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Optimal Repair Strategy Against Advanced Persistent
Threats Under Time-Varying Networks

Zixuan Wang, Jiliang Li, Yuntao Wang, Zhou Su, Senior Member, IEEE, Shui Yu, Fellow, IEEE, and
Weizhi Meng, Senior Member, IEEE

Abstract—Advanced persistent threat (APT) is a kind of stealthy,
sophisticated, and long-term cyberattack that has brought severe
financial losses and critical infrastructure damages. Existing works
mainly focus on APT defense under stable network topologies,
while the problem under time-varying dynamic networks (e.g.,
vehicular networks) remains unexplored, which motivates our work.
Besides, the spatiotemporal dynamics in defense resources, complex
attackers’ lateral movement behaviors, and lack of timely defense
make APT defense a challenging issue under time-varying net-
works. In this paper, we propose a novel game-theoretical APT
defense approach to promote real-time and optimal defense strategy-
making under both periodic time-varying and general time-varying
environments. Specifically, we first model the interactions between
attackers and defenders in an APT process as a dynamic APT
repair game, and then formulate the APT damage minimization
problem as the precise prevention and control (PPAC) problem.
To derive the optimal defense strategy under both latency and
defense resource constraints, we further devise an online optimal
control-based mechanism integrated with two backtracking-forward
algorithms to fastly derive the near-optimal solution of the PPAC
problem in real time. Extensive experiments are carried out, and
the results demonstrate that our proposed scheme can efficiently
obtain optimal defense strategy in 54481 ms under seven attack-
defense interactions with 9.64% resource occupancy in stimulated
periodic time-varying and general time-varying networks. Besides,
even under static networks, our proposed scheme still outperforms
existing representative APT defense approaches in terms of service
stability and defense resource utilization.

Index Terms—Cybersecurity, advanced persistent threat (APT),
node-level epidemic model, APT repair game, time-varying net-
works.

I. INTRODUCTION

RECENTLY, many well-protected organizations, such as
multinational companies or government departments, have

been subjected to various cyber attacks that cause huge financial
losses, disclosure of business secrets, and even damages to
nation-critical infrastructures [1]–[3]. According to 360 Security’s
statistics [4], advanced persistent threats (APT) such as Stuxnet,
Duqu, Flame, and Gauss, account for nearly 60% of the attacks
on government departments and multinational corporations in the
past two years.

To launch a typical APT attack, a team of collusive hackers
generally use sophisticated, distributed, and stealth attack tech-
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nologies to (i) gain illicit access to the target system (e.g., via mal-
ware), (ii) infiltrate target organization via privilege escalation and
lateral movement attacks, and then (iii) achieve illegal purposes.
Essentially, APT attacks are characterized by long-term attack
cycles, highly sophisticated changes, and unpredictable lateral
movements, thereby causing highly complex attack patterns and
difficulties in attack path tracing and system reparation.

Due to the characteristics and hazards of APT attacks, how to
defend against APT attacks has become a hot topic of research
in academia and industry. There already have been various works
[5]–[11] focusing on APT defense, and many of them are based
on the game theory. For example, Yang et al. [5] proposed a
game-theoretical APT risk management strategy for defenders
(e.g., the security department of an organization) to optimally de-
ploy defense resources with mitigated APT attack loss, in which
both the assets of the organization and the behavioral returns of
the adversary are quantified. Li et al. [8] presented a Lyapunov-
based security-aware defense mechanism and employed the game
theory to seek the equilibrium between the network defenders and
APT attackers for optimally allocating the defensive resources
with maximized system utility. Yang et al. [7] modeled the APT
repair problem as an APT defense game and presented a greedy
algorithm to seek the Nash equilibrium as the optimal defensive
response strategy.

However, existing works mainly assume that the network
topology of an organization (e.g., government department and
operator of an IoT network) remains stable during APT defense,
which is inapplicable to general scenarios with dynamic network
topology (e.g., vehicular network [12], [13] and UAV network
[14], [15]). Many researchers already have recognized the impact
of network typology’s dynamicity on real-world attacks and
defenses, especially in the field of Internet of Things (IoT)
[16]–[18]. Besides, the highly dynamic network topology can
result in more complex attackers’ lateral movement patterns, as
well as a necessity for online low-latency APT defense strategy-
making under the constraint of defensive resources. For example,
the dynamic nature of satellite networks, exemplified by the
successful Hack-A-Sat competition [19] on Aug 18, 2023 at
DEF CON [20], highlights how the constantly changing topology
can be exploited by attackers, compromising even well-defended
satellites (details refer to Appendix A). Particularly, the following
key challenges must be addressed to practically deploy the game-
theoretical APT countermeasures.

• Dynamical defense resources. Typically, to recover from the
APT attack and offer normal services, an organization’s
defensive resources (e.g., audit and bandwidth resources)
are usually limited. Moreover, depending on practical ap-
plications, the organization’s defensive resources might be
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(a) (b) (c)

Fig. 1: The lateral movement attack on the entire dynamic network organization after the attacker obtains the ingress machine. The
red nodes indicate the machines that have been hijacked. The red dashed lines indicate the potential targets of the lateral movement
attack. The change of topology in (a)-(c) indicates the change of network topology.

dynamic in terms of space and time.
• Inefficiency in time-varying networks. As shown in Fig. 1,

the lateral movement attack (i.e., the attacker penetrates
other organization nodes through its compromised nodes)
under a dynamic network can severely damage the net-
work’s functionality. Furthermore, the time-varying network
topology complicates lateral movement attacks, resulting in
higher uncertainty and inefficiency in defensive resource
allocation.

• Lack timely defense. Since the network topology changes
over time, the defensive behaviors of defenders should be
timely adapted and enforced on the entire network. Besides,
considering the impact of defenders’ behaviors in the time-
varying network topology, there exists a curse of dimension-
ality due to the huge space of state and action sets.

To bridge the research gap, this paper proposes a fast and
efficient APT defense strategy tailored to time-varying networks
under both defense resource limitations and network dynamics.
Specifically, we model the interactions between APT attackers
and defenders (i.e., the network operator) under highly dynamic
environments as a sequential APT repair game with the aim of
minimizing the damage of the APT attack to the organization. We
regard the APT attack process as a finite time horizon divided into
multiple time slots, as shown in Fig. 1. The interactions between
APT attackers and defenders in each time slot are modeled as
a subgame of the dynamic APT repair game. Based on the
sequential APT repair game, an optimization problem, i.e., precise
prevention and control (PPAC), is formulated under both latency
and defense resource constraints.

Considering the time-varying network topology, threat impacts,
hosts’ differentiated states, and spatio-temporal variability of de-
fensive resources, we devise an online fast searching mechanism
based on optimal control to derive the near-optimal solution of the
PPAC problem in real time. We summarize the main contributions
as follows.

• Dynamic APT Repair Problem Modeling. We model the
interactions between APT attackers and defenders in each
time slot as a subgame of the dynamic APT repair game.
The sequential APT repair game is formulated as a precise
prevention and control (PPAC) optimization problem, whose
solution is the online optimal defense strategy. To the best

of our knowledge, this is the first attempt at the defense
strategy against APT attacks under time-varying networks.

• Efficient and Practical Solving Method. To solve the PPAC
problem, we present a practical online fast strategy search-
ing mechanism to seek the optimal APT defense strategy
which minimizes the impact of APT. It consists of two
backtracking-forward algorithms and an optimal system. The
two backtracking-forward algorithms, i.e., the threat rate
grading (TRG) algorithm and the recovery rate grading
(RRG) algorithm are developed to compute the nodes’ states
at each moment. Based on nodes’ states, the designed
optimal system can overcome the challenges caused by
topology changes and complex APT attack patterns to derive
the optimal defense strategy.

• Extensive Experimental Validation. Experiments on three
scenarios (i.e., static, periodic time-varying, and general
time-varying networks) demonstrate the feasibility and ef-
fectiveness of the proposed scheme. Results from exper-
iments validate that the proposed scheme can reduce the
impact of APT attacks on system utility and save defense
resources in time-varying dynamic networks. Compared
with existing representatives, our proposed approach can
effectively enhance service stability to 100% and defense
resource utilization to 75.50% in stimulated time-varying
networks, thereby greatly enhancing both the service utility
and defense performance.

The rest of the paper is organized as follows. Section II reviews
the related works, and Section III introduces the system model.
Section IV introduces the sequential APT repair game model
and formulates the PPAC problem. Section V introduces the
online fast strategy searching mechanism to solve the PPAC prob-
lem, and Section VI evaluates the performance of the proposed
scheme. Section VII summarizes this work using conclusions.

II. RELATED WORK

This section presents a comprehensive review of attack prop-
agation in APT scenarios and provides an in-depth analysis of
the existing literature on defense strategies. We review the attack
dissemination related literature (in Sect. II.A), game-theoretical
APT defense (in Sect. II.B), and optimal control-based APT
defense (in Sect. II.C).
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A. Attack Dissemination

The attack dissemination, also referred to as the lateral move-
ment phase [21] of a cyber attack, is intricately influenced by the
network topology. Extensive research has explored the complex
dynamics of propagation, particularly within the domains of
synchronization and consensus in static or dynamic multi-agent
systems [22].

Kephart et al. [23] and Staniford et al. [24] are among the
first to identify that the propagation of Internet worms exhibits
similarities to the spread of epidemics, posing a significant threat
to system security. Building upon their pioneering work, subse-
quent research in the field has continued to explore the analogy
between cyber attacks and epidemic spread. For instance, Wang
et al. [25] apply epidemic models to study the propagation of
viruses in mobile phones through multimedia messaging services
or Bluetooth connections. Cheng et al. [26] extend the application
of epidemic models by simulating the propagation of malicious
software within generalized social networks comprising both non-
local and local connections. Their research further validates the
suitability of epidemic models in capturing the dynamics of attack
dissemination in such networks.

Another notable contribution comes from Darling et al. [27],
who demonstrate the efficacy of ordinary differential equations
(ODEs) in approximating the dynamics of information dissem-
ination from Markov chains. And, Lapidus et al. [28] prove
that the backtracing-forward algorithm demonstrates exceptional
performance in solving such problems. Therefore, the utilization
of Markov chains in conjunction with node states to construct
epidemic models [29] has extensive applications in APT defense
[6], [7].

B. Game-theoretical APT Defense

Recently, various research efforts have focused on using game
theory to find efficient defense strategies for APT attacks. The
pioneering work of using game theory (the FlipIt game) to model
the payoffs and perform equilibrium analysis for both attackers
and defenders was proposed by van Dijk et al. [30].

Subsequently, the FlipIt game is used in various cyber situa-
tions [10], [11], which contains multiple resources, information
leakage, etc. In these applications, [31] uses the PBNE to discuss
the APT-related defense strategies.

Zhu et al. [32] categorize APT attacks into three distinct phases
and introduce a comprehensive framework based on matrix and
sequential games. By iteratively determining the optimal defense
strategy at each stage, the overall best defense strategy is derived.

In addition to applying game theory to study some general
aspects of APT attacks, several significant works have been
conducted on resource-limited defense strategies. These strate-
gies focus on optimizing resource utilization and developing
effective countermeasures to combat APT threats. This kind of
strategies is commonly known as the repair strategy [7]. To
identify the most optimal approach, the concept of a repair game
has been proposed. In line with this objective, Ye et al. [33]
study a new differential game based on network spoofing and
developed differential privacy methods for Nash equilibrium. But
they ignore the lateral movement of each compromised host.
Yang et al. [7] discuss the control strategy approach for lateral
movement in traditional network architectures with a differential

game approach. They give a potential Nash equilibrium under this
game from the perspective of the defender and give a reference for
the defender’s defense strategy. However, they only briefly discuss
repair methods while ignoring the diversity of repair methods. In
[6], Yang et al. propose the idea of isolation zones to solve the
APT repair problem in a more reasonable way which constructs a
two-order dynamical system to solve the control set for the QAR
(quarantine and recovery) problem.

However, all the works mentioned above neglect the dynamic
nature of topology in dynamic networks, thereby, cannot be
applied to dynamic networks.

C. Optimal Control Model for APT Defense

Besides the game-theoretical approach, various works use
optimal control to defend against APT attacks. Optimal control
theory is used to find the required control law to make a given
system perform optimally and is widely used in cybersecurity.
The defender simply has to be aware of the average values of
a few factors connected to the APT when modeling the APT
defense problem using optimal control. As compared to other
methods, estimating these factors requires less real APT data,
which the APT attack and defense exercises [34] can be used to
estimate these factors. Li et al. proposed [9] the optimal control
methods to solve the APT problem. They used a node-level
contagion model to evaluate changes in the state of nodes in the
maintenance scheme, which modeled the APT response problem
as an optimal control problem. In [35], Zhao et al. modeled the
isolation-conversion problem as an optimal control problem to
find the optimal isolation strategy to reduce the negative impact
of rumors. Inspired by [35], Yang et al. [6] further considered
the isolation operations essential to the APT response process.

However, existing works on APT defense mainly focus on
the networks with stable structures (e.g., the internal network
inside an organization) and are inapplicable to time-varying
networks (e.g., vehicular networks). Besides, these works ignore
the impacts of defense behaviors on the utility of the network op-
erator, which eventually deteriorates the defensive effectiveness.
Different from existing works, our work jointly considers the
dynamic topological characteristics of the nodes and the impacts
on the service utility in time-varying networks to develop fast
and effective APT defensive strategies.

III. SYSTEM MODEL

This section introduces the system model, including the net-
work model, lateral movement attack model, and potential APT
impact model. The key notations in this paper are listed in Table I.

A. Network Model

In the APT attack-defense scenario, it involves an attacker
(denoted by A) and a network operator (i.e., defender, denoted by
D) who operates V number of hosts. Here, A can be an attacker
group conspired to launch the APT attack, and D can be the cyber
security department of an organization (i.e., network operator).
At the same time, V also represents the organization’s valuable
assets (e.g., business secrets). Since the defender is far-sighted1

1As the APT attack is persistent, the defender aims to reduce the total loss in
the whole APT attack process.
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and aims to minimize the loss during the APT process, we study
the variation of APT lateral movement attack and the expected
impact of APT in a finite time horizon, which is divided into
multiple time slots. The time horizon of the defense process is
denoted as [0, T ], which is determined by the length of the APT
process. We denote the sequence of the APT process as

T̂ = {A1 = (0, t1), A2 = (t1, t2), ..., Am = (tm−1, tm}, (1)

where tj(1 ≤ j ≤ m) means the periods of the APT attack. Due
to the characteristics of the time-varying network, we represent
the periods of APT by the topology adjacency matrix of the
network. Each element Aj(1 ≤ j ≤ m) is a topology adjacency
matrix. For example, if 0 ≤ t ≤ t1, the adjacency matrix
A(t) = A1. We denote the links of network’s devices as G(t) =
{V,E(t), A(t)}, where V = {v1, v2, ..., vN} stands for the sets
of all devices and the edge {vi, vj} ∈ E(t) stands for the relation
between devices vi and vj at time t. Let A(t) = (aij)N×N

denote the adjacency matrix of network G at time t, aij = 1
or 0 represents that there exist a link between vi and vj or not,
respectively.

Assume the defender discovers the APT warning at time
slot t = 0 and replies within the allotted time window [0, t]
by carrying out several defense activities. Each node has four
possible states during the response period at any given time slot:
healthy, mild, severe, and quarantined. The quarantined
state stands for the nodes that break all the links. The healthy
state represents the nodes that do not suffer from attacks. The
mild state stands for the compromised nodes whose impact on the
network is acceptable. In other words, the mild nodes bring more
revenue than the loss they caused. The severe state represents the
compromised nodes whose impact on the network is fatal, which
means they need to be repaired immediately. For each node vi, let
Xi(t) = 0, 1, 2, and 3 denote that vi is healthy, mild, severe,
and quarantined at time t, respectively. Then the state of each
node at time t can be denoted as:

X(t) = (X1(t), X2(t), ..., XN (t)). (2)

We provide the following set of notations to express the network’s
evolution process for the X(t) variable.

1) We define the PPAC control factor as a 3N -dimensional
function w, i.e.,

w(t) = (Λ(t),∆(t),Γ(t)). 0 ≤ t ≤ T (3)

W = (w(1), ...,w(j)) represents the control vector of
whole APT process. Here, the average rate is a fundamental
concept in stochastic process theory [36] whose reciprocal
represents the mean time before the event occurs.

2) The average rate at which each compromised node vi is
categorized as mild or severe is represented by the notation
λi(t) (λi(t) is severe, 1 − λi(t) is mild). We refer to the
N -dimensional function Λ defined by

Λ(t) = (λ1(t), ..., λN (t)), 0 ≤ t ≤ T (4)

as the threat vector.
3) The average rate of quarantining for each severe node vi

at time t is represented by the notation δi(t). We refer to
the N -dimensional function ∆ defined by

∆(t) = (δ1(t), ..., δN (t)), 0 ≤ t ≤ T (5)

TABLE I: Key Notations

Notation Description

G(t) =
{V,E(t), A(t)}

The topological graph of the server network, ξ
denotes the edge set of the graph at time t,

A(t) = (at
ij)N× denotes the adjacency matrix

of the G at time t.

T̂
The topology schedule of the task.

T̂ = {A1 = (0, t1), A2 =
(t1, t2), ..., Am = (tm−1, tm}

T Time to perform the task.

Xi(t) =
{0, 1, 2, 3}

The node vi is healthy, mild patients, severe
patients, and quarantined at time t, respectively.

The vector X(t) = (X1(t), ..., XN (t))
represented the state of network at time t.

βi(t)
The average rate of direct infiltration that

compromises a healthy node vi. Let
β(t) = (β1(t), ..., βN (t))

αi(t)

The average rate of lateral movement from any
nearby compromised APT node that
compromises a healthy node vi. Let

α(t) = (α1(t), ..., αN (t)).

λi(t)

The average rate at which compromised node vi
is classified as mild or severe. Let

Λ(t) = (λ1(t), ..., λN (t)). The function Λ
represents the threaten scheme.

δi(t)

The average rate at which compromised node vi
is quarantined or not. Let vector

∆(t) = (δ1(t), ..., δN (t)). The function ∆
represents the quarantined scheme.

γi(t)

The average rate at which severe patients node
vi is recover to mild patients or healthy. Let

vector Γ(t) = (γ1(t), ..., γN (t)). The
function Γ represents the recovery scheme.

a1
i , a

2
i

The average consumption per unit time of Mi

and Si. Vectors a1 = (a1
1, ..., a

1
N ) and

a2 = (a2
1, ..., a

2
N ) denote resource impact

value vector of the network, respectively.

bi

The average impact of services impact per unit
of time. is referred to as a precise prevention and

control scheme. b = (b1, ..., bN ) denotes
services impact value vector of the network.

ϕi

The quarantine cost function of the node vi.
Vector ϕ = (ϕ1, ..., ϕN ) represents the
quarantine cost function of the network.

ϱ1
i , ϱ

2
i

The recovery cost function to Mi and Si.
Vector ϱ1 = (ϱ1

1, ..., ϱ
1
N ) and vector

ϱ2 = (ϱ2
1, ..., ϱ

2
N ) represent the recovery cost

of the network.

R, T
The output of algorithm TRG and RRG, which
represent the threaten states and recovery states

of the network.

Un,U
U represents the utility of the entire network.
Un represents the requirement of maintaining

minimum service effectiveness.

E0
E0 represents the average rate of the initial state

of nodes.

w
w(t) = (Λ(t),∆(t),Γ(t)) is referred to as a

precise prevention and control scheme.

as the quarantined vector.
4) The average rate at which a confined node vi becomes

healthy or mild at time t is expressed as γi(t) for each
quarantined node vi. We refer to the N -dimensional func-
tion Γ defined by

Γ(t) = (γ1(t), ..., γN (t)), 0 ≤ t ≤ T (6)

as the recovery vector.
5) The healthy nodes of the network that suffered from attacks

are defined as follows. The healthy node vi becomes
compromised as a result of APT penetration, as represented
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by βi(t). The probability that the healthy node vi becomes
compromised due to lateral movement from surrounding
compromised nodes is represented by the average infection
rate αi(t). Two statistical properties of the task are βi(t)
and αi(t), which are denoted as β(t) = (β1(t), ..., βN (t))
and α(t) = (α1(t), ..., αN (t)), respectively. Note that
β(t) and α(t) can be calculated using APT attack-defense
maneuvers [34].

Based on the above notations, we can obtain the state transition
of the node vi at time slot t as shown in Fig. 2 through Markov
chain theory. The details of the state transition model are shown
in Section III-B.

B. Modelling the Lateral Movement Attack

The time-varying network topology makes lateral movement
attacks more complex and difficult to predict. To accurately
portray the impact of the lateral attack, we adapt the Markov
process and causal analysis to obtain a response model.

Based on the [29], we can get the state transition function:

ẋ(t) = (1− xi)βi(t)

n∑
j=1

aij(t)xj − δi(t)xi(t). (7)

Fig. 2: The state transition of node vi at time t.

Considering both direct infiltration attacks and lateral move-
ment attacks, we define Xi(t) as:

Xi(t) = βi(t)+αi

n∑
j=1

aij(t){(Xj(t) = 1)+(Xj(t) = 2)}. (8)

The state transition process is shown at time t in Fig. 2. We
use Hi(t), Mi(t), and Si(t) to denote the probabilities of node
vi being healthy state, mild state, and severe state at time t,
respectively. Each state can be expressed as:

Hi(t) = Pr{Xi(t) = 0}, Mi(t) = Pr{Xi(t) = 1},
Si(t) = Pr{Xi(t) = 2}.

(9)

If the node vi is in quarantined state at time t, the probability
is 1−Hi(t)−Mi(t)−Si(t). Vector E(t) represents the expected
state of the network at time t. In practice, we can get the initial
state E(0) by the APT detection program in [37]–[39]. The vector
E(t) can be expressed as:

E(t) = (H1(t), ..., HN (t),M1(t), ...,MN (t), S1(t), ..., SN (t)). (10)

Therefore, we have the following theorem to describe the
network’s expected state evolution.

Theorem 1: The network’s expected state evolves according
to the following differential dynamical system:

dHi(t)
dt = γi(t)[1−Mi(t)− Si(t)−Hi(t)]−Hi(t)∗

[βi(t) + αi

∑n
j=1 aij(t)Mj(t)

+αi

∑n
j=1 aij(t)Sj(t)]

dMi(t)
dt = Hi(t)[βi(t) + αi

∑n
j=1 aij(t)Mj(t)

+αi

∑n
j=1 aij(t)Sj(t)]− λi(t)Mi(t)

dSi(t)
dt = λi(t)Mi(t)− δi(t)Si(t)

E(0) = E0

(11)

Proof: We use E to denote the mathematical expectation.
The expected rate at which healthy state node vi transforms to
severe state or mild state at time t is

E
(
Xi(t) = βi(t) + αi

n∑
j=1

aij(t){(Xj(t) = 1) + (Xj(t) = 2)}
)

= Xi(t) = βi(t) + αi

n∑
j=1

aij(t)(Mi(t) + Si(t)),

(12)

and the derivation of the conversion process of other states in
Fig. 2 is the same. Hence, we can get the Eq. (11).

Remark 1: Theorem 1 illustrates the differential equations
of each state we defined by finding the expectation for the
state function Eq. (8) with different condition restrictions. For
example, healthy state nodes are composed of attack and recov-
ery two parts at time slot t. On the attack part, each healthy
node compromise to mild or severe state by direct attack and
lateral movement attack, and the compromised probability is
βi(t) + αi

∑n
j=1 aij(t)(Mi(t) + Si(t)). On the recovery part,

each quarantined node transforms to the healthy state by the
defenders’ recovery operations whose recovery rate is γi(t).

C. Modelling the Expected Impact of APT Attack

For the stealthiness of attacks, the attacker hacks the organi-
zation slowly via insecure hosts. Therefore, the amount of loss
per unit of time of the organization is limited. In this paper,
we assume that the attacker will intelligently exploit different
insecure hosts to expand the erosion of the organization.

We consider the following three main factors of organizational
loss caused by the APT attack (i.e., the APT impact on the
organization). 1) The consumption of resources by the hijacked
hosts. 2) The service utility loss of the attacked host and its
impact on the overall service. 3) The cost of adapting the defense
strategies to control APT attacks (e.g., cutting off the connection
between hosts or system updates).

1) Resource consumption. For each compromised node vi, we
define a1i and a2i as the average consumption per unit time of Mi

and Si, respectively. Let a1 = (a11, ..., a
1
N ) and a2 = (a21, ..., a

2
N )

denote resource impact value vector of the network, respectively.
In practice, the average consumption can be estimated by the
resource per unit of time (e.g., bandwidth usage per unit of time
and WAF placement per unit of time). Therefore, the following
theorem is introduced to define resource consumption in a time
period.
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Theorem 2: Due to the consumption of resources, the expected
consumption in time horizon [0, T ] is

L(w) =

∫ T

0

N∑
i=1

[a1iMi(t,w(t), G(t))

+ a2iSi(t,w(t), G(t))]dt.

(13)

Proof: The average consumption in the infinitesimal time
horizon [t, d + dt) is a1i (Xi(t) = 1) and a2i (Xi(t) = 0). The
expected consumption in [t, d + dt) is a1iMi(t,w(t), G(t))dt +
a2iSi(t,w(t), G(t))dt.

Remark 2: From the consumption history data of the specified
hosts after being attacked, defenders can obtain the Mi and Si

state hosts’ average consumption a1i and a2i , respectively. In this
paper, we assume the average consumption is constant in the
infinitesimal time. Through the parameters a1i and a2i , we can
define the consumption in the infinitesimal time of one node
as a1iMi(t,w(t), G(t)) + a2iSi(t,w(t), G(t)). In this way, the
integral formulation can calculate resource consumption for a
given time period.

2) Service utility loss. For each quarantined node vi, we
define bi as the average impact of service per unit of time.
b = (b1, ..., bN ) denotes services impact value vector of the
network. In actuality, the vector can be calculated by examining
the server’s traffic flow. Based on the above, Theorem 3 is
introduced to define service utility loss in a time period.

Theorem 3: Due to the impact of services, the expected impact
in the time horizon [0, T ] is

E(w) =

∫ T

0

N∑
i=1

[bi(1−Mi(t,w(t), G(t))

−Si(t,w(t), G(t))−Hi(t,w(t), G(t)))]dt.

(14)

Proof: The proof of service’s impact is comparable to the
proof in Theorem 2, and we omit it here.

Remark 3: In our state evolution model, we perform quar-
antine operations based on the threat rate for the hijacked hosts.
So the service utility loss for a given period is only considered
for the nodes in the quarantine state, and it is simple to get the
service parameter bi of each host for the defender. Through the
parameters bi, we define the service utility loss in the infinitesimal
time of one node as (1−Mi(t,w(t), G(t))−Si(t,w(t), G(t))−
Hi(t,w(t), G(t))). The integral formulation can calculate the
service utility loss for a given period.

3) Expected repair cost. For each severe state node, ϕi(δ)
denotes the cost of quarantining at the average rate δ. We define
ϕi as the quarantine cost function of the node vi. Therefore,
the quarantine cost function of the network is represented as a
vector ϕ = (ϕ1, ..., ϕN ). The function ϕi is strictly increasing and
ϕi(0) = 0. In practice, we can approximate ϕ through statistical
regression of APT attack-defense maneuvers [34]. The dynamic
quarantine schedule, denoted by

(ϕ1(δ1(t)), ..., ϕi(δN (t))) 0 ≤ t ≤ N, (15)

is decided directly by the defender.
For each quarantined node vi, we define ϱ1i , ϱ

2
i as cost functions

to Mi and Si, respectively. Therefore, the recovery cost of the
network is represented as vector ϱ1 = (ϱ11, ..., ϱ

1
N ) and vector

ϱ2 = (ϱ21, ..., ϱ
2
N ). The dynamic recovery schedule is defined as

(ϱ1(γ1(t)), ..., ϱ
1(γN (t))) 0 ≤ t ≤ N

(ϱ2(1− γ1(t)), ..., 1− ϱ2(γN (t))) 0 ≤ t ≤ N.
(16)

Then, Theorem 4 is introduced to define the expected repair cost
of the repair operations of the network in a period.

Theorem 4: The expected amount of cost in the time horizon
[0, T ] is

C(w) =

∫ T

0

N∑
i=1

ϕi(δi(t))Si(t,w(t), G(t))dt

+

∫ T

0

N∑
i=1

ϱ1i (γi(t))[1−Mi(t,w(t), G(t))

−Si(t,w(t), G(t))−Hi(t,w(t), G(t))]dt

+

∫ T

0

N∑
i=1

ϱ2i (1− γi(t))[1−Mi(t,w(t), G(t))

−Si(t,w(t), G(t))−Hi(t,w(t), G(t))]dt.

(17)

Proof: The proof of the cost is comparable to the proof in
Theorem 2, and we omit it here.

Remark 4: Through the quarantine cost function ϕ with
recovery cost function ϱ1 and ϱ2, we define the expected cost of
the repair operations in the infinitesimal time of one node. Based
on the infinitesimal cost of each node, it is easy to represent the
expected cost of the repair operations in a time period by the
integral formulation.

According to Theorems 2, 3, and 4, the total expected impact
is

I(w) =L(w) + E(w) + C(w)

=

∫ T

0

I(S(t,w(t)),w(t), G(t))dt,
(18)

where
I(E(t,w(t)),w(t)) =∫ T

0

N∑
i=1

[(ϕi(δi(t)) + a2i )Si(t) + a1iMi(t)]dt

+

∫ T

0

N∑
i=1

[bi + ϱ1i (γi(t)) + ϱ2i (1− γi(t)]∗

[1−Mi(t)− Si(t)−Hi(t)]dt.

(19)

IV. DYNAMIC APT REPAIR GAME MODEL AND PPAC
PROBLEM FORMULATION

In this section, we first model the interactions between de-
fenders and attackers as a dynamic APT repair game. Then, we
formulate the dynamic APT repair game as a PPAC problem
targeted to minimize the defender’s potential loss.

A. Modelling the Dynamic APT Repair Game

In this subsection, we first analyze the subgame, i.e., the
dynamic APT repair game in one time slot of the ATP attack
process as below.

1) Subgame Modelling: In an APT attack process slot, de-
fenders deploy defensive measures far-sighted to minimize the
organization’s loss. We model the behaviors of attackers and
defenders in each time slot as a repair game as follows:

Game 1: (Repair Game in an APT Attack Slot).
• Players: each host vi ∈ Aj of the organization.
• Strategies: depending on each node’s average rate δi ∈

{δi, δi}, λi ∈ {λi, λi}, and γi{γi, γi} defined in Eq. (11),
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defenders deploy the different defense measures at each node
vi defined in Eq. (3) for organization loss reducing.

• Objectives: defenders aim to minimize the total impact of
APT defined in Eq (18).

Remark 5: In this paper, we assume the attacker adopts the
greedy strategy, i.e., maximizing the loss to the target organization
in the current game. The reason behind the attacker’s inclination
towards a greedy strategy stems from the inherent information
asymmetry, where the attacker lacks comprehensive access to the
organization’s global information, i.e., network topology, access
control settings, asset distribution, etc. Limited to local infor-
mation, such as the organization’s network segment or specific
service versions, the attacker strives to maximize immediate gains
in each operation. According to [40], under the circumstances of
information asymmetry, it is considered a judicious course of
action for attackers to adopt a greedy strategy.

Each element of APT process sequence Eq. (1) denotes the
APT attack time slot of the subgame, such as Ai = (tj , tj+1)
represents i − th subgame and [tj , tj+1] represents the time
horizon of this subgame. Next, we model the defenders resource
allocation behaviors as a sequential game in the APT attack
process.

2) Sequential Game Modelling: Before modeling the sequen-
tial game, we introduce the interactions between the subgame.
Defenders are often passive [41] in an APT defense process
because defenders have no grounds to deny users access to the
network services. The defenders’ sensible choice is to respond
quickly after observing the attack. Therefore in a subgame, the
attacker first determines its attack strategy in Stage I, and then
the defender determines its defense strategy in Stage II as a
response to the observed behaviors of the attacker. These two
stages repeat in the subgame, and the strategies of this subgame
are known for the next subgame. The sequential game to model
the interactions among attacks and defenders in the finite time
horizon is as follows.

Game 2: (Sequential Game in APT Attack Process).

• Players: each host vi ∈ Aj of the organization.
• Strategies: average rate vector w(t) defined in Eq. (11) in

each time slot t.
• Histories: the action of previous subgame w(t− 1).
• Objectives: defenders aim to minimize the total impact of

APT in the whole APT attack process.

Remark 6: In the above sequential game, defenders decide the
defense strategy timely to minimize the loss of the entire APT
attack process.

3) Game Analysis: As demonstrated in Eq. (8), the attacker
can manipulate the selection of target hosts by controlling the
parameters α and β, and can adjust the intensity of attacks on the
target hosts by tuning the parameter λ. We define (PC[0, T ])k

as the set of all piecewise continuous k-dimensional functions
defined on the interval [0, T ].

Define a (N)-dimensional function At as follows:

At = (λ1(t), ..., λN (t)) 0 ≤ t ≤ N (20)

Then the strategy of the attacker can be represented as SA =
At ∈ (PC[0, T ])N .

In contrast, defenders have the ability to optimize host main-
tenance strategies by controlling the parameters δ and γ. Define
a (N +N)-dimensional function Df as follows:

Df = (δ1(t), ..., δN (t), ..., γ1(t), ..., γN (t)) 0 ≤ t ≤ N. (21)

The strategy of defender can be represented as SD = Df ∈
(PC[0, T ])N+N . After defining the strategy sets for the attacker
and defender, we assume that the strategy spaces for both can
be partitioned into discrete sets [42]. Let the strategy set for
attackers have m options, denoted as SA = {At

1, ...,A
t
m}.

Similarly, the strategy set for defenders has n options, denoted
as SD = {Df

1 , ...,D
f
n}. The decisions of attackers and defenders

form the strategy pairs (At
i,D

f
j ). Naturally, there are a total of

m×n strategy pairs in this situation. Assuming that the winning
strategy for the defender is denoted as At

ij , we can obtain the
matrix A in Eq. (22).

At
11 At

12 . . . At
1n

At
21 At

22 . . . At
2n

...
...

. . .
...

At
m1 At

m2 . . . At
mn

 (22)

Based on the analysis of attack impact in Sect. III.C, the attacker’s
benefit is determined as follows:

Ab = WA · I(E(t,w(t)),w(t)). (23)

The defender’s benefit is determined as

Db = WD · I(E(t,w(t)),w(t)). (24)

The WA and WD represent the coefficients of impact of attacks
and defenders, where WA > 0 and WD < 0. The impact of
attacks is a positive gain for attackers, but a loss for defenders.
It should be noted that the matrix A also represents the loss
matrix for the attacker, thus the payoff matrix for the attacker
is −A. In the process of the game, it is prudent to consider the
opponent’s motivation to maximize one’s own loss (given the
intense competition). Therefore, one should strive for the best
possible outcome in the worst-case scenario. In mathematical
terms, this corresponds to first taking the minimum of each row
element (assuming the opponent minimizes one’s loss), and then
taking the maximum of all the minimum values across rows
(resulting in the minimum loss), such as

I(E(t, (S∗A, S∗D), (S∗A, S∗D))) = max
i

min
j

At
mn. (25)

In such a zero-sum game, a strategy pair (S∗A, S∗D) ∈ At ×Df

is referred to as a Nash equilibrium if

I(E(t, (S∗A, S∗D), (S∗A, S∗D)) ≥ I(E(t, (SA, SD), (SA, SD)).
(26)

Once the subgame equilibrium has been determined, we can
then proceed to analyze the equilibrium of the entire sequential
game. Considering the strategic interactions and decision-making
of the players across all stages of the game, we aim to identify
the strategies and outcomes that constitute an equilibrium for the
overall sequential game. This entails examining the consistency
and optimality of player strategies, taking into account the
sequential nature of the game and the information available to
each player at different stages.
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Fig. 3: Architecture of the proposed scheme

Theorem 5: Dynamic games in which players have a finite set
of actions and engage in a finite number of interactions exhibit
equivalence, while every finite extensive-form game characterized
by perfect information possesses a pure-strategy Nash equilibrium
[43].

Proof: The proof for Theorem 6 is provided in [44].
Theorem 5 shows the existence of a Nash equilibrium in
the formulated sequential game. Moreover, it guarantees the
convergence of the game to this equilibrium within a finite
number of iterations. Hence, the equilibrium of the game is
S = ((S∗A, S∗D)1, ..., (S∗A, S∗D)N ).

B. PPAC Problem Formulation

In this subsection, we formulate the PPAC Problem based on
the game model. Firstly, we assume the solution function of
PPAC is piecewise continuous in this paper. Hence, we define
PC[0, T ] as the function space of the attack process, and the
PPAC’s solution set is w ∈ (PC[0, T ])3N . Secondly, we assume
all quarantine rate functions, all threat rate functions, and all
recovery rate functions in each feasible strategy are bounded
by the dynamic defense resource. Thereby, for 1 ≤ i ≤ N ,
δi, δi represent upper and lower bounds of δi, λi, λi represent
upper and lower bounds of λi, and γi, γi represent upper and
lower bounds of γi. For brevity, we denote δ = (δ1, ..., δN ),
δ = (δ1, ..., δN ), λ = (λ1, ..., λN ), λ = (λ1, ..., λN ), γ =

(γ1, ..., γN ), γ = (γ1, ..., γN ). Note that the value of δ, δ, λ, λ,
γ, and γ can be estimated by the previous data and the experience
of defenders for different scenarios. Finally, the feasible solution
set of the PPAC problem can be summarized as

W = {w ∈ (PC[0, T ])3N |w(t) ∈
N∏
i=1

[δi, δi]×
N∏
i=1

[λi, λi]×
N∏
i=1

[γi, γi]}.
(27)

After defining the above basic variables, we proceed with
formulating the PPAC problem. To better align the problem
with real-world attack-defense scenarios, our work is based on
three practical assumptions: (a) We assume that the entire attack-
defense process can be divided into multiple sub-stages based on
time [45], and the defender has access to the current stage’s global
network information and all the information from the previous
round, while the attacker can only access the information from

the previous round. (b) In each round of the process, the attacker
takes action first, and due to the unequal information between
the attacker and defender, the attacker adopts a greedy strategy
(further details can be found in Remark 5), pursuing maximum
immediate gains without considering the impact on the next stage.
On the other hand, the defender leverages their advantage of
having more information and considers the impact of their belief
about the attacker’s decision in the next round [46]. (c) At time
period t + 1, the defender’s relative belief is solely determined
by the historical information and the defender’s action at time
period t [47].

Define vector µ = (µ1, ..., µm)T as the belief vector of defend-
ers, and vector ρ = (ρ1, ..., ρm)T as the belief vector of attackers.
Then the expectation of defenders win is E(SA, SD) = µTAρ.
Then, the objective from defender’s perspective can be expressed
as

max
µ

min
ρ

µTA(

n∑
j=1

ρjej), (28)

where ej represents a vector with only the j − th component
being 1 and all other components being 0. Therefore, from the
defender’s perspective and the aforementioned assumptions, we
can formulate the optimization problem for the defenders as

min I(w) = max
µ

(

n∑
j=1

ρjej). (29)

The optimization problem for the attackers is

max−I(w) = min
ρ

(

n∑
i=1

µiei). (30)

Therefore, the decision problems of the attacker and defender
are dual linear problems and have the same optimal objective
function value. Hence, finding the optimal solution for either
of them would suffice. To capture the influence of attacker’s
decisions on defender’s decisions, we enhance the optimization
problem for the defender by incorporating the factors of attacker’s
decisions into defender’s objective function. Therefore, for the
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PPAC problem, a decision can be represented as w(t). Hence,
the PPAC problem can be formulated as

min
w∈W

I(w) =

∫ T

0

I(E(t,w(t)),w(t), G(t))dt,

s.t.



dE(t)
dt = F (E(t),w(t))

λi(t) = T (vi, t)

γi(t) = R(vi, t)

E(0) = E0

Un ∈ (0,U)

(31)

where dE(t)
dt = F (E(t),w(t)) is a brief expression of Eq. (11).

T (vi, t) and R(vi, t) represent the node vi in the threat algorithm
TRG and recovery algorithm RRG, respectively. U is the utility
of the network work without APT attack, and Un is the minimum
utility of the task need.

Remark 7: The admissible control set of the optimal problem
in Eq. (31) represents the feasible defense strategies of the
dynamic APT repair game. The objective function means the APT
impact of the organization under a workable sequence, and each
optimal solution denotes potential PPAC defense strategies that
minimize the expected APT impact.

The PPAC problem can be summarized as

M = (G, a1i , a
2
i , bi, ϕ, ϱ

1, ϱ2, α, β, δ, λ, γ, T̂ , R, T,Un,U ,E0),
(32)

where λ and γ are parameters determined by algorithm TRG and
algorithm RRG, respectively.

V. SOLUTION TO THE PPAC PROBLEM

A. Solution Overview

Fig. 3 shows the workflow of our proposed game solution to
design optimal defense strategies under an APT alert (i.e., the
current anomalous hosts). As previously analyzed, the dynamic
variation of the network and the impact of attack and defense
interactions make the solution strategy easy to fall into a locally
optimal solution. To escape the local optimal solution trap,
we develop two backtracking-forward rating algorithms for risk
assessment in phase II. For timely defense, we build an optimal
system in phase III. The detail of the three phases in our solution
is shown below.

• Phase I: In this phase, the attacker obtains the anomalous
hosts in the current network based on the attack detection
methods [39], [48]–[51] and uses these anomalous hosts as
input for the next phase.

• Phase II: Depending on phase I, the TRG and RRG com-
pute the status expectation parameters λ and γ, respectively.
The details are shown in Section V-B.

• Phase III: We construct a dynamic system based on the
solution objective of the PPAC problem. To simplify the
solving, we extend the solving set to segmented functions
through Pontryagin maximum principle. Based on the above
and the parameters of phase II, phase III can give the optimal
strategies to solve the PPAC problem. The detail of phase
III is shown in Section V-C.

B. Backtracking-Forward Rating Algorithm

The time-varying network topology leads to the optimal be-
havior in the current network state becoming a locally optimal
solution in the global aspect. Although this problem can be solved
by increasing the dynamic inputs to the optimal system, the
system with various dynamic inputs will make the interactions
between inputs complex. To solve this problem, we develop
two backtracking-forward rating algorithms, TRG and RRG. The
three key factors and the corresponding algorithm operations for
the classification of a node are described as follows.

• Structural features: The importance of the topological
relationship between nodes in the network. Some nodes in
the network are critical to its integrity due to their relative
position, degree, and the betweenness [52]. To represent
the topological importance of a node on the network, we
use the k-shell [53] algorithm to characterize the range of
node’s influence on the network and use the betweenness to
characterize the influence of a node on the connectivity of
the network.

• Lateral features, which is also called infection features:
The node’s importance to the state matrix’s spectral radius
after a lateral attack on the entire network. For example, if
a service host in an organization with an open public port
is attacked, the attacker can use the machine as a broiler
to attack devices that require a specific IP to open the port.
Our algorithms use epidemic thresholds [54] for node lateral
attack descriptions. We use the spectral radius of the entire
state matrix as described in the [29] to discuss epidemic
thresholds.

• Service features: The importance of nodes to the service
performance of the entire network. The impact of the node
itself on the overall service function is determined by two
main aspects: its original service capability and its role in the
network for information transfer. Service utility information
is readily available to defenders. In this paper, we take in the
experiment according to the topology of randomly generated
service weights to represent his service capabilities.

Note that, the spectral radius in this paper is ρ(G) =
max1≤i≤n |λi|, where ρ(ΛA−M) indicates the epidemic thresh-
old. In ρ(ΛA − M), Λ represents the infection rate diagonal
matrix, M represents the recovery rate diagonal matrix, and A
is the adjacency matrix of the network. The utility of the overall
network is Z = N × I , where the I represents the average utility
of each node, and N is the number of the nodes. In what follows,
we illustrate the TRG algorithm and RRG algorithm in detail,
respectively.

The computational complexity of Algorithm 1 is O(n · N2),
where n and N represent the number of nodes and the number
of periods, respectively. In line 6 of Algorithm 1, n nodes are
performing utility calculations. This calculation involves a nested
loop, where the number of iterations is n · N . In lines 12-
18 of algorithm 1, we can observe that in the worst case, the
entire nested loop will backtrack to the initial position after each
iteration. Thus, the number of worst iterations in this loop is
N(1+N)

2 . The overall number of iterations is n · N(1+N)
2 .

1) The TRG Algorithm: The TRG algorithm is used to classify
the hazard level. The dynamic contagion problem is summarized
in [29], which is proved to be NP-hard under the edge-level
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Algorithm 1 TRG

Input: t,E(t), T̂ ,U ,Un, I, k, tw
Output: the threaten state list M

1: N = |T̂ |, which is the elements number of T̂ ;
2: G = T̂ (t) = (V,E), V = (v1, ..., vn);
3: for 1 ≤ i ≤ n do
4: Pvi : Compromise rate of neighbor nodes within one hop of

aggregation node vi by Eq. (8) and tw;
5: end for
6: for Pvi ∈ {Pv1 , ..., Pvn} do
7: while k ≤ N do
8: G = T̂ (k)
9: Pvi = Pvi + ρϕρϵ + ZϕZϵ;

10: Compute Z(k), which is the overall utility of the entire network
after removing node vi from the network;

11: Compute ρ(k), which is the spectral radius at moment t after
removing node vi from the network;

12: if [ρϕ(ρ(k) − ρ(k−1))− Zϕ(Z
(k) − Z(k−1))] > 0 then

13: k ++;
14: else
15: ρϵ = ρϵ + ρ(k) − ρ(k−1);
16: Zϵ = Zϵ + Z(k) − Z(k−1);
17: k −−;
18: end if
19: end while
20: end for
21: sorting V in descending order;
22: j = (U−Un)

I
;

23: P = Pv1+, ...,+Pvj ;
24: for 1 ≤ i ≤ n do
25: Mi =

pvi
P

;
26: end for
27: return(T).

model. TRG adopts the node-level method to solve the dynamic
contagion problem.

The incoming time t and sequence T̂ are used to determine
the current position k in the time. Then, we adopt the k-shell
algorithm to get each node’s threat weight ks, which can help
us better quantify each node’s importance in the network. The
k-shell algorithm obtains the ks coefficient of each node, and the
ks coefficient is defined as the threat weight of each node. We
denote I representing each host’s average service performance.

The algorithm starts by ranking the utility of the systems with
initializing the input sequence lines 1-3. Next, we depend on the
Eq. (8) and the threat weight to aggregate the compromise rate
of neighbors within one hop of each node which we define as
pvi , lines 4. Then, we take each node with its pvi to determine
the threat factor. We measure nodes’ contagion by the epidemic
threshold of the network after removing the node and its utility by
the change in the service utility of the network after removing
the node, lines 4-7. Then we rely on the topological relation
transformations throughout the task as well as the variation of
the spectral radius to give two coefficients ρϕ and Zϕ to measure
the impact. Furthermore, the algorithm describes the impact of the
current judgment on the next epoch by ρϵ and Zϵ, lines 8-13. The
primary objective is to ascertain the adherence of the preceding
period’s decision to the prescribed criteria. Suppose we find an
increase in contagiousness or a decrease in utility. In that case,
we backtrack to the previous epoch with this information until
a node has completed all epochs to get its final value pvi , lines
14-20.

These values are propagated and assimilated into the network
model, facilitating the evaluation and validation of the updated
network topology during this period. The primary objective is
to ascertain the adherence of the preceding period’s decision to
the prescribed criteria. If the decision is deemed compliant, the
progression continues to the next period. However, if discrepan-
cies are detected, and the decision fails to meet the stipulated
requirements, the disparity value ρϵ and Zϵ are utilized as an
adjacent solution to rectify the decision made in the previous
stage.

To ensure the credibility of the rating, we make a worst-
case assumption about the evolution of the node and find the
potentially infected node with the largest structural and efficacy
characteristics as the default infected node. Finally, we sort the
nodes by these final values and get the threat rate by the ratio of
the theoretical values. The threat rate is generated by comparing
the theoretical worst total impact value at that moment with
the theoretical value for each specific node, lines 20-24. The
algorithm finally outputs a list of threat registration assessments
M for all nodes at that moment, line 24. The details of RRG
algorithm are shown in Algorithm 1.

Algorithm 2 RRG

Input: t,E(t), T̂ ,U ,Un, I, k, tw
Output: the recovery state list M

1: N = |T̂ |, which is the elements number of T̂ .
2: G = T̂ (t) = (V,E)
3: for 1 ≤ i ≤ n do
4: Pvi : Compromise rate of neighbor nodes within one hop of

aggregation node vi by Eq. (8) and tw;
5: end for
6: for Pvi ∈ {Pv1 , ..., Pvn} do
7: while k ≤ N do
8: G = T̂ (k)
9: Pvi = Pvi + ρϕρϵ + ZϕZϵ;

10: Compute Z(k), which is the overall utility of the entire network
after adding node vi to the network;

11: Compute ρ(k), which is the spectral radius at moment t after
adding node vi to the network;

12: if (Zϕ(Z
(k) − Z(k−1))− ρϕ(ρ

(k) − ρ(k−1))] > 0 then
13: k ++;
14: else
15: ρϵ = ρϵ + ρ(k) − ρ(k−1);
16: Zϵ = Zϵ + Z(k) − Z(k−1);
17: k −−;
18: end if
19: end while
20: end for
21: sorting V in descending order;
22: P = Pv1+, ...,+Pvn ;
23: for 1 ≤ i ≤ n do
24: Mi =

pvi
P

;
25: end for
26: return(R).

2) The RRG Algorithm: Due to the RRG algorithm having
the same principle as TRG, we mainly introduce the difference
between them. TRG and RRG are different in inputs; the inputs of
RRG are the quarantined nodes. RRG considers the contagion
and efficiency impact of rejoining the network for the nodes
separated from the network in the quarantine zone. Therefore,
the RRG algorithm’s back-tracing is determined by whether the
effectiveness expectation is greater or smaller than the contagion
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H(E,w,κ,ρ, ξ) =

N∑
i=1

κi

[
γi(t)[1−Mi(t)− Si(t)−Hi(t)] −Hi(t)

(
βi(t) + αi

n∑
j=1

aij(t)Mj(t) + αi

n∑
j=1

aij(t)Sj(t)

)]

+ I(E(t),w(t)) +

N∑
i=1

ξi(λi(t)Mi(t)− δi(t)Si(t)) +

N∑
i=1

ρi

[
Hi(t)

(
βi(t) + αi

n∑
j=1

aij(t)Mj(t) + αi

n∑
j=1

aij(t)Sj(t)

)
− λi(t)Mi(t)

] (33)

expectation after the node is joined. The detail of RRG is shown
in Algorithm 2.

The computational complexity of Algorithm 2 is O(n · N2),
where n and N represent the number of nodes and the number
of periods, respectively. The analysis procedure follows a similar
methodology as described in Algorithm 1, and for the sake of
conciseness, we omit its detailed exposition in this section.

C. Optimal Control-based Defensive Strategy-making

For the accuracy and feasibility of the defense strategy, we
denote the Eq. (32) as a 3rd order dynamic system [55]. In this
system, the state transition parameters of the lateral movement
attack model are used as the inputs.

Following the optimal theory [55], the Hamiltonian of PPAC
problem Eq. (31) is summarized as Eq. (33), where κ =
(κ1, ..., κN ), ρ = (ρ1, ..., ρN ) and ξ = (ξ1, ..., ξN ) are the
associated adjoints. Then, the conditions of optimal control are
proven in Theorem 6.

Theorem 6: Assume that w is an optimal control of the PPAC
problem, and E is the solution to the associated system (Eq. (11)).
Then the adjoint functions are κ, ρ and ξ when κ(T ) = ρ(T ) =
ξ(T ) = 0. Furthermore,

δi(t) ∈ argminδ∈[δi,δi] Si(t) [ϕi(δ)− ξi(t)δ]

λi(t) ∈ argminλ∈[λi,λi]Mi(t) [ξi(t)λ− ρi(t)λ]

γi(t) ∈ argminγ∈[γi,γi] [1−Hi(t)−Mi(t)− Si(t)][
ϱ1i (γ) + ϱ2i (1− γ) + κi(t)γ

]
0 ≤ t ≤ T, i = 1, . . . , N.

(35)

Proof: According to the Pontryagins minimum principle, the
differential equations of κ, ρ and ξ are illustrated as

dκi(t)
dt = −∂H(E(t),w(t),κ(t),ρ(t),ξ(t))

∂Hi
dρi(t)
dt = −∂H(E(t),w(t),κ(t),ρ(t),ξ(t))

∂Mi
dξi(t)
dt = −∂H(E(t),w(t),κ(t),ρ(t),ξ(t))

∂Si

0 ≤ t ≤ T, i = 1, . . . , N.

(36)

Theorem 6 is proved.

Due to the terminal cost and final state are unlimited, the
conditions κ(T ) = ρ(T ) = ξ(T ) = 0 hold. Again, by
Pontryagin’s minimum principle, we have

w(t) ∈ arg min
w̃∈W

H(E(t), w̃(t),κ(t),ρ(t), ξ(t), 0 ≤ t ≤ T.

(37)
Combining Eq. (33), Eq. (35), and Eq. (37), we can deduce the
Eq. (38).

According to optimal control theory, we can get the control
of the PPAC problem Eq. (31) by solving Eq. (11), (34), (35),
(38), and condition κ(T ) = ρ(T ) = ξ(T ) = 0. We point out
that the solutions of this system are potential optimal strategies
of the PPAC problem. The analysis of the solutions’ structure is
detailed in Appendix B.

VI. PERFORMANCE EVALUATION

We adopt the following three experimental settings. Setting
1: a static network (i.e., in Setting VI-A); Setting 2: a periodic
time-varying network (i.e., in Setting VI-B); Setting 3: a time-
varying network (i.e., in Setting VI-C). To be fair in performance
comparison, we adapt well-performing techniques ER [33] (dif-
ferential private game) and QAR [6] (quarantine and recovery)
from static networks. We compute the results separately for each
time interval and averaged them to obtain the solutions for these
methods. This allows us to adapt the methods to the dynamic
nature of the network and provide meaningful comparisons.

ER performs overall repairs without node isolation, while
QAR isolates all nodes with anomalies. To ensure fairness, we
compared the number of repair operations over a specific time
period using the PPAC metric. In the experiments, for ER, we
set the number of iterations equal to the number of nodes in the
network. For QAR, we also set the number of time steps in the
forward-backward method [6], [28] equal to the number of nodes
in the network. As such, the computational complexity of ER is
O(N ·n2), where n and N represent the number of nodes and the
number of periods. The computational complexity of QAR is also
O(N ·n2), where n and N represent the number of nodes and the
number of periods, respectively. For detailed settings of N and
n in each experiment, please refer to the following subsections.
In general, the value of N is significantly smaller than n.

dκ(t)

dt
=bi+ (ϱ1i − ϱ2i + κi(t))γi + (κi(t)− ρi(t))

(
βi + αi

n∑
j=1

aij(t)Mj(t) + αi

n∑
j=1

aij(t)Sj(t)

)
dρ(t)

dt
=− a1

i + bi+ ϱ2i + (ϱ1i − ϱ2i + κi(t))γi(t) + (ρi(t)− ξi(t))λi + [ρi(t)− κi(t)]

N∑
j=1

αiaijHj(t)

dξ(t)

dt
=− a2

i − ϕi(δi(t)) + bi + ϱ2i + (ϱ1i − ϱ2i + κi)γi + ξi(t)δi(t) + [ρi(t)− κi(t)]

N∑
j=1

αiaijHj(t).

(34)
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H(E, w̃(t),κ,ρ, ξ) =

∫ T

0

N∑
i=1

[(ϕi(δ̃i)(t) + a2
i )Si(t) + a1

iMi(t)]dt

∫ T

0

N∑
i=1

[bi + ϱ1i (γ̃i)(t) + ϱ2i (1− γ̃i(t)][1−Mi(t)− Si(t)−Hi(t)]dt

+
N∑
i=1

ξi(λ̃i(t)Mi(t)− δ̃i(t)Si(t)) +

N∑
i=1

κi

[
γ̃i(t)[1−Mi(t)− Si(t)−Hi(t)] −Hi(t)

(
βi(t) + αi

n∑
j=1

aij(t)Mj(t) + αi

n∑
j=1

aij(t)Sj(t)

)]

+

N∑
i=1

ρi

[
Hi(t)

(
βi(t) + αi

n∑
j=1

aij(t)Mj(t) + αi

n∑
j=1

aij(t)Sj(t)

)
− λ̃i(t)Mi(t)

]
(38)

We evaluate the performance of our proposed optimal strategy
in terms of the following three important metrics.

1) Resource occupancy: The resource occupancy is the ratio
between the resource consumption and the overall resource (i.e.,
the CPU, memory, human resource, etc., which we regard as
equivalent to U ) at each moment. In this paper, we assume that
lower resource occupancy corresponds to better method perfor-
mance. The resource consumption of each method comprises
the repair resource consumption Cr and the quarantine resource
consumption Cq . Furthermore, the repair resource consumption
Cr correlates with the number of repair nodes Nr, i.e., Cr ∝ Nr,
and the quarantine resource consumption Cq correlates with the
number of repair nodes Nq , i.e., Cq ∝ Nq . Hence, resource
occupancy is W r

c ×
∑T

i=1 Cr+W q
c ×

∑T
i=1 Cq

Wc× 1
10

∑T
i=1 U

, where the W r
c , W q

c , and
Wc is the consumption correction factor.

Different organizations often allocate varying degrees of impor-
tance to the four categories of resources: human resources, node-
specific utility, network resources, and storage resources. In our
experimental setup, we aim to enhance the generalizability of our
results by assuming equal weights for these resource categories.
For convenience, we assume the consumption correction factor
of repair, quarantine, and overall resource is W r

c : W q
c : Wc =

1 : 2 : 4.2

2) Defense resource utilization: For convenience, we assume
the resource beyond the minimum are used for defense resources,
i.e., U − Un, and we assume that the defender expends all
defensive resources to defend against the attack without strat-
egy guidance. Hence, defense resource utilization is the ratio
between the defensive resource and resource consumption,i.e.,
1 − Wc× 1

10

∑T
i=1(U−Un)

W r
c ×

∑T
i=1 Cr+W q

c ×
∑T

i=1 Cq
, where Wc × 1

10

∑T
i=1(U − Un)

represents the defense resource of the network.
3) Service stability: The service stability is measured by Ns

the number of time periods when the organization’s minimum
service requirements are maintained, i.e., Wc× 1

10

∑T
i=1 Ns

T .
The expression for solving the problem with the mechanism is

formulated as

M = (G,a1
i ,a

2
i , bi,ϕ,ϱ

1,ϱ2,α,β, δ, δ,

λ,λ,γ,γ, T̂ , R, T,Un,U ,E0).
(39)

2Regarding resource-intensive operations, we consider that repair operations
only consume human resources. For quarantine operations, both human resources
and utility of the nodes are taken into account. However, no additional expen-
ditures are required for communication and storage resources. It is worth noting
that the overall resource allocation encompasses these four kinds of resources.
To underscore the equitable representation of resource proportions, we introduce
a coefficient that serves as a normalization factor.

Based on M, we set the experimental parameters using the
following steps.
Step 1: Set a1∗

i , a2∗
i , and bi. Define a1∗

i , a2∗
i , and b∗i as

the vectors chosen randomly and uniformly from (0, 1]100. In
the following experiments, except in special cases, a1

i = a1∗
i ,

a2
i = a2∗

i , and bi = b∗i .
Step 2: Set α, and β. Define α∗ = (0.1, ..., 0.1), β∗ =

(0.1, ..., 0.1). In our experiments, unless otherwise specified,
α = α∗, β = β∗.
Step 3: Set δ, δ, λ, λ, γ, and γ. Define

δc = (0.c, ..., 0.c), δ
c
= (0.c, ..., 0.c)

λc = (0.c, ..., 0.c), λ
c
= (0.c, ..., 0.c)

γc = (0.c, ..., 0.c), γc = (0.c, ..., 0.c)

where c ∈ {1, 2, 3, 4, 5, 6}.
Step 4: Define the initial expected state E0. Let

E∗ = (0.8, ..., 0.8, 0.1, ..., 0.1, 0.1, ..., 0.1),

represent the average rate of the initial state of the node. In the
following experiments, we set E0 = E∗.

(a) (b)

(c) (d)

Fig. 4: A sketch of the PPAC strategy in setting 1.

A. Numerical Results of Static Networks (Setting 1)
Using the Pajek software [56], we stimulate a static network

GST with N = 100 nodes, the edge-rewiring probability is 0.1
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(a) (b) (c)

Fig. 5: (a) the comparison between our method and the ER by the number of nodes for overall maintenance at each moment in
setting 1. (b) the comparison between our method and the QAR by the number of quarantined nodes at each moment in setting 1.
(c) the comparison between our method and ER, QAR by the service quality at each time.

and maintain network connectivity. The AST (t) represents the
adjacency matrix of GST at time t and T̂ represents the graph
sequence of GST .

Consider the APT repair game in static Networks:

M = (GST ,a
1∗
i ,a2∗

i , b∗i ,ϕ,ϱ
1,ϱ2,α,β, δ1, δ4,

λ1,λ6,γ1,γ5, T̂ , R, T,Un,U ,E0),

where G = GST , T = 12, and T̂ = {A1 = (0, 2), A1 =
(2, 3), A1 = (3, 4), A1 = (4, 6)}. We set the following parameters
under Setting 1:

1) The utility of the entire network U = 1000.
2) Maintain minimum service effectiveness requirements for

the mission Un = 80%U .
3) Threaten rate list and recovery rate list are obtained by

executing the TRG and RRG algorithms.
4) The specific representation of each function is

ϕ(δ) = (
√
δ, . . . ,

√
δ),ϱ1(γ) = (

√
γ, . . . ,

√
γ) ,

ϱ2(1− γ) = (
√

1− γ, . . . ,
√

1− γ).

Executing the solving mechanism, we get the potential defense
strategy. Fig. 4 (a)-(d) plot four threaten, quarantine, and recovery
rate functions in the strategy. Fig. 5 (a) represents the number
of repair nodes at each moment in setting 1. We can see that
the difference between the PPAC and ER methods for repair is
not obvious under a fixed network, which is also in line with
our initial assumptions. Because without considering subsequent
topology changes, our method still requires decisions on quar-
antine, repair, and local repair based on effectiveness and cost.
Fig. 5 (b) represents the number of quarantined nodes at each
moment in setting 1. The difference between PPAC and QAR in
quarantined nodes is also insignificant. Still, the difference exists
because our restrictions require that the number of nodes in the
isolation zone can not exceed the threshold. Fig. 5 (c) represents
the service quality at each moment in setting 1.

In summary, the resource occupancy of PPAC, QAR, and
ER are 13.43%, 15.21%, and 13.5%, respectively. The defense
resource utilization of PPAC rises 48.94%, QAR rises 31.46%,
and ER rises 48.15%. The service stability of each method is as
follows: PPAC 100%, QAR 42.85%, and ER 85.71%.

(a) (b)

(c) (d)

Fig. 6: A sketch of the PPAC strategy in setting 2.

B. Numerical Results of Periodic Time-varying Network (Set-
ting 2)

Using the Pajek software [56], we stimulate a periodic time-
varying network GPT with N = 100 nodes, the edge-rewiring
probability is 0.1 and maintain network connectivity. The APT (t)
represents the adjacency matrix of GPT at time t and T̂ repre-
sents the graph sequence of GPT .

Consider the APT repair game in periodic time-varying Net-
work:

M = (GPT ,a
1∗
i ,a2∗

i , b∗i ,ϕ,ϱ
1,ϱ2,α,β, δ1, δ4,

λ1,λ6,γ1,γ5, T̂ , R, T,Un,U ,E0),

where G = GPT , T = 6, and T̂ = {A1 = (0, 2), A2 =
(2, 3), A3 = (3, 4), A4 = (4, 6)}. We set the following parameters
under Setting 2:

1) The utility of the entire network U = 1000.
2) Maintain minimum service effectiveness requirements for

the mission Un = 80%U .

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2023.3318954

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 04,2023 at 12:04:00 UTC from IEEE Xplore.  Restrictions apply. 



14

(a) (b) (c)

Fig. 7: (a) the comparison between our method and the ER by the number of nodes for overall maintenance at each moment in
setting 2. (b) the comparison between our method and the QAR by the number of quarantined nodes at each moment in setting 2.
(c) the comparison between our method and ER, QAR by the service quality at each time.

3) Threaten rate list and recovery rate list T and R are obtained
by executing the TRG and RRG algorithms.

4) The specific representation of each function is

ϕ(δ) = (
√
δ, . . . ,

√
δ),ϱ1(γ) = (

√
γ, . . . ,

√
γ) ,

ϱ2(1− γ) = (
√

1− γ, . . . ,
√

1− γ).

Executing the solving mechanism, we get the potential defense
strategy. Fig. 6 (a)-(d) plots four threat, quarantine, and recovery
rate functions in the strategy. From the figure, we can see that
the importance of our approach to the node’s service effectiveness
and the overall maintenance of resources results in less mainte-
nance of the attacked nodes in the early stages of the whole
task. Therefore, it leads to a later surge in the number of nodes
to maintain effectiveness and mitigate the previous impact. Fig.
7 (a) shows the number of overall maintenance for the node at
each moment in setting 2. We can see that the overall curve of
the number of repairs for PPAC at each moment is significantly
lower than ER, which shows that PPAC achieves accurate control
under periodic time-varying networks. Fig. 7 (b) represents the
number of quarantined nodes at each moment in setting 2. The
overall curve of the number of quarantined nodes for PPAC at
each moment is significantly lower than QAR.

In summary, the resource occupancy of PPAC, QAR, and
ER are 9.61%, 14.5%, and 15.14%, respectively. The defense
resource utilization of PPAC rises 61.85%, QAR rises 37.93%,
and ER rises 32.08%. The service stability of each method is as
follows: PPAC 100%, QAR 41.67%, and ER 66.67%.

C. Numerical Results of Time-varying Network (Setting 3)

Using the Pajek software [56], we stimulate a time-varying
network GTV with N = 100 nodes, the edge-rewiring probability
is 0.1 and maintain network connectivity. The ATV (t) represents
the adjacency matrix of GTV at time t and T̂ represents the graph
sequence of GTV .

Consider the APT repair game in time-varying Network:

M = (GTV ,a
1∗
i ,a2∗

i , b∗i ,ϕ,ϱ
1,ϱ2,α,β, δ1, δ4,

λ1,λ6,γ1,γ5, T̂ , R, T,Un,U ,E0),

where G = GTV , T = 12, and T̂ = {A1 = (0, 2), A2 =
(2, 5), A3 = (5, 6), A4 = (6, 9), A5 = (9, 11), A6 = (11, 12)}.
We conduct a statistical analysis based on the structural changes

of the Xi’an Jiaotong University AWD platform (Attack-Defense
War platform) and the data from attack-defense exercises on
the platform, to provide real-world settings for time-varying
networks. We set the following parameters under Setting 3:

1) The utility of the entire network U = 1000.
2) Maintain minimum service effectiveness requirements for

the mission Un = 80%U .
3) Threaten rate list and recovery rate list T and R are obtained

by executing the TRG,RRG algorithms.
4) The specific representation of each function is

ϕ(δ) = (
√
δ, . . . ,

√
δ),ϱ1(γ) = (

√
γ, . . . ,

√
γ) ,

ϱ2(1− γ) = (
√
1− γ, . . . ,

√
1− γ).

(a) (b)

(c) (d)

Fig. 8: A sketch of the PPAC strategy in setting 3.

Executing the solving mechanism, we get the potential defense
strategy. Fig. 8 (a)-(d) plots threat, quarantine, and recovery rate
functions in the strategy. Fig. 9 (a) represents the number of
overall maintenance for the node at each moment in setting 3. We
can see that the overall curve of the number of repairs for PPAC
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(a) (b) (c)

Fig. 9: (a) the comparison between our method and the ER by the number of nodes for overall maintenance at each moment in
setting 3. (b) the comparison between our method and the QAR by the number of quarantined nodes at each moment in setting 3.(c)
the comparison between our method and ER, QAR by the service quality at each time.

at each moment is significantly lower than ER, which shows
that our solution achieves accurate control under time-varying
networks. Fig. 9 (b) represents the number of quarantined nodes
at each moment in setting 3. The overall curve of the number of
quarantined nodes for PPAC at each moment is significantly lower
than QAR. PPAC maintains a stable and high-quality service
performance of the network and achieves the victim status of the
node. Fig. 9 (c) represents the service quality at each moment in
setting 3. We can see that all the methods except PPAC have a
performance lower than the required performance at some time.

In summary, the resource occupancy of PPAC, QAR, and
ER are 11.40%, 10.48%, and 11.79%, respectively. The defense
resource utilization of PPAC rises 75.50%, QAR rises 36.56%,
and ER rises 44.14%. The service stability of each method is as
follows: PPAC 100%, QAR 58.3%, and ER 66.67%.

D. Key Insights

Our simulation is based on the rules of AWD (Attack with
Defence) competitions [57], [58], and the strategies we derive
can be directly applied during the exercise. For example, Setting
3 involves a dynamic attack and defense battle lasting 12 hours,
and the strategies obtained from our method can be directly used
by the defenders. In other words, the Λ(t),∆(t),Γ(t) in strategy
w(t) represent the recommended probabilities for performing
specific actions on each node.

In the real world, defenders can simulate such exercises by
placing their own organizations within a set of rules tailored to
their needs. By simulating these exercises and obtaining strategies
during the exercise, defenders can identify weaknesses in their
organization, make adjustments, and receive tactical training to
better respond to attacks.

VII. SUMMARY AND FUTURE WORK

This paper investigates a new problem of defending against
APT attacks under time-varying networks. We model the inter-
actions among attacks and defenders in an APT process as a
dynamic APT repair game and derive its near-optimal solution
by formulating the optimization problem as a PPAC problem. We
derive a reliable solving mechanism that can search for a timely
defense strategy with cost savings and efficiency. Specifically, our
defense strategy assigns discriminatory weights for each node to
reveal critical nodes and the attacking intent of the adversary.

Experimental results validate the effectiveness of defense perfor-
mance under a moderately sized and time-varying network.

For future work, it is interesting to analyze the influence of
variation of nodes in the heterogeneous networks scenario where
attackers do not know the participation strategies of different
types of nodes or in the asymmetric information scenario where
the node type and function are the secret information of defend-
ers.
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