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Feature Construction and Calibration for Clustering
Daily Load Curves from Smart Meter Data

Reem Al-Otaibi, Nanlin Jin, Member, IEEE, Tom Wilcox, and Peter Flach

Abstract—This paper proposes and compares feature construc-
tion and calibration methods for clustering daily electricity load
curves. Such load curves describe electricity demand over a
period of time. A rich body of the literature has studied clustering
of load curves, usually using temporal features. This limits the
potential to discover new knowledge which may not be best
represented as models consisting of all time points on load curves.

This paper presents three new methods to construct features:
conditional filters on time-resolution based features, calibration
and normalization, and using profile errors. These new features
extend the potential of clustering load curves. Moreover, smart
metering is now generating high-resolution time series, and so the
dimensionality reduction offered by these features is welcome.

The clustering results using the proposed new features are
compared with clusterings obtained from temporal features
as well as clusterings with Fourier features, using household
electricity consumption time series as test data. The experimental
results suggest that the proposed feature construction methods
offer new means for gaining insight in energy consumption
patterns.

Index Terms—Feature construction; feature transformation;
clustering; meter data analytics

I. INTRODUCTION

THE smart grid and smart metering play an essential role
in future energy management [1]. This study demon-

strates how greater time-resolution household electricity meter
readings are analyzed to extract typical daily usage patterns.

In the UK, Elexon profiles are the industry standard, used to
represent presumably typical consumption load curves [2]. For
domestic consumers, there are two profile classes: customers
choosing tariff “economy 7” and the rest. For non-domestic
users, on the other hand, there are six profile classes. The
usefulness of these Elexon “profiles” for domestic customers is
unsatisfactory. It has been reported that the use of the profiles
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has made about 9× 1012 watt-hours electricity losses yearly
in the UK [3]. To design better profiles is an open challenge.
This paper aims to contribute to this challenge by proposing
methods to segment and extract households’ typical daily load
curves from their actual consumption. One experiment also
uses data about households’ Gas connection.

Advanced data mining methods have not been fully adopted
in practice yet, mainly due to the limited quality of data
available. At present, most UK domestic consumers still have
their electricity meter data read quarterly or half-yearly. This
sparseness limits the potential to accurately separate load
curves at daily, weekly, or even monthly level.

In the UK, the introduction of smart metering has started to
generate half-hourly electricity usage data. Such data enables
meter data analytics at a much finer resolution, so as to gain
a better understanding of energy usage.

This work generates clusters of load curves. To choose
and design appropriate features for clustering is vital. This
paper proposes three new types of features for clustering and
applies them on real smart meter data. The representative load
curves from the resulting clusters provide insights for refining
the existing profiles, and might even be used as the basis of
new profiles. The clustering results with these new features
are assessed and compared with the clustering results using
two other methods of feature construction, which have been
reported in the literature.

The paper is organized as follows: Section II discusses
related work and Section III introduces the basic concept
of feature construction. The data set is then described in
Section IV, followed by experimental work to determine
the appropriate number of clusters in Section V. After that,
three clustering experiments, each using one of the newly
constructed features, are reported in Sections VI, VII and IX.
Control experiments are conducted in Sections VIII and X to
compare clustering results. Section XI conducts a comparative
study to evaluate the newly constructed features and reports
the main findings. Finally, Section XII concludes the paper.

II. RELATED WORK

Load profiling often includes three stages [4], [5]: firstly
to group consumption behaviors using clustering methods;
secondly to generate typical load patterns (load curves) for
each resulting group using statistical criteria such as mean or
median; finally, to associate customers’ characteristics, such
as locations and incomes, with the typical load patterns, using
classification methods. This work focuses on the first stage.

A rich body of the literature is available for clustering
load curves. The electricity consumption or load data used for
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clustering load curves form time series. The meter resolution
(sampling rate) determines the number of time points sampled
within a time period. The time period of interest is user-
defined. The common examples are daily curve and weekly
curve.

Given a data set with observations (data records) in d
number of dimensions, the input data of load curves is
conventionally set up in a matrix. It has a number of rows, each
representing a customer. And it has a number of columns, each
representing the consumption at a time point. In the literature,
a column is also called a dimension, feature, or variable. The
consumptions at all time points in a data set are called default
features in this paper. They can be used directly for clustering.
The data in the default features are typically aggregated or
normalized values [4]. For example, data might be collected at
a 15-minute sampling rate and the features of daily load curves
for clustering are the corresponding 96 time points [6]; or the
data might be sampled at hourly intervals and the features of
daily load curves for clustering are the 24 time points [7].

It is NP-hard to find optimal clusterings even for two
clusters [8], [9]. Therefore, dimensionality reduction methods
have been extensively studied in the literature to reduce the
number of dimensions. The known benefits include (a) to
simplify the outputs models for easier interpretation by users
[10], (b) to save computational resources and reduce time, and
(c) to reduce over-fitting [11].

The methods of dimensionality reduction can be grouped in
two categories: (1) feature selection, which selects a subset of
features to replace the full set of all dimensions in the data
set; and (2) feature construction, which creates new features
by applying operations or functions on the default features.
This is the focus of this paper.

Expert knowledge has often been applied to construct a set
of application-dependent new features. Feature construction
has been used in meter data analytics, where the four major
ways to create new features in the literature are:

1) On the basis of default features, feature construction
can be applied to reduce the time resolution [12]. For
example, a created feature for the morning consumption
combines the consumption from 7am to 12noon.

2) Previous work has designed a set of shape-related fea-
tures to model the specific aspects of “signature” of the
load patterns, for example, dimensionless ratios [13],
load factor [14], and variability [15].

3) New features can be generated in the frequency domain,
such as the harmonics-based coefficients, the coefficients
derived from the wavelet transform, surveyed in [4],
the Fourier series coefficients [16], and the fast Fourier
transform (FFT) algorithm [17].

4) New features can also be constructed by Principal Com-
ponent Analysis, Curvilinear Component Analysis, and
Canonical Variate Analysis, surveyed in [4].

This paper will propose and demonstrate new methods of
feature construction to generate processed data as inputs for
clustering of daily curves. Limited research on this has been
reported, although extensive research has been published on
clustering methods.

This work studies how to construct new features that
will improve clustering performance tested with two popular
clustering methods, rather than finding features that only
impact the performance of highly specialized clustering al-
gorithms. For this reason the experiments are carried out with
straightforward and widely used clustering methods such as
K-means and K-medoids. The underlying hypothesis is that
constructed features that enable improved performance with
these baseline clustering algorithms are also likely to benefit
more sophisticated algorithms.

III. FEATURE CONSTRUCTION

Machine learning models are only as good as the features
they use, and this is particularly true for unsupervised learning
methods that do not have access to labeled training data. Well-
conceived new features can capture information which are
unavailable from the default features in a data set [18]. Raw
features often need to be transformed or combined with other
features in order to be useful.

For example, many distance-based methods are sensitive to
the scale of the feature, and careful normalization is therefore
important. So, for example, instead of reporting the average
daily energy consumption of a particular household in kWh, it
is worth reporting that this household is 1.3 standard deviations
below the mean.

Another common transformation is discretization into a
relatively small number of bins, as in a histogram. This paper
reports the design of new features and the results with a new
discretization method that can be related to a binary signal.
For example, given two demographic groups A and B, it is
worth investigating a particular energy consumption range in
terms of the percentage of group A households that fall in that
range (out of all group A and group B households). Following
[18], we call this feature calibration, as the process is akin to
building a univariate binary classifier that outputs calibrated
class probabilities.

In this paper, three new types of features are designed:
• New consumption-based and time-based features on the

basis of prior knowledge of the aggregated daily con-
sumption in the data set (Section VI). In addition, feature
construction applies operations on existing features to
create new features and feature transformation: scaling
and normalization.

• Calibrated features incorporating additional information
on households’ gas connection (Section VII). The new
features ideally contain additionally useful information
to discriminate outcomes.

• The use of profile error as features (Section IX) incor-
porates domain-specific and problem-specific knowledge.
In addition, it significantly reduces dimensionality.

Two comparative studies are undertaken: one uses the de-
fault features (Section X); and the other uses Fourier transform
feature vector which converts data from time domain to
frequency domain (Section VIII).

This paper does not intend to practise “feature subset
selection” which only selects a subset of features. Instead,
this paper focuses on the construction of new features. The
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Fig. 1. Silhouette coefficients and Dunn index values for K = 2 to K = 10.

number of new features is less than the default ones: the
number of default features in a daily load curve at half-hourly
sampling rate is 48, which is manageable, but when clustering
a weekly or monthly load curve, the dimensionality becomes
a concern. For example, a weekly load curve has 336 default
features at half-hourly sampling rate. So it becomes necessary
to use a smaller number of features in order to reduce the
computational burden especially when the data set is large.

IV. DATA SET

SSE Energy Supply Ltd, UK has collected electricity usage
data of 5000 households, at a temporal sampling rate of one
reading per 30-minute, from April 2009 to Oct 2010.

Many energy suppliers offer time-of-use tariffs. One popular
differential tariff, called Economy 7, charges at a higher price
from 7am to 12 midnight, and charges a lower price at the
rest of time. This tariff economically discourages consumption
during the peak time. The consumption data in the SSE data
set was collected when a flat tariff was applied to any time, so
these readings reflected the actual demands in absence of any
impact from economic considerations to change consumption
behaviors.

The consumption data is averaged to yield an aggregate
daily load curve over 48 time points. The set of default
features is thus the average daily energy consumption at
these 48 time points. Normalized consumption data are also
generated. A common practice of generating typical load
patterns is to define the reference power in kWh and then
to compute normalized representative load patterns (RLP) [4].
Here Relative Average consumption (RAC) of a time point is
defined as the normalized average consumption at this time
point relative to the average daily total consumption. Some of
the experiments in this paper use the normalized consumption
to capture the shape rather than the magnitude consumption.

A load curve can thus be represented as a vector CT with
T default features: CT = {ct , t = 1, . . . ,T}.

V. DETERMINING THE NUMBER OF CLUSTERS

Before applying clustering methods to segment customers’
load curves into groups, the appropriate number of clusters

needs to be set. Many clustering algorithms, including K-
means, K-medoids and fuzzy c-means, require a parameter
which specifies the number of clusters to detect, here denoted
by K. The appropriate values of this parameter are determined
by data sets, prior knowledge, users’ preferences and the
properties of clustering algorithms of choice. While increasing
the number of clusters tends to increase cluster compactness,
an overly large number of clusters is practically useless and
lacks representativeness. Therefore, an appropriate number of
clusters balances these two considerations.

This paper uses data mining methods to determine K, with
a practical constraint. Thus K is determined mainly by the
nature of the data set, reflecting its characteristics. And the
practical consideration was advised by industrial experts that
the appropriate number of clusters should not be more than
10. From an industry point of view, the resulting number
of clusters may be used for planning tariffs; or providing
evidence for marketing. The operational cost for serving 10
types of different tariffs or marketing strategies will be within
an affordable cost limit. However, the methodology is generic;
users who would like to have a larger number of clusters can
still use the same algorithms/methods to be presented. Two
methods are used to search for the appropriate number(s) of
clusters within the range K ∈ [2,10], as explained below.

The Silhouette coefficient combines a measure of how close
samples within the same cluster are to each other with a
measure of how well-separated one cluster is from other
clusters [19]. The Silhouette value s of a sample load curve,
which is assigned to a cluster is s = (b−a)/max{b,a}, where
b is the smallest average distance between this sample and the
samples in another cluster; and a is the average distance of
this sample to the other samples in its cluster. Silhouette values
range from 1 to −1, with a value close to 1 indicating that this
sample is much closer to samples from its own cluster than to
samples from other clusters, and a value of −1 indicating that
this sample might have been assigned to a wrong cluster. The
Silhouette coefficient is then the average Silhouette value over
all sample curves and can be used to quantitatively compare
clustering results.

As an alternative to the Silhouette coefficient, we also use
the Dunn index to determine the number of clusters. The Dunn
index is defined as the ratio between the minimal within-
cluster distance and the maximal between-cluster distance
[20]. In our experiments, the within cluster distance has been
chosen as the distance between the farthest two points inside
one cluster. The among-cluster distance has been chosen as
the farthest two data points, one data point from each cluster.
Higher index values indicate better clustering.

Fig.1 shows the Silhouette coefficients and Dunn indices
for K = 2 to K = 10, where K-means has converged within
100 iterations. As can be seen, both metrics indicate K = 3 as
the most suitable number of clusters, with K = 2 the second-
best choice. We hence set the number of clusters to 3 in our
experiments. The next five sections will report the experiments
using five different sets of features for clustering by means
of K-means and K-medoids clustering. We used Matlab’s
K-means clustering implementation that applies K-means++
seeding by default.
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VI. CONSTRUCTED FEATURES ON LOAD SHAPES

This section presents consumption-based and time-based
new features. Furthermore, the Silhouette coefficient is em-
ployed to indicate the quality of the resulting clusters.

A. Feature Construction

The average daily usage in the data set demonstrates one
morning peak and one evening peak, as seen in Fig.2. Captur-
ing the consumption values at these two peaks characterizes
households’ patterns. The default features can be abstracted
into a simpler model which uses a smaller number of features
to reflect these two characteristic peaks. Based on this concept,
six new features are designed to incorporate this observation.

These six new features model a household’s consumption at
three time points which vary from one household to another.
This model is called “V-shape” shown in Fig. 2. The operations
used to construct the new features are a conditional filter, for
example, “before 2 p.m”, and the maximum and the minimum
functions. These new features include both the consumption-
based features and the time-based features, replacing the 48
default features. The difference of the default features from
the newly created time-based features is that given a default
feature, its time is fixed, and its corresponding consumption
for a household is known; but given a new time-based feature,
its value on time is uncertain before finding the satisfying
consumption.

If there are more than one consumption values satisfying the
same condition, for example, being the maximum consumption
before 2 p.m, the corresponding time of the latest one will be
chosen as the value of its respective time.

To add complexity, the “M-Shape” is designed to include
two more time points, shown in Fig. 2.

The new features are:
• Cmin1A and T min1A are the minimum consumption

from midnight to 2 p.m. and its corresponding time:
Cmin1AT min1A = min{ct , t = 1, . . . ,27}

• Cmax1 and T max1 are the maximum consumption be-
fore 2 p.m. and its corresponding time: T max1 =
argmaxt∈{1,...,27} ct ;Cmax1 = maxt∈{1,...,27} ct = ct=T max1

• Cmax2 and T max2 are the maximum consumption
after 2 p.m. and its corresponding time: T max2 =
argmaxt∈{28,...,48} ct ;Cmax2 = ct=T max2

• Cmin1 and T min1 are the minimum consumption between
T max1 and T max2 and its corresponding time: T min1 =
argmint∈{T max1+1,...,T max2} ct ;Cmin1 = ct=T min1

• Cmin1B and T min1B are the minimum consumption
from 2 p.m to midnight and its corresponding time:
Cmin1BT min1B = min{ct , t = 28, . . . ,48}

B. Feature Transformation

The distributions of a consumption related new feature
or a time-based new feature vary greatly, so they have to
be normalized for clustering to improve the results. Two
approaches are applied: statistical normalization and scaling.
In the former one, the values to a feature, x, are normalized
to x′ = (x−µ)/σ , where µ and σ are the mean and standard
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Fig. 2. V-Shape model with 6 features and M-Shape model with 10 features,
where x-axis is time “t” of the 48 time points; and y-axis is the related daily
consumption.

deviation of x of all households in the data set. The purpose
of this normalization is to convert data from any normal
distribution into the standard normal distribution with mean
zero and variance 1.

For the scaling method, the value of x is divided by its
maximum and scaled into a value between zero and one.
The transformed features are notated as x′, for example
T ′max1i,C′max1 j. The motivation of the use of scaling is
because of the differences of the constructed features’ values
(both consumption and time). And it is known that the
Euclidean distance is sensitive to these differences [18].

C. Distance Measures

The distance measure to be used for clustering is the total
Euclidean distance over the points making up the V-shape or
M-shape in (T,C) space. For the V-shape model this gives

dV (i, j) =√
(T ′max1i−T ′max1 j)2 +(C′max1i−C′max1 j)2+√
(T ′max2i−T ′max2 j)2 +(C′max2i−C′max2 j)2+√

(T ′min1i−T ′min1 j)2 +(C′min1i−C′min1 j)2 (1)

A similar formula is used for comparing two M-shapes using 5
2-D points. Then the Silhouette values are calculated over the
resulting clusters to measure how well separated they are, as
shown in Figures 3 and 4. Each horizontal line represents the
Silhouette value of one household, in decreasing order within
each cluster.

It is observed that scaling constructed features to [0,1] may
not be the better choice compared with the normalization.

More negative values of the Silhouette coefficient on the
scaled features, as seen on Fig. 3 (right) and Fig. 4 (right),
reveal the fact that there is less homogeneity within these
clusters than the normalized features, as seen on Fig. 3 (left)
and Fig. 4 (left).

V and M models are simple but informative, which in fact
has considered the variability of the maximal and the minimal
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consumptions within a time period of interest, which probably
offers richer information than the variability of consumption
at given fixed time points. In addition, V and M models are
representative and easy to operate.

VII. CALIBRATED FEATURES

We now present the first of the three new feature types
we propose for clustering daily load curves. Using calibration
techniques from supervised machine learning, the values of
the five new features created in the previous section will
be calibrated before applying the clustering algorithm. The
consumption-based features (Cmax1, Cmax2, Cmin1, Cmin1A,
and Cmin1B) in the M-Shape model are calibrated using a
Boolean variable, “main gas flag”. The variable “main gas
flag” is used in the industry to indicate whether a household
is connected to the main gas network. If ‘Yes’ (the positive
class), it is assumed that the household uses gas in addition
to electricity.

A. Feature Calibration

Classifier scores can be calibrated in various ways in or-
der to take empirical probabilities observed in the data into
account. Numerical features can be seen as univariate scoring
models and hence are amenable to such calibration methods.
In our work, the consumption-based features are transformed
using isotonic feature calibration [18]. The purpose here is
to discretise each consumption feature into a smaller range,
meaning many consumption values will be mapped to the same
calibrated value. If the calibrated value is 0.7, for instance, it
means that 70% of the households with consumption values
falling in this range are connected to the main gas network.

Specifically, the algorithm is as follows:
• Sort the households descending on a consumption-based

feature.
• Create the ROC curve, which depicts the trade off be-

tween the true positive rate and the false positive rate [21].
Here we use the “main gas flag” to construct the ROC
curve (if the “main gas flag” is positive, move up,
otherwise, move right).

• Construct the convex hull of the ROC curve. This ensures
that the proportion of positives is monotonically non-
increasing along the curve.

• Obtain the calibrated feature by computing the proportion
of positives in each segment of the ROC convex hull as
shown below:

v =
g+1

g+1+ p(e−g+1)
(2)

where: g is the total number of households with a positive main
gas flag in the segment; e is the total number of households
in a segment regardless of the class sign; and p is the prior
positive class probability of the main gas flag.

An example of the ROC Convex Hull for Cmax1 is shown
in Fig. 5. On the left is an example ROC curve of Cmax1
for 20 households while on the right is ROC curve of Cmax1
for all households in the data set. The solid line is the ROC
curve and the dashed line is the convex hull, each segment
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Fig. 6. Silhouette output using calibrated features, average silhouette=0.7888,
where x-axis is Silhouette value; and y-axis is the clusters.

of which corresponds to a discrete calibrated feature value.
“B” on Fig. 5 (left) refers to the second segment. It has 4
households in total (e = 4). Two of them have a positive main
gas flag (g = 2). These segments of the convex hull represent
a discretization of the values of Cmax1.

The ROC curve and its convex hull are used in this section to
calibrate the features before clustering. One of the advantages
of this approach is that ROC curve ignores the magnitude of
the features and only takes their rank order into account (i.e.,
the lowest value gets rank 1, the next value gets rank 2, etc.).
This rank order requires consideration of all points at once,
but does not depend on the order of presentation of the points.

B. Clustering

K-means clustering method is applied to the calibrated
features with K = 3, and the Silhouettes are shown in Fig. 6. As
can be seen in this figure, fewer households returning negative
Silhouette values compared to the clustering results in Fig. 3
and Fig. 4, showing that fewer households are assigned to the
wrong clusters. Average silhouette using the calibrated features
is 0.7888. In addition, as Fig. 6 shows, the top cluster which
is also the largest one, has the smallest average error. The
finding itself may suggest that a large number of households
share very similar consumption patterns.

VIII. FOURIER FEATURES

Fourier analysis transforms temporal data into the frequency
domain, providing a robust method for extracting the major
frequency components of a time series. It has been used
to forecast daily patterns of electricity consumption [17].
Frequency components representing the major patterns in the
temporal data are collected in a Fourier feature vector. We
then use Euclidean distance on these Fourier feature vectors
to cluster daily load curves by means of K-medoids clustering.

Fourier Transforms provide desirable properties: they are
stable mechanisms that produce the same value given similar
inputs; they are robust to missing data which can be a concern;
they are phase/translation-invariant, meaning time series with
similar frequency patterns but different start and end points
will be represented by similar transforms.

By applying a Fast Fourier Transform to daily load curves, a
corresponding series of coefficients for component frequencies
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Fig. 3. (left) Silhouette output using V-Shape model (Normalized), average silhouette=0.5383. (right) Silhouette output using V-Shape model (Scaled), average
silhouette=0.3081. X-axis is Silhouette value; and y-axis is the clusters.
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Fig. 4. (left) Silhouette output using M-Shape model (Normalized), average silhouette=0.4599. (right) Silhouette output using M-Shape model (Scaled),
average silhouette=0.2420. X-axis is Silhouette value; and y-axis is the clusters.
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Fig. 5. (left) an example of ROC curve and Convex Hull of Cmax1 for 20 households, as an demonstrative example, where x-axis is the false positive rate;
and y-axis is the true positive rate. “B” refers to the second segment. (right) ROC curve and Convex Hull of Cmax1 for all households in the data set, where
x-axis is the false positive rate; and y-axis is the true positive rate.

is produced. This will reduce the dimensionality of the data
for each household, whilst preserving the most significant
periodic patterns present within each time series in a manner
which enables comparison of household consumptions by
those key features. From here two approaches were considered
for building a feature vector to best represent the data.

A. Highest-Variance Frequency Component Coefficients

One approach is to evaluate the variance of the amplitude of
each frequency across the data set and then rank frequencies
in decreasing order by variance. This would identify the best
frequencies to use in differentiating between households.

The 25 most variable frequencies are selected to create a
feature vector for each household containing the corresponding
amplitudes for those frequencies for each time series. Issues
with this approach arose from the fact that the length of time
series varied significantly across the data set. In addition,
the training data included some extreme (possibly anomalous)
time series values, which may have exaggerated the variance
of amplitudes. They may have caused some frequency compo-
nents to be incorrectly promoted higher in the ranking process.

More specifically, data curation consisted of an initial phase
applied to the raw data to remove data points above and
below manually set thresholds from the time series. We then
continued to remove those time series from the training data
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set which contained too few points to satisfy a minimum
coverage/overlap when compared over a specified time period
(e.g. 2 years) with all other time series included in the training
data set. This was in an effort to ensure that all time series
were being compared over the same time period. Finally, for
the purposes of constructing the Fourier features, we removed
those sample time series that contained frequency amplitudes
which were beyond 5 standard deviations of the average, as
the threshold, which accounted for approximately less than
5% of the entire training data set. For example, a sample
time series would be removed from the training data if it
contained an amplitude of 13 for a frequency with an average
amplitude of 2 and standard deviation of 2 across the entire
data set. This resulted in the removal of those most extreme
samples, containing atypical patterns, which would skew the
overall distribution of the training data set when evaluating
these amplitude-based features for identifying general cluster.

The similarity between two feature vectors is evaluated
using the Manhattan distance between each coefficient pair.
Issues with missing data resulting in missing frequency com-
ponent values in the transform may affect the reliability of this
distance metric.

B. Amplitude-ranked Frequency Component Coefficients

An alternative approach is to create a feature vector to
represent the important frequency components of a time series.
First, the complex amplitudes of each frequency component of
a time series are measured, and then they are ranked by the
absolute value of those amplitudes. Finally the feature vector
is created by selecting the top 25 frequency-amplitude pairs
in this ranking. The similarity of two features are calculated,
taking the Manhattan distance between the amplitude and
frequency values.

Highest-Variance Frequency Component Coefficients and
Amplitude-ranked Frequency Component Coefficients yield
similar results in evaluation on a subset of samples, but the
first one has not been tested on the whole data set due to
the aforementioned considerations and the limits on compu-
tational resources. In Table I, FFTFeatureVector(A) refers to
Amplitude-ranked Frequency Component Coefficients.

IX. SUBGROUP DISCOVERY USING PROFILE ERROR

Subgroup discovery is a data mining method to uncover
unusual patterns associated with selected features [22]. It has
been used in analyzing smart meter data [14]. The induced
rules can be used to divide the data into two exclusive groups:
one satisfying the rule and the rest. The following experiment
will apply subgroup discovery to partition samples on their
profile errors. Profile errors are widely used in industry to
evaluate the accuracy of profiles, using the difference between
the profile estimate and the actual consumption. One of such
error measures is mean absolute percentage error (MAPE)
[23].

In this experiment, one cluster is generated by grouping 12%
of the samples with the highest MAPE values. The rest of the
data is given to a subgroup discovery algorithm to separate
into two more groups with different MAPE distributions. The

resulting three clusters show a cluster of households with small
MAPE, and a cluster of households with medium MAPE and
a cluster with very high MAPE.

This experiment has one target feature, namely MAPE and
13 socio-demographic pattern features. The definitions of the
socio-demographic pattern features can be found in [14] which
used a similar data set. This approach is usually used for rule
generation. In this special case, it is also used for sample
segmentation.

X. K-MEANS CLUSTERING USING DEFAULT FEATURES

Finally, as a baseline, the 48 default features are used as
features for clustering. Households’ RAC values at 48 time
points are used for clustering. K-means clustering with squared
Euclidean distance has been applied with K = 3, as seen in
Fig. 1.

XI. EVALUATION AND COMPARISON

This section evaluates the constructed new features for
clustering. Generally speaking, clustering can be evaluated
by two approaches: external and internal. External approach
compares the resulting clusters with externally supplied class
labels. Class labels are not used during clustering, but used
to assess the resulting clusters. The SSE data set has no class
labels on electricity consumption, therefore this approach is
impractical. The internal approach requires no knowledge of
external class labels. Two measurement criteria have been
widely used for evaluating clustering results, namely com-
pactness and separation. They are combined in a single score
by means of a modified version of the Clustering Dispersion
Indicator [24].

Notations
W within-cluster distance
A among-cluster distance
K number of clusters, in this case, K = 3
k cluster numbered k and k ≤ K
uk centroids of cluster k
m medoid
nk the number of samples in cluster k
N total samples
Sk the set of samples in cluster k
y a household daily load curve
T the number of time values in each time series

A. Evaluation Metrics

First a distance measure is introduced to evaluate the
similarity of two load curves. A variety of distance measures
are considered, include dynamic time warp analysis [25].
However, limited by computational resources, a simple yet
sufficient measure is chosen on the basis of the City-Block
or the Manhattan distance: a mean of a ratio of the absolute
differences between the normalized consumption values at the
same time t for two samples i and j, i 6= j:

pt(i, j) =
|ci(t)− c j(t)|
ci(t)+ c j(t)

(3)
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The symmetric mean of a ratio of consumption for two
samples i and j, is their distance metric:

f (i, j) =
∑

T
t=1 pt(i, j)

T
(4)

Among clusters distance, A, is the average distance between
all the cluster centroids uk:

A =
∑

K−1
k=1 ∑

K
l=k+1 f (uk,ul)

K(K−1)/2
(5)

Within cluster distance, W , is the mean distance between
households’ load curves and their corresponding centroid
values:

W =
∑

K
k=1 ∑

nk
∀x∈Sk

f (y,uk)

K
(6)

To evaluate clusters produced by using different features, a
score formula is designed. It favors clustering whose distance
among every cluster’s centroid, as the separation measure, is
large, and the distance between every member to its cluster’s
centroid, as the compactness measure, is small, in principle:

Score =
A

W + ε
(7)

The parameter ε handles the trivial cases where clusters
consist of a single sample, therefore resulting in the within-
cluster distance being equal to zero which would result in an
undefined score. Therefore, we include an additional epsilon
with an arbitrary, small value to handle this case without
allowing infinite scores or significantly affecting the results
when comparing clustering methods.

B. Experimental Results and Discussion

Table I compares the quality of the resulting clustering of
the seven different sets of features, on the basis of nearly
5000 households data. Table II explains these seven sets of
features. This shows that constructed features, namely cali-
brated features on M-shape, and subgroup discovery on profile
error are among the best performing. The use of the default
features for clustering yields a reasonably good score. The 2nd

column is on the measure of mean of within cluster distance:
the smaller values the better; the 3rd column is the measure
of mean of between cluster distance: the larger the better; the
4th column gives the trade-off measure to balance the two
aforementioned measures. The experimental evidences have
shown that the constructed features have achieved competitive
clustering results, as shown in Table I. It is clear that the
two constructed features, namely Calibration (on M-shape)
and subgroup discovery return the best results. Calibration is
7.87% better than the default one; and the subgroup discovery
is 6.06% better than the default features. V shape-S is almost
identical to the default ones. Importantly, using the constructed
features can reduce the computational load significantly.

Fig.7 shows representative load curves of the resulting
clusters each using a different set of features. For each plot,
the three households whose load curves are the medoids of
their respective clusters are chosen as the representatives of
the resulting clusters. The average consumptions at 48 time

points on a day in unit kWh of such representative households
are plotted.

The three medoid curves in Fig.7 (i) are generated using
the default features. The medoid “i-b” has a high morning
peak, and much less of an afternoon peak. In contrast, the
medoid “i-a” has an unnoticeable morning peak, and a long
lasting afternoon peak. The medoid “i-c” is the regular one
similar to the overall average of the data set. The remaining
three plots, using the constructed features, display some of the
discovered consumption behaviors which are distinct to those
demonstrated in (i). In plot (ii) the medoid “ii-b” consumes a
larger and stable volume over a day; the medoid “iii-b” in plot
(iii) consumes a larger volume only at day time, in particular
in the morning and late afternoon peak time; the medoid “iv-
c” on (iv) consumes the highest in kWh but only during two
peak time periods. The flat load curves, namely “iii-a” on
(iii) and “iv-a” and “iv-b” on (iv) are only found by V shape
features. We see that clustering using the constructed features
successfully separates such distinctive patterns from the rest.

The data set is for household consumption, but the concepts
of feature construction and calibration are generic, easily
applied to industrial and commercial consumption as well. The
time series chosen here are daily load curves. However, the
approach is applicable to weekly, monthly and even yearly
time series, although the models of these time series are more
complicated (e.g., V-shape and M-shape features will need to
be adapted to longer patterns).

As Table II indicates, the 6 ways to create new features
return much smaller numbers of features to be used for
clustering. To replace the default features with the constructed
features, the number of dimensions is reduced from 48 to 25,
14,10, 6 or 5. Then, computational resource and time are saved
by using a set of new features.

XII. CONCLUSION

Meter data analytics is one of the most important parts of
smart grids. To analyze the recently available fine-grained data
delivered by smart metering systems will help achieve the full
potential of smart grids. This paper focuses on clustering daily
load curve and proposes three new types of features that are
generated by applying conditional filters on meter-resolution
based features integrated with shape signatures, calibration and
normalization, and profile errors.

Given the shape signatures, such as peak and off-peak
consumption time widely used in industry, conditional filters
have been used to create new consumption-based features and
time-based features. They form alternatives to the 48 default
time-based features for clustering. The second new method
of feature construction utilizes two feature transformation
techniques, namely statistical normalization and scaling. They
have been further integrated to the first feature construction
method to improve the performance. The third newly proposed
feature construction method modifies the consumption-based
features developed by the first method, using ROC convex hull
and calibration.

The first advantage of the proposed techniques of feature
construction is related to computational complexity. The con-
structed features produce smaller numbers of dimensions. This
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TABLE I
EVALUATION ON CLUSTERING OUTCOMES ORDERED BY SCORE.

Feature(s) Mean of Within Mean of Between Score
Cluster Distance (W) Cluster Distance (A) Eq.7

Eq.6 Eq.5
Calibration 0.3181 0.1485 0.4661
SD MAPE 0.3208 0.1437 0.4480
Default 0.3217 0.1249 0.3874
V shape-S 0.3234 0.1242 0.3834
V shape-N 0.3234 0.1168 0.3606
M shape-N 0.3256 0.1135 0.3480
FFTFeatureVector(A) 0.3329 0.0380 0.1143

TABLE II
SUMMARY OF CONSTRUCTED FEATURES

Method of Description Definition Size of the Detail
Feature(s) Feature Set
Calibration Calibrated features Section VII 5 Calibrated {Cmax1,Cmax2,Cmin1,Cmin1A,Cmin1B}

by Gas Connection
SD MAPE Subgroup discovery Section IX 14 MAPE and

using profile error 13 socio-demographic features
Default Default features Section X 48 {c1,c2, . . . ,c48}
V shape-S V shape-scaled Section VI 6 Scaled {C′max1,T ′max1,C′max2,T ′max2,C′min1,T ′min1}
V shape-N V shape-normalized Section VI 6 Normalized {C′max1,T ′max1,C′max2,T ′max2,C′min1,T ′min1}
M shape-N M shape-normalized Section VI 10 Normalized {C′max1,T ′max1,C′max2,T ′max2, . . . ,C′min1B,T ′min1B}
FFTFeatureVector(A) Fourier Transform Section VIII-B 25 25 most variable frequencies

Feature Vector
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Fig. 7. The average consumptions at daily 48 time points in kWh of the representative households, using (i): default features; (ii):M shape-S; (iii): V shape-S;
(iv): V shape-N. X-axis is time “t” of the 48 time points; and y-axis is the related daily consumption.

will consequently reduce computational demand. Secondly,
the clustering performance of the constructed features are
compared, measured by compactness and separation. Our
experiments showed that two sets of the constructed fea-
tures outperform the use of default features. Thirdly, another
advantage of adopting newly constructed features is to im-
prove comprehensibility. As shown, the models using the new
features are informative, comprehensive and understandable

in describing the electricity usage of daily periodicities and
trends.

Hence, this study offers approaches and experiences on
consumption pattern recognition, potentially useful to utility
companies for tariff design and recommendation; consumption
estimation; and demand response management.
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