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SFace: Sigmoid-constrained Hypersphere Loss
for Robust Face Recognition

Yaoyao Zhong, Weihong Deng, Jiani Hu, Dongyue Zhao, Xian Li, Dongchao Wen

Abstract—Deep face recognition has achieved great success
due to large-scale training databases and rapidly developing loss
functions. The existing algorithms devote to realizing an ideal
idea: minimizing the intra-class distance and maximizing the
inter-class distance. However, they may neglect that there are
also low quality training images which should not be optimized
in this strict way. Considering the imperfection of training
databases, we propose that intra-class and inter-class objectives
can be optimized in a moderate way to mitigate overfitting
problem, and further propose a novel loss function, named
sigmoid-constrained hypersphere loss (SFace). Specifically, SFace
imposes intra-class and inter-class constraints on a hypersphere
manifold, which are controlled by two sigmoid gradient re-scale
functions respectively. The sigmoid curves precisely re-scale the
intra-class and inter-class gradients so that training samples
can be optimized to some degree. Therefore, SFace can make
a better balance between decreasing the intra-class distances for
clean examples and preventing overfitting to the label noise, and
contributes more robust deep face recognition models. Extensive
experiments of models trained on CASIA-WebFace, VGGFace2,
and MS-Celeb-1M databases, and evaluated on several face
recognition benchmarks, such as LFW, MegaFace and IJB-C
databases, have demonstrated the superiority of SFace.

I. INTRODUCTION

DEEP face recognition has obtained surprising improve-
ment recent years [1], [2], [3], [4], [5], [6], [7], [8],

[9]. The pipeline for deep face recognition has been widely
used for its practical usage [10], [4], [5], [8]. That is,
deep face recognition models are trained on web-collected
databases [11], [12], [13], [14], [15], and work as deep feature
extractors to evaluate on other testing databases [16], [17],
[18], [19], [20], [21], [22].

The large-scale training databases [11], [12], [13], [14],
[15] are fundamental for the success of deep face recognition.
For training databases of deep face recognition, we can never
expect to obtain a “perfect” training database which should
include, but not limited to, sufficient numbers of identities, and
adequate images of each identity. Considering the copyright
and privacy protection, the number of identities in the web-
collected training databases is limited compared with the
global population, and celebrities of web-collected databases
may be far from the testing settings in daily life [10]. In
addition, we can hardly collect images with full intra-class

Yaoyao Zhong, Weihong Deng, and Jiani Hu are with the Pattern Recogni-
tion and Intelligent System Laboratory, School of Artificial Intelligence, Bei-
jing University of Posts and Telecommunications, Beijing 100876, China (e-
mail: zhongyaoyao@bupt.edu.cn; whdeng@bupt.edu.cn; jnhu@bupt.edu.cn).
Weihong Deng is the corresponding author.

Dongyue Zhao, Xian Li, and Dongchao Wen are with Canon Informa-
tion Technology (Beijing) Co., Ltd. (e-mail: zhaodongyue@canon-ib.com.cn;
lixian@canon-ib.com.cn; wendongchao@canon-ib.com.cn).

variation to model the large pose, face expressions and illu-
mination variance of each identity [23], [22], therefore there
are a significant portion of under-represented identities [24],
[25], [26], [27]. Considering the open-set protocal and the
limitations of training databases, current research focus is
trying to make best use of the training databases, and improve
the ability of loss functions to obtain a more discriminative
feature extractor. One of the most effective loss functions
is the large margin loss function [5], [6], [7], [8], [9].
They incorporate large margins to softmax loss to encourage
the intra-class compactness and the inter-class orthogonality,
which has alleviated the aforementioned quantity limitation
and imbalance problem of identities to some degree.

Existing mainstream methods devote to minimizing the
intra-class distance and maximizing the inter-class distance.
Despite the success, they may neglect that, in addition to the
high quality training images, there are also low quality training
images such as misaligned images, low-resolution images, and
label noise, which cannot provide effective information for
distinguishing the labeled identity. Even human annotations
are not reliable as we thought, because humans often struggle
to distinguish between hard examples and low quality training
images, and they have already been surpassed by deep face
recognition models a few years ago [28]. For this reason,
although training databases have been elaborated by semi-
automatic data cleaning algorithms [11], [14], [15], [7], there
still exists noise inevitably. Due to the imperfection of training
databases, strictly minimizing the intra-class distance and
maximizing the inter-class distance would lead to overfitting.
Therefore, our aim is to design a new loss function, which
can increase the possibility of finding the best compromise
between underfitting and overfitting to a specific training
database, in order to obtaining better generalization ability.

Considering the imperfection of the training databases,
formally, we abandon the softmax-based loss while start from
the primary and fundamental idea: optimize intra-class and
inter-class distances to some extent, to improve the general-
ization ability of models. Furthermore, we propose a novel
loss function, named sigmoid-constrained hypersphere loss
(SFace), to implement this idea. SFace imposes intra-class and
inter-class constraints on a hypersphere manifold. The intra-
class and inter-class constraints are controlled by two sigmoid
curves. The sigmoid curves precisely re-scale intra-class and
inter-class gradients so that intra-class and inter-class distances
are optimized to some extent. As illustrated in Figure 1, for the
deep feature 𝒙𝒊 of a training sample, the optimizing direction
is always along the tangent of the hypersphere while the
moving speed is controlled by the designed gradients precisely.
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Fig. 1. Schematic illustration of the sigmoid-constrained hypersphere loss, which imposes intra-class and inter-class constraints on a hypersphere manifold.
The optimizing directions of samples and target embedding are always along the tangent of the hypersphere while the moving speed is controlled by two
sigmoid curves respectively. Specifically, the moving speed of the deep feature 𝒙𝒊 and its target center 𝑾𝒚𝒊 decreases gradually as they approaching to each
other, while the moving speed of 𝒙𝒊 and other target centers 𝑾𝒋 increases rapidly as they start approaching to each other.

Specifically, the moving speed of the deep feature 𝒙𝒊 and its
target center 𝑾𝒚𝒊 decreases gradually as they approaching to
each other, while the moving speed of 𝒙𝒊 and other target
centers 𝑾𝒋 increases rapidly as they start approaching to each
other.

Compared with optimizing training samples strictly, the ad-
vantage of SFace is that it provides a relatively better balance
between overfitting and underfitting, for the reason that SFace
adopts sigmoid functions of intra-class and inter-class gradient
re-scale terms to achieve excellent control respectively. We
give a simple and easy example in Figure 2 for understanding.
Under the label noise setting, the model would overfit to
the label noise by strictly dragging the noisy samples to the
wrong labeled identities. In contrast, SFace can mitigate this
problem in some degree because it optimizes noisy samples in
a moderate way. With the precisely control, the clean training
samples are optimized earlier and more easily, while the label
noise can be left behind.

Our major contributions can be summarized as follows:
• Considering the imperfection of face training databases,

we introduce a new idea: optimizing intra-class and inter-
class objectives in a moderate way to mitigate overfitting
problem to face training databases.

• Under the guidance of this idea, we propose a new loss
function, named sigmoid-constrained hypersphere loss
(SFace), which can increase the possibility of finding the
best compromise between underfitting and overfitting, in
order to obtaining better generalization ability.

• Our method is evaluated on three training databases
including CASIA-WebFace [11], VGGFace2 [14] and
MS-Celeb-1M [12], and consistently outperforms the
state-of-the-art methods on several benchmarks includ-
ing LFW [16], YTF [17], CALFW [18], CPLFW [19],
MegaFace [20], IJB-A [21] and IJB-C [22] databases.

The remainder of the paper is organized as follows. Sec-
tion II briefly reviews the related deep face recognition works.
In Section III, we first give a general introduction to the
proposed sigmoid-constrained hypersphere loss (SFace). Then,

we detail the gradient re-scale function of SFace. Finally, we
discuss the relationship between SFace and softmax based loss
functions. Experimental settings and results are presented in
Section IV. Section V summarizes the conclusions.

II. RELATED WORK

In this section, we discuss and compare the loss functions
in deep face recognition, which are almost entirely around the
idea of minimizing the intra-class distance and maximizing
the inter-class distance. There are mainly two types.

The first type applies metric learning method in deep
learning [1], [2], [3], which maps face images to a deep
feature space and directly optimizes distances, so that the
inter-class distance is larger than the intra-class distance. The
contrastive loss [1], triplet loss [2] and N-pair loss [29] are
early methods to enhance the discrimination ability of deep
features, which optimize intra-class and inter-class variance by
using face pairs. Combined with softmax loss, centerloss [3]
obtains promising performance by simultaneously learns a
center for deep features of each class and minimizes the
distances between training samples and their corresponding
class centers. Then, range loss [24] minimizes overall intra-
personal differences and maximizes inter-personal differences
in one mini-batch. Marginal loss [30] is further proposed to
maximize the inter-class distance and minimize the intra-class
distance simultaneously by focusing on the marginal samples.

The second type makes modification on cross-entropy loss
(usually referred to as “softmax loss”) to learn more dis-
criminative features [4], [5], [7]. Some early works incor-
porate weights or features normalization [31], [4], [32]. L2-
softmax [31] is proposed to add an L2-constraint to the deep
features and restrict them to lie on a hypersphere of a fixed
radius. NSoftmax [4] is proposed to normalize both features
and weights of the last inner-product layer. Ring loss [32]
applies soft normalization by gradually learning to constrain
the norm to the scaled unit circle while preserving convexity.
Then, based on previous works [31], [4], the large mar-
gin [33], [6], [7] is introduced to obtain better discriminative
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power by further enforcing the extra intra-class compactness
and inter-class discrepancy simultaneously. L-Softmax [33]
first incorporates a large margin to softmax loss to learn
discriminative face features by strictly separating the hard
samples. Instead of the multiplicative margin, CosFace [6]
and ArcFace [7] introduce the additive margin to guarantee
the convergence, which is easy for implementation. How-
ever, AdaCos [8] and P2SGrad [9] point that the inflexible
form of softmax based loss functions lacks the ability to
precisely supervise the cosine distances, and they improve
the large margin angular loss functions by setting the direct
mapping relation between classification probability and cosine
distances, which can further decrease the intra-class angles of
training databases. MV-Softmax [34] is proposed to improve
softmax based loss functions by mining the mis-classified
samples and emphasizing them to guide the discriminative
feature learning. CurricularFace [35] further develops MV-
Softmax by incorporating curriculum learning, which auto-
matically emphasizes easy samples first and hard samples
later. Recent works [7], [36] also point that inter-class and
intra-class objectives of softmax based loss functions would
interact and lead to relaxation on each other. Although recent
works have pointed out some shortcomings of softmax based
loss functions, overall, weight/feature normalization softmax-
based loss functions and large margin softmax based loss
functions have significantly boosted the performance of deep
face recognition.

(a) (b)

Fig. 2. (a) The model would overfit to the label noise by strictly dragging
the noisy samples to the wrong labeled identities. (b) In contrast, SFace
can mitigate this problem in some degree because it optimizes samples in
a moderate way.

Our method can be categorized as the first type method in
the form of metric learning, which directly optimizes the intra-
class and inter-class distances. However, it also has a close
connection to the second type based on softmax loss, which
we will discuss in details in Section III-C. In addition, there
are also some works [37], [38] aiming to solve the noise-robust
training in deep face recognition, which usually use training
databases with high-level label noise to obtain comparable
performance with the model trained with clean databases.
While our work is devoted to improving performance of
models trained on clean databases which have been refined
by semi-automatic data cleaning algorithms [11], [14], [7].

III. METHODOLOGY

A. Sigmoid-constrained Hypersphere Loss
In this section, we introduce the proposed loss function.

First, we give some denotations and descriptions. The deep

face recognition models embeds an image into a 𝑑-dimensional
Euclidean space. 𝒙𝒊 ∈ R𝑑 denotes the embedding feature
of the 𝑖-th training image, and 𝑦𝑖 is the label of 𝒙𝒊 . 𝑾 =

{𝑾1,𝑾2, . . . ,𝑾𝑪} ∈ R𝑑×𝐶 denotes the weight of the last fully
connected layer, where 𝐶 denotes the number of identities in
the training database. 𝑾𝑦𝑖 ∈ R𝑑 is seen as the target center
feature of identity 𝑦𝑖 .

Recent works [4], [5], [6], [7] have empirically demon-
strated the superiority of constraining deep face features to
be discriminative on a hypersphere manifold, where gradients
are restricted in the tangent of the hypersphere. We also map
deep face features to the hypersphere manifold and optimize
cosine similarity to restrict directions of gradients. To help
understanding, we illustrate it in Figure 1. With the restricted
directions of gradients, the moving directions of samples and
target centers are always along the tangent of the hypersphere.

The aim is to decrease the intra-class distance and increase
the inter-class distance in a moderate way. Therefore, the
sigmoid-constrained hypersphere loss (SFace) of 𝒙𝒊 can be
formulated as 𝐿𝑆𝐹𝑎𝑐𝑒 = 𝐿𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
+ 𝐿𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
, where

𝜃𝑦𝑖 is the angular distance between 𝒙𝒊/‖𝒙𝒊 ‖ and 𝑾𝒚𝒊

/𝑾𝒚𝒊

,
and 𝜃 𝑗 ( 𝑗 ≠ 𝑦𝑖) is the angular distance between 𝒙𝒊/‖𝒙𝒊 ‖
and 𝑾𝒋

/𝑾𝒋

. Specifically, 𝐿𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
and 𝐿𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
are

formulated as follows:

𝐿𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
= −[𝑟𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
]𝑏 cos

(
𝜃𝑦𝑖

)
,

𝐿𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
=
∑︁𝐶

𝑗=1, 𝑗≠𝑦𝑖
[𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
]𝑏 cos

(
𝜃 𝑗

)
.

(1)

In the above equations, cos
(
𝜃𝑦𝑖

)
= 𝑾𝑇

𝒚𝒊𝒙𝒊
/𝑾𝒚𝒊

‖𝒙𝒊 ‖, and

cos
(
𝜃 𝑗

)
= 𝑾𝒋

𝑇 𝒙𝒊
/𝑾𝒋

‖𝒙𝒊 ‖ , 𝑗 ≠ 𝑦𝑖 . Since the goal is to
obtain precisely control of the optimization degree, we design
functions 𝑟𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
and 𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
to re-scale intra-class

and inter-class objectives respectively to further restrict the
optimizing speed. [·]𝑏 is the block gradient operator, which
prevents the contribution of its inputs to be taken into account
for computing gradients. In the forward propagation process
of SFace,

𝐿𝑆𝐹𝑎𝑐𝑒 =

−[𝑟𝑖𝑛𝑡𝑟𝑎
(
𝜃𝑦𝑖

)
]𝑏 cos

(
𝜃𝑦𝑖

)
+
∑︁𝐶

𝑗=1, 𝑗≠𝑦𝑖
[𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
]𝑏 cos

(
𝜃 𝑗

)
.

(2)
While in the backward propagation process,

𝜕𝐿𝑆𝐹𝑎𝑐𝑒

𝜕𝒙𝒊
=

−[𝑟𝑖𝑛𝑡𝑟𝑎
(
𝜃𝑦𝑖

)
]𝑏
𝜕 cos

(
𝜃𝑦𝑖

)
𝜕𝒙𝒊

+
∑︁𝐶

𝑗=1, 𝑗≠𝑦𝑖
[𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
]𝑏
𝜕 cos

(
𝜃 𝑗

)
𝜕𝒙𝒊

,

𝜕𝐿𝑆𝐹𝑎𝑐𝑒

𝜕𝑾𝒚𝒊

= −[𝑟𝑖𝑛𝑡𝑟𝑎
(
𝜃𝑦𝑖

)
]𝑏

𝜕 cos
(
𝜃𝑦𝑖

)
𝜕𝑾𝒚𝒊

,

𝜕𝐿𝑆𝐹𝑎𝑐𝑒

𝜕𝑾𝒋
= [𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
]𝑏

𝜕 cos
(
𝜃 𝑗

)
𝜕𝑾𝒋

,

(3)
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where
𝜕 cos

(
𝜃𝑦𝑖

)
𝜕𝒙𝒊

=
1

‖𝒙𝒊 ‖
(
𝑾𝒚𝒊𝑾𝒚𝒊

 − cos
(
𝜃𝑦𝑖

) 𝒙𝒊
‖𝒙𝒊 ‖

),

𝜕 cos
(
𝜃 𝑗

)
𝜕𝒙𝒊

=
1

‖𝒙𝒊 ‖
(
𝑾𝒋𝑾𝒋

 − cos
(
𝜃 𝑗

) 𝒙𝒊
‖𝒙𝒊 ‖

),

𝜕 cos
(
𝜃𝑦𝑖

)
𝜕𝑾𝒚𝒊

=
1𝑾𝒚𝒊

 ( 𝒙𝒊
‖𝒙𝒊 ‖

− cos
(
𝜃𝑦𝑖

) 𝑾𝒚𝒊𝑾𝒚𝒊

 ),
𝜕 cos

(
𝜃 𝑗

)
𝜕𝑾𝒋

=
1𝑾𝒋

 ( 𝒙𝒊
‖𝒙𝒊 ‖

− cos
(
𝜃 𝑗

) 𝑾𝒋𝑾𝒋

 ).
(4)

B. Gradient Re-scale Function

The optimization gradients are always along the tangent
direction, because 〈 𝜕 cos(𝜃𝑦𝑖 )

𝜕𝒙𝒊
, 𝒙𝒊〉 = 0, 〈 𝜕 cos(𝜃 𝑗)

𝜕𝒙𝒊
, 𝒙𝒊〉 = 0,

〈 𝜕 cos(𝜃𝑦𝑖 )
𝜕𝑾𝒚𝒊

,𝑾𝒚𝒊 〉 = 0, and 〈 𝜕 cos(𝜃 𝑗)
𝜕𝑾𝒋

,𝑾𝒋〉 = 0 (refer to the
illustration in Figure 3). In addition, ‖𝒙𝒊 ‖,

𝑾𝒚𝒊

 and
𝑾𝒋


almost remain unchanged in the training process, for the
reason that there are no components of gradients in the radial
direction. Function 𝑟𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
and 𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
are designed

to re-scale intra-class and inter-class objectives respectively.
These two terms actually re-scale the gradient, i.e. control
the moving speed of samples and target centers in Figure 1.
Therefore we name 𝑟𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
and 𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
as the gradient

re-scale functions. Since the original gradient scales of intra-
class and inter-class objectives are proportional to 𝑠𝑖𝑛𝜃𝑦𝑖 and
𝑠𝑖𝑛𝜃 𝑗 (refer to Function (4) and Figure 3), the final gradient
scales are proportional to 𝑣𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
= 𝑟𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
𝑠𝑖𝑛𝜃𝑦𝑖 and

𝑣𝑖𝑛𝑡𝑒𝑟
(
𝜃 𝑗

)
= 𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
𝑠𝑖𝑛𝜃 𝑗 .

(a) (b)

(c) (d)

Fig. 3. Illustration of Function (4), which means that optimization gradients
are along the tangent direction. (a)(b)(c)(d) interprets the four orthogonality
relationships of Function (4) respectively.

At the beginning of training, the initial angular distances
𝜃𝑦𝑖 and 𝜃 𝑗 are all about 𝜋

2 . The intra-class loss function
decreases 𝜃𝑦𝑖 gradually while the inter-class loss function pre-
vents 𝜃 𝑗 from being decreased. Therefore, the ideal functions
of 𝑣𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
and 𝑣𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
should satisfy at least three

properties as follows: (1) The function 𝑣𝑖𝑛𝑡𝑟𝑎
(
𝜃𝑦𝑖

)
should

be non-negative and monotonically increasing on the interval
[0, 𝜋

2 ], so that the moving speed of 𝒙𝒊 and 𝑾𝒚𝒊 decreases
gradually as they approaching to each other. (2) The function
𝑣𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
should be non-negative on the interval [0, 𝜋

2 ], so
that the moving speed of 𝒙𝒊 and 𝑾𝒋 increases rapidly as
they start approaching to each other. (3) Considering the
imperfection of training databases, there should be two flexible
intervals to suppress the moving speed, one is around 𝜃𝑦𝑖 ≈ 0
of 𝑣𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
and the other is around 𝜃 𝑗 ≈ 𝜋

2 of 𝑣𝑖𝑛𝑡𝑒𝑟
(
𝜃 𝑗

)
, so

that both intra-class and inter-class objectives can be optimized
with a moderate target rather than be minimized or maximized
strictly.

Eventually, we choose sigmoid functions as the gradient re-
scale functions. The specific forms are,

𝑟𝑖𝑛𝑡𝑟𝑎
(
𝜃𝑦𝑖

)
=

𝑠

1 + 𝑒−𝑘∗(𝜃𝑦𝑖−𝑎)
,

𝑟𝑖𝑛𝑡𝑒𝑟
(
𝜃 𝑗

)
=

𝑠

1 + 𝑒𝑘∗(𝜃 𝑗−𝑏) .
(5)

𝑠 is the upper asymptote of two sigmoid curves as the initial
scale of gradient, and 𝑘 is the control the slope of sigmoid
curves. Hyperparameters 𝑎 and 𝑏 decide the horizontal inter-
cept of two sigmoid curves and actually control the flexible
interval to suppress the moving speed. Therefore 𝑎 and 𝑏 are
vital parameters should be selected according to characteristics
of a specific training database, which we will discuss later.
The sigmoid curve functions of 𝑟𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
and 𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
are

illustrated in (a) of Figure 4. With the gradient re-scale func-
tions, scales of intra-class gradient and inter-class gradient in
theory are proportional to 𝑣𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
= 𝑟𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
𝑠𝑖𝑛𝜃𝑦𝑖 and

𝑣𝑖𝑛𝑡𝑒𝑟
(
𝜃 𝑗

)
= 𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
𝑠𝑖𝑛𝜃 𝑗 , shown in (b) of Figure 4. The

entire training process of SFace is summarized in Algorithm 1,
which is easy for implementation.

Algorithm 1: SFace
Input: Embedding feature 𝒙𝒊 with label 𝑦𝑖 , parameters

of the embedding network 𝛩, parameters of the
last fully-connected layer 𝑾 (composed of 𝑾𝒚𝒊

and 𝑾𝒋 ( 𝑗 ≠ 𝑦𝑖)), SFace parameters 𝑠 and 𝑘 , 𝑎
and 𝑏, the number of iteration 𝑖 = 0, learning
rate 𝜆 (𝑖) ,

1 while not converged do
2 𝑖 = 𝑖 + 1;
3 Compute the intra-distance by

𝜃𝑦𝑖 = arccos
(
𝑾𝑇

𝒚𝒊𝒙𝒊
/𝑾𝒚𝒊

‖𝒙𝒊 ‖);
4 Compute the inter-distance by

𝜃 𝑗 = arccos
(
𝑾𝒋

𝑇 𝒙𝒊
/𝑾𝒋

‖𝒙𝒊 ‖) , 𝑗 ≠ 𝑦𝑖;
5 Compute gradient re-scale functions by Equation 5;
6 Compute the loss by Equation 2;
7 Compute the gradients of 𝒙𝒊 and 𝑾 by Equation 3;
8 Update parameters 𝑾 and 𝛩 by

𝑾 = 𝑾 − 𝜆 (𝑖) 𝜕𝐿𝑆𝐹𝑎𝑐𝑒

𝜕𝑾 , 𝛩 = 𝛩 − 𝜆 (𝑖) 𝜕𝐿𝑆𝐹𝑎𝑐𝑒

𝜕𝒙𝒊
𝜕𝒙𝒊
𝜕𝛩

;
9 end

Output: 𝑾, 𝛩.
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(a)

(b)

Fig. 4. (a) The sigmoid curves of intra-class gradient re-scale function
𝑟𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
and inter-class gradient re-scale function 𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃 𝑗

)
of SFace.

(b) The final scale curves of intra-class gradient 𝑣𝑖𝑛𝑡𝑟𝑎
(
𝜃𝑦𝑖

)
and inter-class

gradient 𝑣𝑖𝑛𝑡𝑒𝑟
(
𝜃 𝑗

)
of SFace.

C. Relation to Softmax Based Loss

We have mentioned in Section II that SFace in form can be
categorized as the metric learning method, but it has a close
connection to the softmax based loss functions. In this section,
we discuss this relation in details.

We start from the original softmax loss function. For each
embedding feature 𝒙𝒊 , the softmax loss can be formulated as:

𝐿 = − log 𝑃𝑦𝑖 = − log
𝑒𝑾𝒚𝒊

𝑇 𝒙𝒊+𝒃𝒚𝒊∑𝐶
𝑗=1 𝑒

𝑾𝒋
𝑇 𝒙𝒊+𝒃 𝒋

. (6)

𝒙𝒊 ∈ R𝑑 denotes the embedding feature of the 𝑖-th training
image, and 𝑦𝑖 is the label of 𝒙𝒊 . 𝑃𝑦𝑖 is the predicted probability
of assigning 𝒙𝒊 to class 𝑦𝑖 . 𝐶 is the number of identities,
𝑾 𝑗 ∈ R𝑑 is the 𝑗-th column of the weight of the last fully
connected layer, 𝒃 𝒋 ∈ R𝐶 is the bias. Softmax based loss
functions [4], [5], [6], [7] remove the bias term and transform
𝑾𝒋

𝑇 𝒙𝒊 = 𝑠 cos 𝜃 𝑗 . To further improve the performance, large
margin is adopted in the cos 𝜃𝑦𝑖 term [5], [6], [7]. Therefore,
softmax based loss functions can be formulated as:

𝐿 = − log 𝑃𝑦𝑖 = − log
𝑒𝑠 𝑓 (𝜃𝑦𝑖 )

𝑒𝑠 𝑓 (𝜃𝑦𝑖 ) +∑𝐶
𝑗=1, 𝑗≠𝑦𝑖 𝑒

𝑠 cos 𝜃 𝑗

, (7)

where 𝑓 (𝜃𝑦𝑖 ) = cos 𝜃𝑦𝑖 in NSoftmax [4], 𝑓 (𝜃𝑦𝑖 ) = cos 𝜃𝑦𝑖 −𝑚

in CosFace [6], and 𝑓 (𝜃𝑦𝑖 ) = cos(𝜃𝑦𝑖 + 𝑚) in ArcFace [7].
With the influence of the loss function, 𝜃𝑦𝑖 is decreased and

𝜃 𝑗 is increased in theory. In the backward propagation process,

𝜕𝐿

𝜕 cos 𝜃𝑦𝑖
= 𝑠(𝑃𝑦𝑖 − 1)

𝜕 𝑓 (𝜃𝑦𝑖 )
𝜕 cos 𝜃𝑦𝑖

= −
𝑠
∑𝐶

𝑗=1, 𝑗≠𝑦𝑖 𝑒
𝑠 cos 𝜃 𝑗

𝑒𝑠 𝑓 (𝜃𝑦𝑖 ) +∑𝐶
𝑗=1, 𝑗≠𝑦𝑖 𝑒

𝑠 cos 𝜃 𝑗

𝜕 𝑓 (𝜃𝑦𝑖 )
𝜕 cos 𝜃𝑦𝑖

,

𝜕𝐿

𝜕 cos 𝜃 𝑗

= 𝑠𝑃 𝑗 =
𝑠𝑒𝑠 cos 𝜃 𝑗

𝑒𝑠 𝑓 (𝜃𝑦𝑖 ) +∑𝐶
𝑘=1,𝑘≠𝑦𝑖 𝑒

𝑠 cos 𝜃𝑘
,

(8)

where
𝜕 𝑓 (𝜃𝑦𝑖 )
𝜕 cos 𝜃𝑦𝑖

= 1 in NSoftmax [4] and CosFace [6], and
𝜕 𝑓 (𝜃𝑦𝑖 )
𝜕 cos 𝜃𝑦𝑖

=
sin(𝜃𝑦𝑖+𝑚)

sin 𝜃𝑦𝑖
in ArcFace [7].

(a) NSoftmax [4]

(b) CosFace [6]

(c) ArcFace [7]

Fig. 5. Under some ideal assumptions, the scale of intra-class gradient
𝑣𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖 , 𝜃 𝑗

)
and inter-class gradient 𝑣𝑖𝑛𝑡𝑒𝑟

(
𝜃𝑦𝑖 , 𝜃 𝑗

)
of (a) NSoft-

max [4], (b) CosFace [6], and (c) ArcFace [7]. Softmax based loss func-
tions [4], [6], [7] can be understand as a kind of special metric learning
method with specific speed constraints decided by the intra-class distance
𝜃𝑦𝑖 and the inter-class distances 𝜃 𝑗 ( 𝑗 ≠ 𝑦𝑖) .

Further, the softmax based functions are equivalent to the
following loss functions for training face models

𝐿 = −[𝑟𝑖𝑛𝑡𝑟𝑎
(
𝜃𝑦𝑖 , 𝜃 𝑗

)
]𝑏 cos

(
𝜃𝑦𝑖

)
+∑︁𝐶

𝑗=1, 𝑗≠𝑦𝑖
[𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃𝑦𝑖 , 𝜃 𝑗

)
]𝑏 cos

(
𝜃 𝑗

)
,

(9)
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where gradient re-scale functions are,

𝑟𝑖𝑛𝑡𝑟𝑎
(
𝜃𝑦𝑖 , 𝜃 𝑗

)
=

𝑠
∑𝐶

𝑗=1, 𝑗≠𝑦𝑖 𝑒
𝑠 cos 𝜃 𝑗

𝑒𝑠 𝑓 (𝜃𝑦𝑖 ) +∑𝐶
𝑗=1, 𝑗≠𝑦𝑖 𝑒

𝑠 cos 𝜃 𝑗

𝜕 𝑓 (𝜃𝑦𝑖 )
𝜕 cos 𝜃𝑦𝑖

, (10)

and

𝑟𝑖𝑛𝑡𝑒𝑟
(
𝜃𝑦𝑖 , 𝜃 𝑗

)
=

𝑠𝑒𝑠 cos 𝜃 𝑗

𝑒𝑠 𝑓 (𝜃𝑦𝑖 ) +∑𝐶
𝑘=1,𝑘≠𝑦𝑖 𝑒

𝑠 cos 𝜃𝑘
. (11)

Since only backward propagation have influence on the net-
work parameters of deep face recognition models, and the
backward propagation function (8) of softmax based loss func-
tions and function (9) are the same. Therefore loss function
(7) are equivalent to loss function (9) in the training process.

Now from equations (8)(9)(10)(11), we can see that soft-
max based loss functions can be understood as a kind of
special metric learning method with the speed constraints
on a hypersphere. However, both the gradient re-scale func-
tions (speed constraints) of intra-class and inter-class are
decided by the intra-class distance 𝜃𝑦𝑖 and the inter-class
distances 𝜃 𝑗 ( 𝑗 ≠ 𝑦𝑖). To better understanding of the op-
timization of softmax based loss functions, we hypothesize
that all the inter-class distances 𝜃 𝑗 ( 𝑗 ≠ 𝑦𝑖) are the same
ideally, and plot scale curves of the intra-class gradient
𝑣𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖 , 𝜃 𝑗

)
= 𝑟𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖 , 𝜃 𝑗

)
𝑠𝑖𝑛𝜃𝑦𝑖 and the inter-class

gradient 𝑣𝑖𝑛𝑡𝑒𝑟
(
𝜃𝑦𝑖 , 𝜃 𝑗

)
= 𝑟𝑖𝑛𝑡𝑒𝑟

(
𝜃𝑦𝑖 , 𝜃 𝑗

)
𝑠𝑖𝑛𝜃 𝑗 of (a) NSoft-

max [4], (b) CosFace [6], and (c) ArcFace [7] in Figure 5.
At the beginning of training, the intra-class distance 𝜃𝑦𝑖 and
inter-class distances 𝜃 𝑗 is about 90 degrees ( 𝜋

2 ). We can see
that, from the intra-class sub-figure (left) of Figure 5, with
the high intra-class gradient 𝑣𝑖𝑛𝑡𝑟𝑎, the intra-class distance 𝜃𝑦𝑖
will decrease gradually. While at the same time, as the intra-
class distance 𝜃𝑦𝑖 decreases, from the inter-class sub-figure
(right) of Figure 5, the inter-class gradient 𝑣𝑖𝑛𝑡𝑒𝑟 will decrease,
which will relax the inter-class constraints and decrease the
inter-class distance 𝜃 𝑗 . Then, we come back to the intra-class
sub-figure (left) of Figure 5, as the inter-class distances 𝜃 𝑗

decrease, the change curve of intra-class gradient 𝑣𝑖𝑛𝑡𝑟𝑎 𝑣𝑠

𝜃𝑦𝑖 will also changed.
In the optimization of softmax based loss, the intra-class

and inter-class distance will always have influence on each
other. Therefore, in conclusion, softmax based loss functions
actually lack the ability to control intra-class and inter-class
optimizations precisely. However, compared with softmax
based loss functions, both intra-class and inter-class distance
of SFace (Figure 4) can be constrained to a designed degree
therefore can be optimized in a moderate way, which is exactly
the advantage of SFace.

IV. EXPERIMENTS

A. Experimental settings

We separately train models on training databases includ-
ing CASIA-WebFace [11], VGGFace2 [14], MS1MV2 [12]
databases, which have been elaborated by semi-automatic data
cleaning algorithms, to evaluate our methods and conduct fair
comparison with state-of-the-art loss functions. The compared
loss functions include softmax, NSoftmax [4], SphereFace [5],

CosFace [6], ArcFace [7], Combined loss [7], D-softmax [36]
and so on.

Evaluation Databases. We evaluate on LFW [16],
YTF [17], CFP-FP [39], AgeDB-30 [40], CALFW [18],
CPLFW [19], MegaFace [20], IJB-A [21] and IJB-C [22]
databases.

LFW [16] database contains 13,233 face images from 5,749
different identities. YTF [17] is a database of face video
collected from YouTube, which consists of 3,425 videos of
1,595 different people. CFP-FP database [39] is built for facil-
itating large pose variation in unconstrained settings. AgeDB-
30 database [40] is a manually collected cross-age database in
unconstrained settings. Cross-Age LFW (CALFW) [18] and
Cross-Pose LFW (CPLFW) [19] databases are constructed
based on LFW database, to emphasize cross-age challenge and
cross-pose challenge in face recognition.

MegaFace [20] is a large public available testing benchmark,
which evaluates the performance of face models at the million
scale distractors. We use FaceScrub database [41] as the probe
set, which contains 106,863 images from 530 celebrities. The
gallery set is a subset of Flickr photos and it consists of more
than one million images. Recently, research [7] points out
that there are many wrong labels in the MegaFace database
and the noise significantly affects the performance. Therefore,
for comparison, in this paper we report experimental results
on both the original MegaFace database and the refined
version [7].

IJB-A [21] and IJB-C [22] databases address the uncon-
strained face recognition, which contain both still images and
video frames. IJB-A database contains 500 subjects with 5,396
still images and 20,395 video frames. IJB-C database further
increases emphasis on occlusion and diversity of subject
occupation and geographic origin population, containing 3,531
subjects with 31.3K still images and 117.5K frames from
11,779 videos. We evaluate the models on the standard verifi-
cation setting (matching between the Mixed Media probes and
two galleries) and identification protocol (1:N Mixed Media
probes across two galleries).

Training and Testing. We use MxNet [42] to implement all
the experiments. For the fair comparison, the CNN architecture
used in our work is the same ResNet [43] networks as [7],
which applies the “BN [44]-Dropout [45]-FC-BN” structure to
get the final 512-𝐷 embedding feature. The data preprocessing
follows settings of insightface [7]. That is, horizontally flip
with a probability of 50% is used for training data augmenta-
tion. In addition, all the images are normalized by subtracting
127.5 and dividing by 128. All the models are trained with
stochastic gradient descent (SGD) algorithm from scratch.
Models trained on CASIA-WebFace database are trained on
2 GPUs and the total batch size is 256. The learning rate is
started from 0.1 and divided by 10 at the 100k, 140k, 160k
iterations. Models trained on MS1MV2 database are trained
on 4 GPUs and the total batch size is 512. The learning rate
is started from 0.1 and divided by 10 at the 100k, 160k, 220k
iterations. Models trained on VGGFace2 database are trained
on 4 GPUs and the total batch size is 512. The learning rate
is started from 0.1 and divided by 10 at the 80k, 100k, 160k
iterations. The parameter 𝑠 for SFace is set to 64, 𝑘 is set to
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80. The intra-class and inter-class parameters 𝑎 and 𝑏 control
the optimization and should be decided according to specific
training databases, which will be introduced later.

B. Experiment on the CASIA-WebFace Database

CASIA-WebFace database [11] contains 0.49M images
from 10,575 celebrities, which is the first widely used large
training database in deep face recognition. While recently it
has been seen as a relatively small-scale database compared
with other Million-scale ones [12], [14]. According to the
research [15], there are 9.3%-13.0% label noise in CASIA-
WebFace database. That is, the original CASIA-WebFace
database is exactly the database using semi-automatic anno-
tation with low level noise. We use the arcface version [7]
with 0.49M images from 10,572 identities. We first implement
our method on it and compare with the state-of-art loss
functions. Then, we experiment on the noise-controlled Web-
Face database to further evaluate our method under training
databases with different noise levels, and study the choice of
hyper-parameters.

1) Experiment on the CASIA-WebFace Database: We train
face models on CASIA-WebFace database supervised by soft-
max, NSoftmax [4], SphereFace [5], CosFace [6], ArcFace [7],
Combined loss [7] with combined margin cos (𝑚1𝜃 + 𝑚2)−𝑚3,
D-softmax [36], and SFace respectively. The source codes of
most compared methods can be downloaded from the github.
In addition, we implement D-softmax [36] by ourselves. Since
the performance of all the above loss functions is sensitive to
the choice of hyper-parameters, we list them in the Table I,
which are determined according to the suggestion. All the
models are trained on the ResNet50 which we have mentioned
above. For SFace, we choose intra-class and inter-class hyper-
parameters 𝑎 and 𝑏 by taking reference to the experience
of the final models of large margin loss functions, and then
tuning them. In the experiment, both intra-class and inter-
class parameters have crucial influence. Table I lists the
experimental results, our method is compared with the recent
advanced loss functions. As shown, under the same training
and test settings, our method significantly improves the results
on several evaluation benchmarks, especially TAR at very
low FAR on the well-known challenging IJB-C database,
which demonstrates the superiority of our method on a semi-
automatic annotated face training database with low level
noise.

From Table I, we select three models trained supervised
by SFace and two classic methods, NSoftmax and ArcFace,
respectively, and analyze these models. We extract the deep
features of images in the training database, and calculate intra-
class and inter-class angles (distances) statistics. Specifically,
using the manual refined image list [46] released by [4], we
can split the training database (0.49M images) into clean
images (0.45M) and label noises (0.04M). Therefore, the
mean angles (distances) between embedding feature 𝑥𝑖 and the
embedding feature 𝑊𝑦𝑖 of clean images and label noise can
be calculated respectively. In addition, we calculate the mean
angles between different 𝑊 𝑗 . The results are listed in Table II.
We can see that, compared with NSoftmax and SFace, ArcFace

optimizes training samples in a more strict way. That is,
the intra-class angles (distances) of ArcFace are smaller. The
decrease of intra-class angles (distances) of clean images is a
good trend. However, the intra-class angles (distances) of label
noise are also decreased, which is not a good phenomenon.
While SFace keep a better balance between decreasing the
intra-class angles (distances) and preventing overfitting to label
noise. The reason may be that with the precisely control to a
cutoff point, the clean training samples are optimized earlier
and more easily, while the label noise can be left behind to
prevent them close to the wrong labeled targets. At the same
time, the inter-class class optimization guarantees that different
identities still remain to be orthogonal to each other.

To evaluate the proposed gradient re-scale function of
SFace, we compare face models trained on loss function (1)
with three different gradient re-scale functions: constant value
(no gradient re-scale), the piecewise functions, and the sigmoid
functions (SFace). Specifically, the piecewise function can
be seen as the “steep version” of the sigmoid functions,
formulated as follows,

𝑟𝑖𝑛𝑡𝑟𝑎
(
𝜃𝑦𝑖

)
= 𝑠 ∗ 𝑠𝑖𝑔𝑛

(
max

(
𝜃𝑦𝑖 − 𝑎, 0

) )
,

𝑟𝑖𝑛𝑡𝑒𝑟
(
𝜃 𝑗

)
= 𝑠 ∗ 𝑠𝑖𝑔𝑛

(
max

(
𝑏 − 𝜃 𝑗 , 0

) )
,

(12)

where 𝑠𝑖𝑔𝑛(∗) is the sign function to extract the sign of a
real number. For the piecewise and sigmoid functions, the
hyper-parameters 𝑎, 𝑏 are set as the same, 0.9 and 1.3. The
experimental results are listed in Table III. We can see that,
the proposed sigmoid gradient re-scale function has better
performance than the constant value and the piecewise version.

Fig. 6. Images of an identity in WebFace-Clean, WebFace-ArcFace and
WebFace-Noisy databases. The WebFace-Clean database is a manually
cleaned version [46], [7]. The noise in WebFace-ArcFace [7] database is
from the label noise that derive from the collection process of the CASIA-
WebFace database [11]. Based on WebFace-ArcFace database, we add images
from MS-Celeb-1M database [12] evenly across each identity of WebFace-
ArcFace database, which means that we incorporate outliers in WebFace-
Noisy database.

2) Experiment on the Noise-Controlled WebFace Database:
To further evaluate our method on the training databases
with low level noise, we train deep face models under noise-
controlled settings. Specifically, we use three databases with
different noise level. (1) Since we have the manual refined im-
age list released by [46], we first clean the ArcFace version [7]
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TABLE I
COMPARISON OF DIFFERENT LOSS FUNCTIONS WITH SFACE. MODELS ARE TRAINED ON CASIA-WEBFACE [11] USING RESNET50. THE COMBINED

LOSS [7] ADOPTS THE COMBINED MARGIN cos (𝑚1 𝜃 +𝑚2) −𝑚3 . THE EVALUATION BENCHMARK CONTAINS IJB-C [22] (TAR@FAR=1E-5,1E-4,1E-3),
YTF [17] (%) DATABASES, AND AVERAGE PERFORMANCE (%) ON LFW [16], CFP-FP [39], AGEDB-30 [40], CALFW [18] AND CPLFW [19]

DATABASES.

Method IJB-C YTF Avg. LFW CFP-FP AgeDB-30 CPFLW CALFWFAR=1e-5 FAR=1e-4 FAR=1e-3

softmax 64.57 77.57 88.03 95.60 93.82 99.25 95.10 93.28 88.97 92.48
NSoftmax [4] (s=20.0) 67.82 79.88 89.33 95.54 93.72 99.23 95.00 93.17 88.82 92.40

SphereFace [5] (m=1.35) 46.73 61.54 76.10 93.18 92.99 99.17 94.76 92.60 86.50 91.93
CosFace [6] (m=0.35) 75.58 85.03 92.00 95.76 94.91 99.53 95.50 95.23 90.32 93.97
ArcFace [7] (m=0.3) 73.55 84.60 91.90 95.80 94.65 99.57 95.26 94.40 90.10 93.93
ArcFace [7] (m=0.4) 72.49 83.76 91.21 96.06 94.91 99.52 95.76 95.00 90.43 93.87
ArcFace [7] (m=0.5) 70.15 81.48 90.26 95.66 94.83 99.52 95.60 95.30 89.97 93.77

Combined [7] (m = 0.9,0.4,0.15) 73.99 83.91 91.63 95.86 94.90 99.48 95.56 94.97 90.68 93.82
D-softmax [36] (d=0.9) 71.48 83.56 91.23 95.42 94.29 99.50 95.44 93.95 89.60 92.95

SFace (a=0.87, b=1.20) 77.13 86.38 92.52 95.82 94.93 99.50 95.81 95.10 90.18 94.07
SFace (a=0.90, b=1.20) 76.77 85.95 92.37 95.86 94.88 99.57 95.67 95.00 90.22 93.95
SFace (a=0.93, b=1.20) 77.77 86.38 92.52 96.08 94.88 99.48 95.81 94.87 90.28 93.97
SFace (a=0.90, b=1.30) 76.92 87.27 93.11 96.00 94.80 99.57 95.26 94.82 90.68 93.70

TABLE II
THE ANGLES (DISTANCES) STATISTICS UNDER DIFFERENT LOSS

FUNCTIONS (NSOFTMAX [4], ARCFACE [7] AND SFACE MODELS
TRAINED ON WEBFACE DATABASE (0.49M IMAGES)). EACH COLUMN

DENOTES ONE LOSS FUNCTION. “CLEAN-INTRA" AND “NOISE-INTRA"
REFERS TO CALCULATE THE MEAN ANGLES (DISTANCES) BETWEEN

EMBEDDING FEATURE 𝑥𝑖 AND THE EMBEDDING FEATURE 𝑊𝑦𝑖 OF CLEAN
IMAGES AND LABEL NOISE, RESPECTIVELY. WE USE THE MANUAL
REFINED IMAGE LIST RELEASED BY [46] TO SPLIT THE TRAINING

DATABASE (0.49M IMAGES) INTO CLEAN IMAGES (0.45M) AND LABEL
NOISES (0.04M). “DELTA-INTRA" IS THE DIFFERENCE BETWEEN

“NOISE-INTRA" AND “CLEAN-INTRA". “INTER" REFERS TO THE MEAN
ANGLES BETWEEN DIFFERENT 𝑊𝑗 .

NSoftmax [4] ArcFace [7] SFace
Clean-Intra 44.42 35.31 39.68
Noise-Intra 50.85 40.09 47.30
Delta-Intra 6.43 4.78 7.62

Inter 89.75±5.55 89.99±4.73 89.96±4.67

TABLE III
COMPARISON OF THREE DIFFERENT GRADIENT RE-SCALE FUNCTIONS:

CONSTANT VALUE (NO GRADIENT RE-SCALE), THE PIECEWISE
FUNCTIONS, AND THE SIGMOID FUNCTIONS (SFACE). MODELS ARE

TRAINED ON CASIA-WEBFACE [11] USING RESNET50. THE AVERAGE
PERFORMANCE (%) ON LFW [16], CFP-FP [39], AGEDB-30 [40],

CALFW [18] AND CPLFW [19] DATABASES IS USED FOR EVALUATION.

Method Avg. LFW CFP-FP AgeDB-30 CPLFW CALFW

Constant 90.05 98.30 90.46 89.55 83.15 88.78
Piecewise 94.64 99.45 94.90 94.73 90.08 94.03
Sigmoid 94.80 99.57 95.26 94.82 90.68 93.70

of CASIA-WebFace database. Finally, we obtain a manually
cleaned version of CASIA-WebFace database (0.45M images
from 10,572 identities). This database is named as WebFace-
Clean. (2) Then, ArcFace version [7] of CASIA-WebFace
database (0.49M images from 10,572 identities) is used as
first noise level database. We name this database as WebFace-
ArcFace. (3) Finally, we augment the ArcFace version [7]
of CASIA-WebFace database with synthesis images. We add
images from MS-Celeb-1M database [12] evenly across each
identity of WebFace-ArcFace database. That is to say, we

TABLE IV
STUDY ON THE CHOICE OF HYPE-PARAMETERS 𝑎 AND 𝑏 OF SFACE

(RESNET34). AS THE NOISE LEVEL INCREASES, PARAMETER 𝑎 SHOULD
BE LARGER, i.e. 𝑣𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
CURVES SHOULD MOVE TO THE RIGHT,

WHICH INDICATES THAT THE SPEED OF INTRA-CLASS IS DECREASED
MORE EARLY TO PREVENT OVERFITTING.

Noise Parameters IJB-C
a b FAR=1e-4 FAR=1e-3

WebFace-Clean
(Noise Level ≈ 0%)

0.81 1.28 84.70 91.71
0.80 1.28 85.72 92.52
0.80 1.25 83.99 91.17
0.80 1.30 85.45 92.20

WebFace-ArcFace
(Noise Level ≈ 10%)

0.80 1.28 85.39 92.09
0.82 1.28 86.30 92.43
0.82 1.25 84.17 91.32

WebFace-Noisy
(Noise Level ≈ 20%)

0.82 1.28 83.97 91.36
0.84 1.28 84.80 91.84
0.84 1.25 84.09 91.43

Fig. 7. Comparison of verification TAR@FAR=1e-4 and TAR@FAR=1e-3
results on the IJB-C database [22] of softmax, NSoftmax, CosFace, ArcFace
and SFace models (ResNet34) which are trained with databases of different
noise level (WebFace-Clean (≈0%), WebFace-ArcFace (≈10%), and WebFace-
Noisy (≈20%)).

incorporate outliers in this training database. The database is
referred to as WebFace-Noisy. We use this setting because
in practice, outliers noise is a more common type of label
noise than label flip noise. The noise level of WebFace-Clean,
WebFace-ArcFace and WebFace-Noisy is approximately 0%,
10% and 20%, respectively. Some identities of WebFace-
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Fig. 8. Comparison of ArcFace and SFace models on the IJB-A database [21]. Left: ROC (higher is better). Middle: DET (lower is better). Right: CMC
(higher is better). Our method is represented using red color.

Fig. 9. Comparison of ArcFace and SFace models on the IJB-C database [22]. Left: ROC (higher is better). Middle: DET (lower is better). Right: CMC
(higher is better). Our method is represented using red color.

TABLE V
VERIFICATION PERFORMANCE ON LFW [16] AND YTF [17] DATABASES.

THE STATE-OF-ART MODELS IN FACE RECOGNITION COMMUNITY ARE
LISTED FOR COMPARISON.

Method #Images LFW YTF
DeepID [1] 0.2M 99.47 93.20

DeepFace [47] 4.4M 97.35 91.4
VGG Face [48] 2.6M 98.95 97.30

FaceNet [2] 200M 99.63 95.10
Baidu [49] 1.3M 99.13 -

Center Loss [3] 0.7M 99.28 94.9
Range Loss [24] 5M 99.52 93.70

Marginal Loss [30] 3.8M 99.48 95.98
SphereFace [5] 0.5M 99.42 95.0

SphereFace+ [50] 0.5M 99.47 -
CosFace [6] 5M 99.73 97.6

MS1MV2, R100, ArcFace [7] 5.8M 99.83 98.02
MS1MV2, R100, SFace 5.8M 99.82 98.06

TABLE VI
VERIFICATION PERFORMANCE ON ON LFW [16], CALFW [18] AND
CPLFW [19] DATABASES. THE SECOND CELL LISTS RESULTS OF THE

OPEN-SOURCED FACE RECOGNITION MODELS OF STATE-OF-ART
METHODS. IN THE THIRD CELL, OUR METHOD IS EVALUATED STRICTLY

FOLLOWING ARCFACE [7].

Method LFW CALFW CPLFW

HUMAN-Indivadual 97.27 82.32 81.21
HUMAN-Fusion 99.85 86.50 85.24

Center Loss [3] 98.75 85.48 77.48
SphereFace [5] 99.27 90.30 81.40
VGGFace2 [14] 99.43 90.57 84.00

MS1MV2, R100, ArcFace [7] 99.82 95.45 92.08
MS1MV2, R100, SFace 99.82 96.07 93.28

TABLE VII
FACE IDENTIFICATION AND VERIFICATION EVALUATION ON MEGAFACE
CHALLENGE 1 [20] USING FACESCRUB [41] AS THE PROBE SET. “ACC.”

REFERS TO THE RANK-1 FACE IDENTIFICATION ACCURACY WITH 1M
DISTRACTORS, AND “VER.” REFERS TO THE FACE VERIFICATION

TAR@FAR=1E-6. “R” REFERS TO DATA REFINEMENT ON BOTH PROBE
SET AND 1M DISTRACTORS FOLLOWING [7]. IN THE SECOND AND THIRD

CELL, METHODS ARE COMPARED IN THE SAME SETTING WITH
RESNET100 MODELS TRAINED ON MS1MV2 DATABASE [12].

Method Protocol Acc. Ver.

FaceNet [2] Large 70.49 86.47
CosFace [6] Large 82.72 96.65

AdaptiveFace [26], R Large 95.023 95.608
P2SGrad [9], R Larget 97.25 -
AdaCos [8], R Large 97.41 -

MS1MV2, R100, CosFace [6] Large 80.56 96.56
MS1MV2, R100, ArcFace [7] Large 81.03 96.98

MS1MV2, R100, SFace Large 81.15 97.11
MS1MV2, R100, CosFace [6], R Large 97.91 97.91
MS1MV2, R100, ArcFace [7], R Large 98.35 98.48

MS1MV2, R100, SFace, R Large 98.50 98.61

ArcFace and WebFace-Noisy databases are shown in Figure 6.
Note that the 10% noise in WebFace-ArcFace database is
from the label noise that derive from the collection process
of the CASIA-WebFace database. While the 20% label noise
in WebFace-Noisy contains 10% noise in WebFace-ArcFace
and other 10% synthetic outliers.

We train ResNet34 models on WebFace-Clean, WebFace-
ArcFace and WebFace-Noisy databases supervised by softmax,
NSoftmax, CosFace, ArcFace and SFace. The experimental
results are shown in Figure 7, which demonstrates the ro-
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TABLE VIII
FACE IDENTIFICATION AND VERIFICATION EVALUATION OF DIFFERENT METHODS ON THE IJB-A [21] DATABASE. IN THE FIRST CELL, EXPERIMENTAL

RESULTS ARE READ FROM ORIGINAL PAPERS. FOR COMPARISON, WE IMPLEMENT EXPERIMENTAL RESULTS IN THE SECOND CELL USING ARCFACE AND
SFACE TRAINED ON VGGFACE2 AND MS-CELEB-1M DATABASES, RESPECTIVELY.

Method
1:1 1:N

FAR=1e-3 FAR=1e-2 FAR=1e-1 FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

VGGFace [48] 62.00 83.40 95.40 45.40 74.80 92.50 97.20 98.30
Template Adaption [51] 83.60 93.90 97.90 77.40 88.20 92.80 97.70 98.60

NAN [52] 88.10 94.10 97.80 81.70 91.70 95.80 98.00 98.60
VGGFace2 [14] 92.10 96.80 99.00 88.30 94.60 98.20 99.30 99.40

FTL [25] 91.20 95.30 - - - 96.00 98.30 98.70
UniformFace [53] 92.30 96.90 - - - 97.90 98.80 -

L2-Face [31] 94.30 97.00 98.40 91.50 95.60 97.30 - 98.80
Crystal Loss [54] 94.90 96.90 98.40 91.80 95.90 97.20 - 98.80

VGGFace2, R50, ArcFace [7] 96.24 98.64 99.51 92.07 97.80 99.19 99.67 99.73
VGGFace2, R50, SFace 96.85 98.74 99.67 92.51 98.19 99.19 99.68 99.80

MS1MV2, R100, ArcFace [7] 97.60 98.75 99.53 93.47 98.11 98.83 99.33 99.51
MS1MV2, R100, SFace 98.02 98.93 99.51 94.84 98.50 98.93 99.44 99.55

TABLE IX
FACE IDENTIFICATION AND VERIFICATION EVALUATION OF DIFFERENT METHODS ON THE IJB-C DATABASE [22]. EXPERIMENTAL RESULTS IN THE FIRST

CELL ARE READ FROM ORIGINAL PAPERS, AND ALL THE MODELS ARE TRAINED ON VGGFACE2 DATABASE [14] OR MS-CELEB-1M DATABASE [12].
FOR COMPARISON, WE IMPLEMENT EXPERIMENTAL RESULTS IN THE SECOND CELL USING ARCFACE AND SFACE TRAINED ON VGGFACE2 AND

MS-CELEB-1M DATABASES, RESPECTIVELY.

Method
1:1 1:N

FAR=1e-5 FAR=1e-4 FAR=1e-3 FAR=1e-2 FAR=1e-1 FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

VGGFace2, ResNet50 [14] 73.40 82.50 90.00 95.00 98.00 73.50 83.00 89.80 93.90 95.30
VGGFace2, SENet50 [14] 74.70 84.00 91.00 96.00 98.70 74.60 84.20 91.20 94.90 96.20

VGGFace2, MN-v [55] 75.50 85.20 92.00 96.50 98.80 - - - - -
VGGFace2, MN-vc [55] 77.10 86.20 92.70 96.80 98.90 - - - - -

VGGFace2, ResNet50+DCN(Kpts) [56] - 86.70 94.00 97.90 99.70 - - - - -
VGGFace2, ResNet50+DCN(Divs) [56] - 88.00 94.40 98.10 99.80 - - - - -
VGGFace2, SENet50+DCN(Kpts) [56] - 87.40 94.40 98.10 99.80 - - - - -
VGGFace2, SENet50+DCN(Divs) [56] - 88.50 94.70 98.30 99.80 - - - - -
MS1M, Inception-ResNet, P2SGrad [9] 87.84 92.25 95.58 97.79 99.03 - - - - -
MS1M, Inception-ResNet, AdaCos [8] 88.03 92.40 95.65 97.72 99.06 - - - - -

VGGFace2, R50, ArcFace [7] 86.03 92.12 95.93 98.23 99.34 79.50 89.53 94.75 96.94 97.64
VGGFace2, R50, SFace 87.08 93.12 96.50 98.34 99.25 82.84 90.69 95.01 96.97 97.55

MS1MV2, R100, ArcFace [7] 93.15 95.65 97.20 98.18 99.01 90.32 94.52 95.72 97.10 97.47
MS1MV2, R100, SFace 94.21 96.11 97.50 98.33 99.00 92.41 95.17 96.21 97.41 97.76

bustness of SFace to low level label noise. We also list the
choice of hyper-parameters of SFace in Table IV. We can
conclude that parameter 𝑎 should be larger, i.e. 𝑣𝑖𝑛𝑡𝑟𝑎

(
𝜃𝑦𝑖

)
curves should move to the right, as the noise level increases,
which indicates that the speed of intra-class is decreased more
early to prevent overfitting. Although inter-class parameters 𝑏

are also important for training, we find the optimal groups
of them are the same for the three training databases, the
reason may be that noisy data is relatively balanced across all
identities. Another interesting phenomenon is that the model
have similar performance on WebFace-Clean and WebFace-
ArcFace. This result indicates that the manual cleaned data by
human annotations actually has limited influence on these face
models.

C. Evaluation Results on Several Benchmarks

We first evaluate our method on LFW [16] and YTF [17].
For fair comparison, we train models using ResNet100 on
MS1MV2 database [12], strictly following the settings in [7].
MS1MV2 database is a refined version of MS-Celeb-1M
database [12], cleaned by insightface [7]. MS1MV2 database

contains 5.8M images of 85,742 celebrities. We use this
semi-artificial cleaned face database as a large-scale training
database to further evaluate our method. For SFace trained
on MS1MV2 database, the hyper-parameters 𝑎, 𝑏 are set as
0.90 and 1.20. The experimental results on LFW and YTF are
shown in Table V. SFace model trained on MS1MV2 database
with ResNet100 obtains comparable results as the baseline
method such as CosFace [6] and ArcFace [7]. We report the
performance on CALFW [18] and CPLFW [19] databases in
Table VI. As shown in Table VI, SFace outperforms both
human performance and the advanced deep face models on
CALFW and CPLFW databases by a significant margin.

Then, we evaluate our method on MegaFace database [20]
including both the original MegaFace database and the refined
version [7]. We report the rank-1 face identification accuracy
with 1M distractors, and the face verification TAR@FAR=1e-
6, shown in Table VII. In the second and third cell, methods
are compared in the same setting with ResNet100 models
trained on MS1MV2 database. As reported in Table VII, our
method shows superiority over CosFace and ArcFace on both
identification and verification settings on MegaFace challenge.
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Finally, we evaluate our method on IJB-A [21] and IJB-
C [22] databases on both identification and verification set-
tings. Our method is compared with ArcFace using the same
databases and models, other results are cited from the original
papers. For fair comparison, we also train ResNet50 models on
VGGFace2 database [14] following [7]. VGGFace2 training
database has 3.13 million images of 8,631 identities, and
has large variations in pose, age, illumination, ethnicity and
profession. For SFace model trained on VGGFace2 database,
the hyper-parameters 𝑎, 𝑏 are set as 0.88 and 1.25. The results
on IJB-A database are exhibited in Table VIII and Figure 8.
The results on IJB-C database are shown in Table IX and
Figure 9. For verification, we report TAR@FAR (ROC curves,
higher is better). For identification, the performance is reported
using TPIR@FPIR (DET curve, lower is better) and Rank-
N accuracy (CMC curve, higher is better). Compared with
ArcFace models trained on both VGGFace2 and MS1MV2
databases, our method performs better in both identification
and verification settings, especially the TAR at very low FAR,
which demonstrates the effectiveness and superiority of SFace.

V. CONCLUSION

In this paper, different from previous works which minimize
the intra-class distances and maximize the inter-class distance,
we introduce a new idea which aims to optimize intra-class
and inter-class distance to some extent for the purpose of miti-
gating overfitting problems to the imperfect training databases.
To carry out this idea, we propose a new loss function SFace
to improve the performance of models in the robust uncon-
strained face recognition. SFace imposes intra-class and inter-
class constraints on a hypersphere manifold with precisely
controlled intra-class and inter-class gradients so that intra-
class and inter-class distances are optimized to some extent.
To promote further understanding of SFace, we explain the
relationship to softmax based loss functions, and show that,
compared with softmax based loss, the advantage of SFace
is the precisely control ability of both intra-class and inter-
class optimization. The proposed SFace makes a better balance
between underfitting and overfitting, and further improves the
generalization ability of deep face models. Experiments on
several benchmarks including LFW, YTF, CALFW, CPLFW,
MegaFace, IJB-A and IJB-C databases, have demonstrated the
effectiveness and superiority of our method.
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