, IGGI DISPLAYS IPP OF 0.98)

IGGIAgent InternalAgent OuterAgent VanDenBerghAgent FlawedAgent PiersAgent Self Min Max Average
IGGIAgent 0.94 0.98 0.97 0.95 0.68 0.95 0.94 0.68 0.98 0.92

InternalAgent 0.92 0.96 0.94 0.92 0.94 0.93 0.95 0.92 0.96 0.94
OuterAgent 0.95 0.96 0.96 0.94 0.96 0.95 0.96 0.94 0.96 0.95

VanDenBerghAgent 0.77 0.81 0.79 0.78 0.69 0.80 0.79 0.69 0.81 0.77
FlawedAgent 0.45 0.41 0.47 0.46 0.04 0.45 0.04 0.04 0.47 0.33
PiersAgent 0.73 0.74 0.74 0.77 0.77 0.78 0.78 0.73 0.78 0.76

V. OVERVIEW OF THE HANABI BAYESIAN META-AGENT

Our method can be summarized in three phases:

1) Pre-training, where we generate a population of agents
to serve as a pool of hypotheses of partner behavior H
and a (possibly distinct) evaluation pool E.

2) Offline training, where we use H to compute a pool of
response strategies R and a set of identifying information
I(r, h), representing the observed features in each match-
up between r ∈ R and h ∈ H

3) Online ad-hoc evaluation, where we use Bayesian infer-
ence to maintain a belief distribution about an unknown
ad-hoc partner for a number of games. This allows us
to then choose actions according to the response from
R that is expected to maximize score when paired with
agents according to the belief distribution.

Ties are broken arbitrarily in step 3, but this is a rare
occurrence since both the belief distribution and the expected
match-up scores are real-valued.

Because we use Bayesian inference to choose which agent
from the response pool to “impersonate”, we call our approach
a Hanabi Bayesian Meta-Agent. This means the meta-agent
does not among possible actions directly, but among response
strategies, and merely plays the same action that the chosen
response strategy would play at a given game state.

We now provide an overview of each of these phases. Note
that the steps taken at each phase are fairly independent from
each other, so they can be thought of as modules. For example,
we could have used distinct algorithms to generate H , R
and E or arbitrary behavioral features to compute I . The
implementation used for the experiments of this paper can
be found in our public github repository 1. All experiments
were conducted in the 2-player version of the game.

1https://github.com/rocanaan/Hanabi-Map-Elites

A. Pre-Training Phase

This phase consists of the generation of agents to constitute
the pool of hypotheses H , which is known to the meta-agent,
and the evaluation pool E, which might not be. In principle,
any technique for generating Hanabi agents could be used.
We expect behavioral diversity in the training population to
be instrumental when attempting to adapt outside the training
population. For this reason, we use MAP-Elites, a Quality
Diversity algorithm, to generate populations of training agents
using a similar procedure as [4].

B. Offline Training Phase

This phase consists of two steps:
• Generation of a response pool R. This is the set of

policies the meta-agent can choose from when taking
an action. Generally, any technique for generating agents
that play well with agents in H or subsets of H could
be used, including RL, evolution and tree search. For
simplicity, however, we re-use the pool of hypotheses
itself as response pool. In other words, H = R for all
our experiments.

• Identifying information of each match-up I . We call
a set of games played by two agents a match-up. Given
a match-up (h, r), where h ∈ H and r ∈ R, we call
I(r, h) the set of identifying information of that match-
up. In principle, the whole game history or any number
of features derived from this history could be used, but
to reduce the storage requirements, we store only the
average Communicativeness and IPP displayed by h in
the match-up and the average score of the match-up.
These are the same features used during the generation
of agents with MAP-Elites.

C. Online Ad-Hoc Evaluation

During this phase, the agent is paired with a partner e
sampled from an evaluation pool E for a short episodes of



10 matches each. During each episode, the meta-agent starts
with no information about e and assumes it could be any agent
from the pool of hypotheses H with equal probability. This
belief distribution is then updated as the meta-agent gains more
information across the 10 games of the episode.

On each of the meta-agent’s turn, it needs to do two things:
1) Update the belief distribution. It does this by keeping

track of average of its partner’s behavioral characteristics
(Communicativeness and IPP) and performing a Bayesian
update based on the meta-information stored for that
match-up.

2) Select an action. It does this by performing the action
that would be chosen by the strategy in R that maxi-
mizes the expected score over H , weighted by the belief
distribution.

VI. PRE-TRAINING: MAP-ELITES

In this section, we describe MAP-Elites, which we use to
generate the hypotheses. H , response pool R and evaluation
pool E. Over the course of the algorithm, agents are repre-
sented by sequences of rules taken from a rule set consisting
of rules provided by the CIG/CoG competition framework [16]
and a 2018 competition entry [17]. For domains where a
similar rule set is not available, one would have to be created
or a different representation agents would have to be used,
such as the weights of a neural network.

In MAP-Elites, we first define one or more quantitative or
categorical behavioral characteristics or features that can be
used to describe the behavior of a solution. These can be
thought of as coordinates in a multi-dimensional behavior
space. A process of discretization partitions the space into
niches where all agents have similar behavioral characteristics.
For the experiments in this paper, we used the behavioral
features defined in section IV-A to define the feature space,
which was partitioned in intervals of 0.2 for each feature.
Since both feature values range from 0 to 1, these results on
5 partitions in each dimension, for a total of 25 niches.

We then conduct an evolutionary process where new can-
didate solutions are generated as variations (mutation and/or
crossover) of existing solutions. Each candidate is assessed
for its behavioral characteristics, which allows it to be placed
within a niche. If that niche is currently empty, the candidate
occupies it, becoming the elite of the niche. Otherwise, the
candidate’s fitness is compared to that of the current elite. The
winner becomes the new elite, while the loser is discarded.

As result, MAP-Elites simultaneously attempts to find valid
solutions for currently empty niches in its archive and higher-
fitness solutions to niches that are already occupied.

A. Representation and operators

We use a similar representation of individuals as the one
proposed by Canaan et al [17]. Each individual is represented
by a chromosome defined by a sequence of 15 integers, where
each integer represents one of 135 possible rules which were

either initially provided in the Hanabi competition frame-
work [16] or implemented for the entry.

An agent’s action is determined by simply moving through
the rules in the order they appear in the chromosome. The
agent outputs the action returned by the first applicable rule.
An agent might have rules that never trigger during gameplay
(for example, a rule that says “discard a random card” would
never trigger if it comes after “discard your oldest card”). An
agent can also have duplicate rules, in which case the second
instance of the rule will never trigger (assuming the rule either
triggers or not deterministically, which is true for the rules we
are using). Nevertheless, these unused or repeated rules are
part of an agent’s genetic representation and can be passed on
to its offspring. We selected 15 as chromosome length because
our agents from [17] rarely had more than 10 different rules
activated.

The first few chromosomes (in our experiments, 104) are
implemented by sampling rules uniformly at random from
the ruleset, while the remaining chromosomes are generated
by mutation and crossover of the elite in a random niche.
Mutation is implemented by randomly replacing each rule in
a chromosome with a random new rule with probability 0.1.
Crossover happens with probability 0.5 and is implemented by
selecting another individual from the population and randomly
selecting (with probability 0.5) the corresponding rule from
either parent at each gene.

B. Pseudocode of the MAP-Elites algorithm

With these metrics, representation and operators in mind,
algorithm 1 shows the abstracted pseudocode of the MAP-
Elites algorithm.

Algorithm 1: MAP-Elites
Result: A, an archive with each niche’s elite.
generation← 0;
A← ∅;
while generation < G do

c← newChromosome(A, generation) ;
x← makeAgent(c);
f ← fitness(x);
i, j ← niches(x);
if Ai,j = null then

Ai,j ← c;
else

felite ← fitness(makeAgent(Ei,j)) ;
if f > felite then

Ai,j ← c

In our experiments, the functions newChromosome,
makeAgent, niches are implemented as described below:

If generation < 104, newChromosome returns a new list of
15 rules by sampling the rule-set uniformly. Otherwise, the
new chromosome is generated by mutation and crossover of
random parents sampled from A, as described in section VI-A.



makeAgent simply returns an agent instance that follows a
policy determined by applying the chromosome rules in order,
as also described in section VI-A.

fitness returns the average score of the agent after playing
100 matches in self-play mode. While these matches are
played, a number of statistics can be recorded, such as the
number of hints given, the number of turns where a hint token
was available, the total number of cards played and how many
pieces of information was known about each played card.

niches calculates the Communicativeness and IPP values of
a candidate based on these stored statistics, and converts these
behavior features (which take values between 0 and 1) into two
integer indexes, according to the discretization of the behavior
dimensions. In our case, a value between 0 and 0.2 corresponds
to the first niche on a dimension, a value between 0.2 and 0.4
to the second niche etc, until the last niche corresponding to
values between 0.8 and 1.

After that, the program checks whether an elite has already
been assigned to the corresponding entry Ai,j . If that entry is
empty, the chromosome of the current agent is stored in that
cell. Otherwise, we re-calculate the fitness of the elite in Ai,j ,
using the same seed as used for the candidate, and keep the
agent with the best agent in the niche.

We recalculate the elite’s fitness rather relying on a stored
value due to the stochastic nature of the fitness evaluation, to
avoid a single overestimation of fitness to result in an elite
that is exceedingly hard to replace.

VII. MAP-ELITES RESULTS

We used Map-Elites to generate and evaluate agents by ex-
ecuting three separate runs of algorithm 1. Each run generated
and evaluated a total of 106 candidate individuals and recorded
the chromosome of the elite in each of the 25 behavioral niches
where a score greater than zero was achieved. A run’s coverage
is defined as the number of niches successfully filled by an
elite in the run.

At the end of each run, we re-evaluated the final elite of
each niche by playing 1000 self-play games. We also evaluated
each agent’s average performance when paired uniformly with
all agents from that run (including itself), which we call the
agent’s pairwise score. Table III shows each run’s coverage,
the maximum self-play score of any elite in each run during
this re-evaluation, the average self-play score of agents in all
covered niches, the average pairwise score of agents in all
covered niches, the correlation (Pearson coefficient) between
all agent’s self-play and pairwise performances..

The coverage of all runs was 22 out of 25 possible niches.
The best max score and average score varied slightly from run
to run, ranging from 19.69 to 20.11 (max score) and 11.44 to
11.74 (average score).

Figure 1 shows the fitness (self-play performance) of the
elite in the 25 niches of each run. The three runs showed a
very similar fitness landscape, with highest scores concentrated
in the region with high values of both Communicativeness and
IPP (upper right of each graph). Three niches in the bottom
right of the graph (low Communicativeness, high IPP) were not

filled in any of the runs. An agent in this region would rarely
give hints, yet only play cards it knows a lot of information
about. In self-play, such an agent would never give enough
hints to its partner to satisfy their high IPP requirement and
would thus never play any cards and score zero as result.

Manual analysis of the chromosomes suggests that agents
with high Communicativeness tend to have many “Hint” rules
near the top (highest priority) of their chromosome, while
agents with low Communicativeness tend to have them at low
prioirty. Agents with high IPP tend to favor cautious “Play”
rules, agents with intermediate IPP tend to play the most
recently hinted card or require an intermediate probability
of success before playing a card, and agents with low IPP
tend to play cards at random or with a very low probability
requirement.

The high Communicativeness and low IPP region is some-
what degenerate: it requires an agent to give frequent hints, but
nonetheless play cards it knows nothing (or little) about. Some
agents near the top left of the map achieve this by having a
high-priority rule that plays a card essentially at random, but
only if the team has three lives. This usually results in playing
an unknown card and losing a life, at which point the rule can
no longer fire. Other “Play” rules, if present, are low-priority,
resulting in low IPP. The remaining rules are mostly “Hint”
rules, resulting in high Communicativeness.

A complete list of the chromosomes all individuals and their
rules can be found within our repository under Analysis.

The best agent in all three runs occupied the niche with
IPP ranging from 0.8 to 1 and Communicativeness from 0.4 to
0.6. Manual inspection of these agents revealed that all three
actually have IPP values that would place them right at the
leftmost boundary of their niches, within a margin of 0.01 from
the boundary at 0.8. Figure 2 shows the result of the first run
of the corresponding experiment in [4], with finer granularity.
Comparing the two versions of the experiment, we see that, in
both versions, the best-performing agents occupy the region
with intermediate values of Communicativeness (around 0.5)
and high, but not extreme, values of IPP (around 0.7 to 0.9).

Regarding pairwise performance, we see that the average
pairing between two agents from the same run yields an
average score between 8.14 (run 2) and 9.52 (run 3). This is
much worse than the average self-play score of these agents
(around 11 points), meaning they play much worse with one
another than they play with themselves. However, an agent’s
pairwise performance is strongly correlated with their own
self-play scores (Pearson coefficient of 0.91 to 0.97), meaning
that for the most part, the better an agent is at self-play, the
better we should expect it to perform with other agents. In
the original paper [4], we also verified that the farther apart
two agents niches were on the map, the worse the two agents
tended to perform with one another.

While this analysis aggregates the scores of all match-
ups between the agents from each run, we use the score of
each individual match-up as the basis for the offline training
described in section VIII.

In the original paper [4], we also assessed the degree



TABLE III
COVERAGE, MAX SELF-PLAY SCORE, AVERAGE SELF-PLAY SCORE, AVERAGE PAIRWISE SCORE AND CORRELATION (PEARSON COEFFICIENT) BETWEEN

SELF-PLAY AND PAIRWISE SCORE OF AGENTS IN THE THREE MAP-ELITES RUNS. AVERAGE SCORES TAKE INTO ACCOUNT COVERED NICHES ONLY.

Run Coverage Max Self-Play Score Average Self-Play Score Average Pairwise Score Correlation Self-Play / Pairwise
Run 1 22 19.54 11.36 8.71 0.92
Run 2 22 19.95 11.66 8.14 0.97
Run 3 22 20.00 11.59 9.52 0.91

Fig. 1. Main results of the MAP-Elites experiment on a 5 by 5 grid after reevaluating each elite in each run for 1000 games each. Values represent the fitness
(score) of the best individual in that niche, with redder entries corresponding to higher scores. The maximum score for each run is highlighted in blue.

Fig. 2. Results of population 1 from the original experiments on a 20 by 20
grid, taken from [4]. This higher-granularity view shows that the best self-play
scores tend to be produced at intermediate communicative levels and high,
but not extreme, IPP levels.

of similarity between agents that occupied the same niche
in different runs, and how well these agents played with
each other. This is relevant to the experiments of this paper
where the meta-agent can be trained with one population and
evaluated with other: if agents are too similar from run to run,
this experimental set-up would not be meaningfully different
than using the same population for training and evaluation.

For space considerations, we omit the full details of this
analysis, but report the main results: using the populations
of the original experiment, the Hamming Distance between
the chromosomes of corresponding agents was found to be
14.24 out of a maximum of 15. This means corresponding
agents shared, on average, less than 1 out of 15 genes with
the same rule at the same position. On a sample of recorded
game states, corresponding agents selected the same actions
per game state around 60% of the time. This suggests that
agents are similar, but not to a degree where their actions are

completely predictable, from run to run.

VIII. OFFLINE TRAINING

For the offline training step, the meta-agent receives a
population of agents to serve as the pool of hypotheses H
and outputs population of agents to serve as a response pool
R. In this paper, we simply use R = H .

It then plays a number of games between each pair of agents
(r, h), where r ∈ R and h ∈ H , and records features of
each match-up which constitutes the identifying information
I(r, h). During evaluation, I will be used to maintain beliefs
over H for each ad-hoc partner, so that an appropriate response
from R can be selected.

Eq. 1 shows the definition of a “generalist” strategy we can
compute in this phase. This is simply the strategy from R
that maximizes the expected score when paired with agents
sampled uniformly from H , or equivalently the one with
the highest average score across all match-ups. This lets us
establish a useful baseline for the meta-agent, since any agent
with smaller score than the generalist would be better off
simply following the generalist strategy when paired with H .

Generalist(R,H) = argmax
r∈R

(
∑
h∈H

score(r, h)) (1)

Eq. 2 defines an “oracle” strategy for each match-up repre-
senting which strategy the meta-agent should pick if it knew
its partner. If E = R, this represents the best score we can
hope to achieve if we are limited to picking one strategy from
R at the start of each game.

Oracle(R, h ∈ H) = argmax
r∈R

(score(r, h)) (2)

Note that the oracle is defined for a given partner h ∈ H
while the generalist is defined for the whole training popula-
tion H .



For our experiments, each agent was trained using one of
the three populations generated by MAP-Elites in section VII
as the pool of hypotheses H and one (possibly the same)
population used as evaluation pool E. While we could have
used arbitrary agents as R, including agents evolved or trained
to maximize score when paired with subsets of H , we chose
to skip this step and use R = H in all the experiments. In
other word, the pool of strategies the meta-agent can choose
to enact is the same as the pool of strategies it expects its
ad-hoc partners to be using.

For training, we play 400 games between each pair of agents
(r, h) and record, for each of these matchups, the average
communicativeness and IPP displayed by H as well as the
average score of the match-up. After this step, the meta-agent
knows what behavioral features it expects from each partner
in H given its own response strategy, as well as the expected
score of each response strategy.

IX. AD-HOC EVALUATION: BAYESIAN ADAPTATION

A. Initialization

Each phase of ad-hoc evaluation is divided in k episodes.
For each episode, we play g games between the meta-agent
and each partner agent in the evaluation pool E. The meta-
agent is provided with a consistent “dummy” ID for each
evaluation partner, which allows it to maintain all relevant
information between games of an episode but not to identify
which agent in H (if any) a given evaluation partner corre-
sponds to. At the end of each episode, the meta-agent is re-set
to its initial state.

When first playing with an evaluation partner e ∈ E, the
meta-agent initializes a uniform belief distribution B0(e, h)
which assigns equal probabilities to the hypothesis “My cur-
rent ad-hoc partner e uses the same strategy as h” for every
h ∈ H .

B0(e, h) =
1

|H|
,∀h ∈ H (3)

B. Bayesian Update

The belief distribution is periodically updated upon fixed
intervals, based on the number of games or turns since the last
update for each evaluation partner. When the agent is required
to perform an update for interval i+1, it does so using Bayes’
rule, given the observation history collected since the previous
interval Oi,i+1 and given the fact that it had been playing
according to some strategy ri since the last update:

Bi+1(e, h|Oi,i+1, ri) ∼ P (Oi,i+1|ri, h)Bi(e, h) (4)

We break this down as such:
• The left-hand side is the posterior and denotes the new

belief given the observed history since the last update and
the fact that the meta-agent had been using strategy ri.

• P (Oi,i+1|ri, h), is the likelihood term and represents the
probability that this history would have been observed in

a match-up between ri and H . This will be explained
below.

• Bi(e, h) is the prior belief that e corresponds to H . Here
we omit the conditional on ri since the prior belief is
independent from the choice of strategy.

The left-hand side is proportional to the right-hand side and
we use a normalization constant (which is the same for all
h ∈ H) to ensure all posterior beliefs add up to 1 at the end
of the update step.

Before explaining the likelihood term, it is useful to clarify
why the posterior and the likelihood depend on the choice of
ri. Put simply, the behavior of e depends not only on the policy
used by e itself, but also on the strategy of the meta-agent.

To see why this must be the case, consider a degenerate
example: suppose that e is a “shy” agent that never uses hint
actions until its partner “breaks the ice” by using a hint action
first. After the ice is broken, e follows some arbitrary policy.
The communicativeness displayed by e will depend on ri in
the following way: if ri is also shy, the communicativeness will
be zero. Otherwise, it will depend on e’s underlying policy.

In a previous iteration of the meta-agent, we had not
conditioned the observed behavior to the response behavior.
We had also limited our action selection (see section IX-C)
to the best response to the belief with highest likelihood
(rather than a weighted response). The combination of these
factors led to a worse score than the Generalist baseline in
that iteration of the meta-agent.

Coming back to the likelihood term, in our experiments we
take Oi,i+1 to be a tuple representing the average observed
Communicativeness and IPP of e since the previous update,
on match-ups played between ri and e. This average can be
computed simply by computing the ratio of hints given to hints
that could have been given over the period (Communicative-
ness) and the normalized ratio between pieces of information
known per card played and number of cards played (IPP). We
denote this tuple of observed values OBS:

OBS = (Comm(ri,e), IPP(ri,e)), (5)

The likelihood represents the probability, for each training
partner in H , that it would display the observed behavioral
characteristics on a match-up with ri. This probability could
be estimated directly from training data, but that would require
us to maintain a detailed histogram for each match-up and
each feature. For simplicity, we chose instead to store only the
average Communicativeness and IPP of each match-up, which
we denote µComm and µIPP respectively. We can then model
the two features as if they came from two independent normal
distributions with these averages and standard deviation σ =
0.1. The value 0.1 was chosen empirically based on initial
experiments with the meta-agent.

We can finally subtract, for each feature, the expected value
(obtained during training) from the observed value. If DComm

and DIPP are the differences along the two dimensions, we
have:



p1 = f(DComm, µComm, 0.1)

p2 = f(DIPP , µIPP , 0.1)

pjoint = p1 · p2
(6)

Where f(x, µ, σ) is the p.d.f. of the normal distribution with
mean µ and variance σ2 evaluated at x. pjoint is the estimated
probability that the chosen match-up would display the joint
observed values under our assumptions.

As previously mentioned, this iteration of meta-agent effec-
tively acts as a Gaussian Naive Bayes Classifier [38] but both
the Gaussian and naive independence assumptions could be
dropped if given a richer record of the training data.

To illustrate how the belief distribution can vary over the
course of a few games, figure 3 shows a visual representation
of the belief distribution over the six first games of a randomly
chosen match-up of our evaluation.

C. Action Selection

Finally, the meta-agent calculates the response r∗ from
R that maximizes expected score weighted by the belief
distribution B and selects actions using the policy associated
with the chosen response.

r∗ = argmax
r∈R

(
∑
h∈H

score(r, h) ·B(e, h)) (7)

X. AD-HOC EVALUATION RESULTS

We trained 3 variations of the meta-agent, using each of the
3 MAP-Elites populations as H and R = H , for a total of 9
instances of the meta-agent:
• An Oracle meta-agent, representing the scenario where

the true niche of each evaluation partner is provided by an
“oracle”, removing the need to perform Bayesian updates.
While this agent is cheating, it represents an upper bound
of the scores we can hope to achieve, given a choice of
H and R, and assuming H = E.

• A Generalist meta-agent, which always follows the gen-
eralist policy. This is equivalent to setting the adaptation
interval to infinite. This serves as our baseline and lower
bound, since given a choice of H and R it is always
possible to skip the belief updates and simply choose the
strategy from R with the highest expected score over H .

• An Adaptive meta-agent, which performs the Bayesian
update at the start of each game. This variant is the
main focus of our experiment. Note that the Adaptive
meta-agent will always select the same response strategy
as the Generalist for the first game. This follows from
the definition of the Generalist and from the uniform
initialization of the belief distribution.

Other adaptation intervals were briefly considered, but
longer intervals did not improve performance and shorter
intervals (measured in game turns instead of full matches) only
moderately degraded performance. While shorter intervals
would provide for adaptation within a single game, there is
the risk that an agent’s average behavior characteristics vary

TABLE IV
RESULTS OF THE AD-HOC ADAPTATION EXPERIMENTS WITH THE

META-AGENT. NUMBERS REFLECT THE AVERAGE SCORE OF 2000 GAMES,
SPREAD INTO 200 EPISODES OF 10 GAMES EACH. THE META-AGENT IS
RE-SET BETWEEN EPISODES. GRAYED CELLS REPRESENT SCENARIOS
WHERE TRAINING AND EVALUATION POPULATIONS WERE THE SAME.

Evaluation Population
Training Population Type of agent 1 2 3

1 Oracle 13.42 12.83 13.39
1 Adaptive 13.16 12.58 13.49
1 Generalist 12.94 12.49 13.67
1 Random Response 8.85 8.48 9.17
2 Oracle 12.40 12.80 13.04
2 Adaptive 12.32 12.23 13.07
2 Generalist 12.52 11.90 13.11
2 Random Response 8.27 8.02 8.75
3 Oracle 13.18 12.50 14.00
3 Adaptive 13.04 12.35 13.99
3 Generalist 13.06 12.41 13.91
3 Random Response 9.02 8.81 9.58

over the course of a game (e.g. an agent might give more hints
in the early turns of a game than later on).

In total, we had 3 variations (Oracle, Generalist and Adap-
tive), each trained using one of the 3 populations as hypothesis
pool H , then evaluated with using one of the 3 populations as
evaluation pool E, for a total of 27 scenarios.

Each scenario was further divided in k = 200 independent
episodes where the meta-agent plays g = 10 games with each
agent in E. Note that the meta-agent re-uses all of its training
information (which we call I in section VIII) but re-sets its
evaluation game history (which we call O in section IX-B)
from episode to episode.

Table IV summarizes the results of these experiments. The
gray cells represent “in-distribution” scenarios where the train-
ing and evaluation populations are the same. These scenarios
are meant to test whether the Adaptive meta-agent is able
to identify its training partners by observing their behavioral
features over the course of the 10 games of each episode. If the
agent is able to do so, its performance should fall between the
Oracle’s and the Generalist’s, since the Oracle represents the
case where the partner is immediately successfully identified,
and the Generalist represents a strategy that is (within R)
best on average with all partners, but not necessarily optimal
for any one partner. A lower score than the Generalist would
mean that the meta-agent took adaptive steps that moved it, on
average, from the Generalist strategy (which is always chosen
for the first game of each episode) to a worse response strategy.

After 200 episodes, we see that the Adaptive version’s aver-
age score was below the Oracle’s, but above the Generalist’s.
We performed Welch’s t-test [39] between the distribution
of episode scores of the Oracle and Adaptive versions; and
between the Adaptive and General versions of the agent. For
training population 1 evaluated with population 1 and for
training population 2 evaluated with population 2, it rejects
the null hypothesis that the distributions have equal means
with two-tailed p value < 0.0002. For training population 3
evaluated with population 3, we consider it fails to reject the
hypothesis (p > 0.2 for Adaptive with Generalist and p > 0.6



Fig. 3. Visual representation of progression of the belief distribution of the meta-agent over six-games of a randomly-chosen evaluation match-up. The
partner’s true identity is unknown to the agent, but highlighted in red for illustration, at the niche with indexes 1 and 4 for IPP and Communicativeness
respectively. The meta-agent’s belief starts uniformly distributed over all valid training partners (top left). In this example, most of the belief distribution
accumulates at the correct identity of the partner (bottom right), but in general, there is no guarantee of convergence.

for Oracle and Generalist). However, this seems to be due
not to the agent’s failure to adapt but due to the Generalist
already being almost optimal, within 0.1 point of the Oracle.
The Adaptive score was, in fact, much closer to that of the
Oracle than the Generalist. Note that for populations 1 and 2
there is more room for improvement between the Generalist
and Oracle (roughly 0.5 and 0.9 point respectively).

The remaining scenarios are “out-of-distribution” scenarios,
where the meta-agent interprets the observed behavioral fea-
tures as if they were coming from one of the partners in its
training population and adapts accordingly, but these features
are coming from evaluation partners from a distinct, but simi-
lar, population. The out-of-distribution scenarios, therefore, are
meant to test the robustness of the Adaptation meta-strategy
to different evaluation partners.

The out-of-distribution scenarios had inconclusive, but
slightly negative, results. In two scenarios, (1,3) and (2,1),
the Generalist beat the Adaptive version by around 0.2 point.
These scenarios had p-values around 0.001. In the remaining
four scenarios, differences were deemed unlikely to be signif-
icant (p > 0.1). This suggests that the Adaptive meta-strategy
does not transfer particularly well out of population, but it also
does not degrade performance by much.

We also see that, in out-of-distribution scenarios, the Or-
acle’s advantage over the Adaptive and Generalist agents
essentially disappears. It appears that knowing the correct
niche of a partner does not convey much advantage for an
Oracle with the wrong match-up table.

Finally, a closer look at the scenarios with evaluation
population 2 on the table shows an unexpected result: both the
Adaptive and Generalist instances trained with populations 1
and 3 beat in score all but the Oracle from population 2. While
training with the correct population should be an advantage,
recall that we use the training population as response pool as
well. If population 2 has weaker agents in general, the agent

using it as a response pool might be at an disadvantage. Further
experiments, where the training and strategy pools are chosen
independently, may shed further light on this finding.

XI. DISCUSSION AND FUTURE WORK

Most game-playing agents in the literature, both for Hanabi
and other games, are deployed with a “frozen” policy that dis-
plays little adaptation to other players, especially in-between
games. This works well enough in competitive games or in
games where it is possible to do well without modeling other
players, Hanabi is a domain where an agent that is able to
adapt its own behavior over short interactions with players
would be desirable, especially for playing with humans. This
ability could also be valuable outside the domain of game-
playing agents, such as in mixed-initiative design systems,
virtual assistants, etc.

In this paper, we presented a Hanabi “Bayesian meta-agent”
that adapts to unknown partners within a small number of
games. We use MAP-Elites to generate training populations
that form a “pool of hypotheses” with high behavioral diver-
sity. The meta-agent then collects, behavioral features from
training match-ups between the training population and a pool
of candidate response strategies.

We evaluate the meta-agent by having it play short series of
games with unknown partners. We use the collected behavioral
features to perform Bayesian updates on a belief distribution
that represents the belief that the unknown ad-hoc partner is
using the same strategy as each of the agents in the pool of
hypotheses. Finally, the meta-agent selects actions following
the policy from its response pool that is thought to maximize
score with partners sampled according to belief distribution.

In two of the three in-distribution scenarios, the Adaptive
version slightly improves its score from an initial “Generalist”
meta-strategy. The third scenario is less clear, as the Generalist
is already very close in performance to an optimal “Oracle”
meta-strategy. It achieves this while keeping track of only



three features during training and evaluation: the average
Communicativeness, IPP, and scores of each match-up.

The fact that self-play scores and pairwise scores are
strongly correlated (see table III) may affect our results, since,
for the most part, there’s a single scale of performance for
all agents rather than each agent’s value being contextually
dependent on each match-up. We know from [7] that strong
self-play agents can be bad at playing with others, but our
populations largely don’t reflect this.

For in-distribution performance, there are a few immediate
avenues of improvement: first, we could improve R by training
separate agents that play well with subsets of H rather than
simply using R = H . This would likely improve the score
of all three versions (Oracle, Adaptive and Generalist) of
the meta-agent. Second, we could drop the assumption that
behavioral features in the match-ups between R and H are
independent and normally distributed, and compute a better
approximation of the real distribution from the training data.
This would likely further bridge the gap between the Adaptive
and Oracle versions. Third, we could calculate action proba-
bilities directly from the policies of agents in H , rather than
measuring behavior indirectly through behavioral features.

There might, however be a trade-off between improving
same-distribution performance, where overfitting to the train-
ing data is desirable, and out-of-distribution performances,
where overfitting is likely harmful.

The out-of-distribution results range from inconclusive to
slightly negative. It is possible that we need behavioral features
that better capture relevant strategy aspects. For example, nei-
ther of the current behavior dimensions captures whether the
partner has a bias towards playing or discarding their oldest or
newest card preferentially, which is common between humans.
Adaptation intervals could also be defined contextually rather
than by a fixed-duration: for example, the agent could attempt
to adapt whenever it or its partner made a mistake.

Another open question is what happens when two agents
simultaneously try to adapt to each other. In some exploratory
experiments where an Adaptive meta-agent played with a copy
of itself, both agents converged to a response neighboring the
Generalist response. This might be because, in our populations,
the Generalist is a near-optimal response to most agents in
the pool. Different approaches to designing adaptive agents,
however, could lead to interesting oscillatory behavior, since,
at each step, the agents would be simultaneously adapting to
each other’s past behavior.

Finally, we could use a larger or more varied training and
evaluation pools, consisting of multiple runs of MAP-Elites,
various hand-crafted agents, RL agents etc. An agent that
could adapt to such a diverse selection of agent would be
an important next step towards cooperation with humans.
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