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Abstract

Differential privacy is effective in sharing information and preserving
privacy with a strong guarantee. As social network analysis has been
extensively adopted in many applications, it opens a new arena for the
application of differential privacy. In this article, we provide a compre-
hensive survey connecting the basic principles of differential privacy and
applications in social network analysis. We present a concise review of
the foundations of differential privacy and the major variants and discuss
how differential privacy is applied to social network analysis, including
privacy attacks in social networks, types of differential privacy in social
network analysis, and a series of popular tasks, such as degree distribution
analysis, subgraph counting and edge weights. We also discuss a series of
challenges for future studies.

1 Introduction

As a reflection of real social life, social networking shares and exchange a lot of
private and sensitive information [10]. For example, in many online social net-
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working sites, a user is required to provide personal information such as name,
gender, birthdate, education level, marital status, personal photo, or even cell
phone number. Besides, user-generated contents such as texts, pictures, videos,
geographical locations published by users are also retained in the databases [7].
Such data is often shared with some third parties for services such as data
analysis, targeted advertising, recommendations and evaluations on apps. If
the personal private information is leaked or abused, the involved individuals
may become subjects of intrusion attacks, such as spam mails, junk messages
and telephone harassments. In some extreme cases, damages to personal repu-
tation, properties, or even physical injuries may be caused due to illegal data
disclosures [2].

The problem of data privacy protection was first put forward by Dalenius in
the late 1970s [21], who pointed out that the purpose of protecting private infor-
mation in a database is to prevent any user, including legitimate ones and poten-
tial attackers, from obtaining accurate information about arbitrary individuals
when accessing the database. Following this principle, many privacy preserva-
tion models with strong operability were proposed, including k-anonymity [80],
l-diversity [60], t-closeness [54] and (α, k)-anonymity [88]. However, each of
those models provides protection against only a specific type of attacks and
cannot defend against newly developed ones. A fundamental cause of this de-
ficiency lies in that the security of a privacy preservation model relies on an
assumption of some specific background knowledge of an attacker. Nevertheless,
it is almost impossible to enumerate all possible types of background knowledge
that an attacker may have. Therefore, a privacy preserving model independent
of background knowledge is highly desirable.

Dwork developed differential privacy [20] to provide a strong privacy guar-
antee and protect against the privacy disclosure of statistical databases. Under
differential privacy, query results of a dataset are insensitive to the change of a
single record. That is, whether a single record exists in the dataset has little
effect on the output distribution of the analytical results. An attacker cannot
obtain accurate individual information by observing the results because the risk
of privacy disclosure generated by adding or deleting a single record is kept
within a user-specified, acceptable range. Differential privacy assumes that an
attacker can obtain all information in a dataset except for the target record,
which can be regarded as the maximum background knowledge that an attacker
can have. It rests on a sound mathematical foundation under certain assump-
tions as well as quantitative evaluations. Differential privacy is a standard for
quantifying privacy risks rather than a single tool and has been widely used
in statistical estimations, data publishing, data mining and machine learning.
There exist many methods and implementations to achieve differentially private
data analysis.
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Differential privacy mainly aims at statistical problems in databases at first.
Because of its unique strengths, differential privacy has been applied to social
network data analysis. A number of suitable adaptations of differentially private
social network analysis techniques have been developed [9, 23, 36, 45, 68, 70, 73].
Social networks post a series of challenges for privacy preserving analysis. Social
networks can be modeled as graphs and become very complicated at large scale.
They often have high data correlations since social relationships among users
are not independent. As demonstrated by Liu et al. [57], the dependence among
tuples in statistical databases may seriously weaken the privacy guarantee that
current differential privacy mechanisms provide. This challenge obviously also
holds for social networks.

There exist at least three fundamental challenges that need to be tackled in
order to apply differential privacy to social network analysis. First, we have to
adapt differential privacy from tabular data to network data. Second, we have
to address the issue of high sensitivity in complex and correlated social network
data. Last, we have to explore the tradeoff between data utility and privacy
guarantee as too much noise may make query results useless.

Understanding differential privacy and applications in social network anal-
ysis comprehensively is far from trivial. There exist multiple relevant surveys
on differential privacy [26, 35, 99] and privacy preservation in social network
analysis [1, 8, 42, 76, 96, 97], whose topics, focuses and major angles are sum-
marized in Table 1. Those existing surveys focus on either differential privacy in
tabular statistical databases or privacy preservation on social network analysis,
but none of them closely connects the two in a comprehensive and integrated
manner. This motivates our endeavor in this article, whose major objective
is to provide detailed interpretations and intuitive illustrations on differential
privacy foundations, especially for noise calibration to global sensitivity and
smooth sensitivity, and then extend them to the state-of-the-art differentially
private social network analysis techniques addressing the three major challenges
mentioned above.

Conducting research on differential privacy in social networks needs real so-
cial network data. The Stanford Network Analysis Platform (SNAP)1 provides
an extensive repository [52]. It includes some popular online social networks,
communication networks, citation networks, web and blog datasets, and several
other large network datasets.

The rest of the article is organized as follows. In Section 2, we review the
basic concepts of differential privacy with detailed interpretations and examples.
More specifically, we define and explain the differential privacy model, describe
its noise mechanisms calibrated to global sensitivity and smooth bounds of local
Sensitivity, and present the composition properties. For better elaboration, we

1http://snap.stanford.edu/data/
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exemplify popular functions such as count and median, and detail the corre-
sponding differentially private noise mechanisms.

In Section 3, we discuss two most popular variants of differential privacy.
Dependent differential privacy is proposed to handle queries involving corre-
lated database tuples. Local differential privacy is a well-developed extension
to centralized differential privacy.

In Section 4, to effectively demonstrate how to adapt differential privacy
from tabular data to social network data, we first summarize the popular privacy
attacks in social networks, and then introduce the four types of network privacy,
namely node privacy, edge privacy, out-link privacy, and partition privacy. We
illustrate the definitions of these graph differential privacy types and analyze
their applicability and complexity.

In Section 5, we provide an overview on differentially private algorithms for
degree distribution, subgraph counting, and edge weight, the three most widely-
used graph analysis techniques under the types of social network privacy men-
tioned above in Section 4. Our analysis demonstrates that most of them cannot
obtain good utility due to large network size, complex graph structures and
strong graph attribute correlations.

In Section 6, we conclude this article and describe a few open research chal-
lenges.

2 Differential Privacy

In this section, we review the core concepts in differential privacy. For better
elaboration of noise mechanisms, we exemplify popular query functions, such as
count and median, to illustrate the corresponding noise mechanisms calibrated
to global sensitivity and smooth sensitivity.

2.1 Intuition

An individual’s information may be inferred even without explicitly querying
for the specific details. For example, consider the data in Table 2, which is
about whether a person suffers from a disease. Suppose the database provides
a query interface Qi(D), which returns the sum of the second column, ‘Disease
or Not’, of the first i rows. The query returns an aggregate and does not query
any specific person.

Suppose an attacker wants to infer whether or not Alice has the disease with
the background knowledge that the record about Alice is the last one in the
database. The attacker can issue two queries Q5(D) and Q4(D), and compute
the difference of the results, Q5(D)−Q4(D). Alice has the disease if the outcome
is 1 and she does not have the disease otherwise. This simple example shows how

5



Table 2: An Example Database

Name Disease or Not
Ross 1

Monica 1
Bob 0
Joey 0
Alice 1

personal information may be disclosed even when it is not explicitly queried. It
is not safe to release the exact query answers even when data is not published.

The intuition of differential privacy is to inject a controlled level of statistical
noise into query results to hide the consequence of adding or removing an ar-
bitrary individual from a dataset. That is, when querying two almost identical
datasets (differing by only one record, for example), the results are differentially
privatized so that an attacker cannot glean any new knowledge about an indi-
vidual with a high probability, i.e., whether or not a given individual is present
in the dataset cannot be guessed with useful confidence. In the example shown
in Table 2, to protect Alice’s privacy, we can inject noises into answers to Q5(D)

and Q4(D) so that Q5(D)−Q4(D) and Alice’s value on the column ‘Disease or
Not’ are independent with high probability.

2.2 Definition of Differential Privacy

Let f be a query function to be evaluated on a dataset D. We want to have
an algorithm A running on the dataset D and returning A(D) such that A(D)

should be f(D) with a controlled amount of random noise added. The goal of
differential privacy is to make A(D) close to f(D) as much as possible to ensure
data utility, and at the same time A(D) preserves the privacy of the entities in
the dataset.

Differential privacy mainly addresses adversarial attacks that queries
datasets differing by only a small number of entries. There are two flavors
of differential privacy, namely unbounded and bounded, which are distinguished
by the definition of neighboring datasets [46]. For two datasets D and D′, if
D′ can be obtained by adding or removing a tuple from D, it is called un-
bounded. If D′ can be obtained by changing the value of a tuple from D, then
it is called bounded. That is, bounded neighboring datasets have the same size
while the sizes of two unbounded neighboring datasets differ by 1. There exist
slight differences in presenting the query results for unbounded and bounded
neighboring datasets, but the ideas of designing and analyzing the differential
privacy mechanisms are the same. Therefore in this article, we employ both

6



types of neighboring datasets to illustrate the introduced differential privacy
mechanisms.

Definition 1 (Differential privacy [29]) A randomized algorithm A is ε-
differentially private if for any two neighboring datasets D and D′, and any
subset S of possible outputs of A,

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S],

where ε ≥ 0 is a parameter called privacy budget.

Privacy budget ε in Definition 1 is often a small positive real number and
reflects the level of privacy preservation that algorithm A can provide. For ex-
ample, if ε = 0.01, e0.01 ≈ 1.01; and 0.01-differential privacy ensures that the
distributions of A(D) and A(D′) are very similar and almost indistinguishable.
The smaller the value of ε, the higher the level of privacy preservation. A smaller
ε provides greater privacy preservation at the cost of lower data accuracy since
more noise has to be added. When ε = 0, the level of privacy preservation
reaches the maximum, that is, “perfect” protection. In this case, the algorithm
outputs two results with indistinguishable distributions but the corresponding
results do not reflect any useful information about the dataset. Therefore, the
setting of ε should balance the tradeoff between privacy and data utility. In
practical applications, ε usually takes very small values such as 0.01, 0.1, or
ln 2, ln 3 [26]. Computing ε-differential privacy may be challenging in some sce-
narios. To facilitate approximation, a generalized notion of differential privacy
is developed.

Definition 2 (Approximate differential privacy [27]) A randomized al-
gorithm A is (ε, δ)-differentially private if for any two neighboring datasets D
and D′, and any subset S of possible outputs of A,

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] + δ

When δ > 0, (ε, δ)-differential privacy relaxes ε-differential privacy by a
small probability controlled by parameter δ. In ε-differential privacy, the ratio
between the output probability distributions for neighboring datasets D and D′

is strictly bounded by eε; while in (ε, δ)-differential privacy, a freedom to breach
the strict ε-differential privacy for certain low probability events is offered. That
is, in (ε, δ)-differential privacy, equation Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] holds
with the probability at least 1− δ.

Typically, δ is set to far smaller than the inverse of any polynomial in the
size n of the database (i.e., δ � 1

p(n) ) [30]. An equivalent formulation states
that δ is cryptographically negligible when δ ≤ n−ω(1) [30]. Note that 1

p(n) can

7



Dataset

A function 𝑓

𝑓(D)
Users

Government, researchers,    
business, or 

malicious adversary

Database held by
trusted agency

Dataset

A function 𝑓

𝐴 𝐷 = 𝑓(D)+  Z
Users

Government, researchers,    
business, or 

malicious adversary

Database held by
trusted agencyZ is the added noise

It is not safe to release 
exact answers

Figure 1: A framework of output perturbation in differential privacy.

be described as an upper bound of δ since a value of δ in the order of 1
p(n) is

dangerous for privacy leakage.
Differential privacy can be achieved by adding an appropriate amount of

noise to query results, that is, A(D) = f(D)+Z, which is illustrated in Figure 1.
Adding too much noise may decrease data utility, while adding too little noise
cannot provide sufficient privacy guarantee. Sensitivity, which represents the
largest change to the query results caused by adding/deleting any record in the
dataset, is the key parameter to determine the magnitude of the added noise.
Accordingly, global sensitivity, local sensitivity, smoothing upper bound and
smoothing sensitivity are defined under the differential privacy model.

2.3 Noise Calibration

How to add noise to query results f(D) and how much noise should be added
are the key to the noise mechanism in differential privacy. In this subsection,
we introduce two frameworks of differentially private noise mechanisms, namely,
noise calibration to global sensitivity and that to smooth sensitivity.

2.3.1 Noise Calibration to Global Sensitivity

Definition 3 (Global sensitivity [20]) For f : D → Rd, the global sensitiv-
ity of f for all pairs of neighboring datasets D and D′ is

GSf = max
D,D′

‖f(D)− f(D′)‖1,

where ‖ · ‖1 denotes the L1 norm.
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Name Flu

Hunter 1

Alice 0

Eric 0

Frank 1

Name Flu

Hunter 1

Alice 0
Bob 1

Eric 0

Frank 1

Name Flu

Hunter 1
Alice 0

Bob 0

Eric 0

Frank 1

Neighboring Neighboring

𝐻𝑖𝑠𝑡 =< 2, 3 > 𝐻𝑖𝑠𝑡 =< 3, 2 >𝐻𝑖𝑠𝑡 =< 2, 2 >

|| < 2, 3 > 	−	< 3, 2 > ||.=2|| < 2, 2 > 	−	< 2,3 > ||. = 1

0

2

4

Flu

0 1

0

2

4

Flu

0 1

0

2

4

Flu

0 1

𝐺𝑆2=2

Figure 2: Global sensitivity of the histogram query.

The global sensitivity measures the maximum change of query results when
modifying one tuple. It is only related to the query function, and is independent
from the dataset itself.

For some functions such as sum, count, and max, the global sensitivity is easy
to compute. For instance, the global sensitivity for counting is 1 since only one
tuple is changed for any two neighboring datasets, and that for the histogram
query is 2 as illustrated in Figure 2.

For some other functions, such as calculating the maximum diameter of k-
means clusters and counting subgraphs, the global sensitivity may be difficult to
compute or unbounded. For example, the median function can have a high global
sensitivity. Take f(D) = median(x1, x2, . . . , xn) as an example, of which xi is a
real number in [0,M ]. Assume that n is an odd number and that x1, x2, . . . , xn
are sorted. Thus, f(D) = xm, where m = n+1

2 . Consider the following extreme
case,

D : {0, 0, . . . , xm = 0, xm+1 = M, . . . ,M},
D′ : {0, 0, . . . , xm = M, . . . ,M}.

We have f(D) = 0 and f(D′) = M . Therefore, the global sensitivity for this
function is M , which can be arbitrarily large. As another example, the global
sensitivity of the triangle counting query of a graph is unbounded, since the
change of triangle counting depends on the graph size.

The noise injected to achieve differential privacy can be calibrated according
to the global sensitivity of the query function, that is, the maximum amount of
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Name Flu

Hunter 1

Alice 0

Bob 1

Eric 0

Frank 1

𝑓: count the number of persons with flu

𝑓 𝐷 = 3

Laplace Mechanism outputs 3 + 𝐿𝑎𝑝(10)

A random variable drawn from 
Laplace distribution with 𝜇 = 0
and 𝑏 = 10

Figure 3: Laplace mechanism for the counting function.

change to the query result when only one record is modified in the dataset. For
a function with a small global sensitivity, only a small amount of noise needs to
be added to cover up the impact on query results when one record is changed.
However, when the global sensitivity is large, it is necessary to add a substantial
amount of noise to the output to ensure the privacy guarantee, which leads to
poor data utility. Two noise mechanisms, namely Laplace mechanism [29] and
exponential mechanism [63], were proposed for different problems.

Laplace Mechanism The Laplace distribution [50] (centered at µ) with scale
b is the distribution with probability density function

h(z) =
1

2b
exp(−|z − µ|

b
).

Denote by Lap(b) the Laplace distribution (centered at 0) with scale b.
Dwork et al. [29] proposed the Laplace mechanism, which states that for dataset
D and function f : D → Rd with global sensitivity GSf , A(D) = f(D) + Z is
ε-differentially private, where Z ∼ Lap(GSf/ε).

The Laplace mechanism is suitable for protecting numerical results. Figure 3
shows an example of Laplace mechanism for the counting function. Since the
global sensitivity of counting is GSf = 1, if we choose ε = 0.1, the Laplace
mechanism outputs 3 + Lap(10) for the specific D in Figure 3.

Exponential Mechanism In some situations, query results are categorical,
such as finding the zip code of the highest average income. McSherry et al. [63]
developed the exponential mechanism for the situations where the “best” needs
to be selected. Let Range be the output domain of a query function and each
value r ∈ Range be an entity object. In the exponential mechanism, the utility
function of the output value r, denoted by q(D, r), is employed to evaluate the
quality of r. Given a randomized algorithm A with input dataset D and output

10
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entity object r ∈ Range, let ∆q be the global sensitivity of function q(D, r).
McSherry et al. [63] showed that, if an algorithm A selects and outputs r from
Range at a probability proportional to exp( εq(D,r)2∆q ), then A is ε-differentially
private.

Table 3 presents an example of the exponential mechanism. There is a
basket D with three kinds of fruits: apple (A), banana (B), and cherry (C).
Algorithm A seeks to output the kind of fruits that has the largest amount.
Let q(D,A) = count(A), q(D,B) = count(B), and q(D, C) = count(C). Thus
∆q = 1, since adding or removing an apple, a banana or a cherry causes a
change of the utility function value to be at most 1. Based on the exponential
mechanism, one can compute the probabilities of outputting A, B and C with a
given ε, which are shown in Table 3.

The output probability of the item with a high utility function is amplified
when ε is large, such as when ε = 1 in the table. As ε decreases, the utility
differences of the items become more and more smoothed and the probabilities
of the outputs tend to be equal. When ε = 0, the output probabilities for all
items are equal.

2.3.2 Noise Calibration to Smooth Sensitivity

When the global sensitivity is large, a substantial amount of noise has to be
added to the output to achieve differential privacy, which may seriously impair
data utility. To address this issue, Nissim et al. [68] proposed the idea of local
sensitivity.

Definition 4 (Local sensitivity [68]) The local sensitivity of function f :

D → Rd on D is

LSf (D) = max
neighboring data set D′ of D

‖f(D)− f(D′)‖1

Let us take the median function as an example, that is, f(D) =

median(x1, x2, . . . , xn), where n is odd. We have f(D) = xm, where m = n+1
2 ,

and LSf (D) = max{xm − xm−1, xm+1 − xm}.
The local sensitivity is related to not only the query function f but also

the given dataset D. According to Definition 3, GSf = max
D

(LSf (D)). Since
the magnitude of noise is proportional to sensitivity, the amount of noise added
is much less with local sensitivity. Unfortunately, local sensitivity does not
satisfy the requirement of differential privacy, because the noise magnitude it-
self may reveal the database information. For example, consider a database
where the values are between 0 and M > 0, and two neighboring databases
D(0, 0, 0, 0, 0,M,M) and D′(0, 0, 0, 0,M,M,M). Let f be the median function.
Then, f(D) = 0 and f(D′) = 0, and the corresponding local sensitivities are
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LSf (D) = 0 and LSf (D′) = M . Correspondingly, if the noises are calibrated
according to 0 and M , respectively, to compute A(D) and A(D′), then they
are easy to be distinguished by an adversary. An algorithm A is not (ε, δ)-
differentially private if local sensitivity is adopted.

To bridge the gap, a smooth upper bound of the local sensitivity is proposed
to determine the magnitude of the added noise [68].

Definition 5 (Smooth bound and smooth sensitivity [68]) For a
dataset D and a query function f , a funtion S : D → R is a β-
smooth upper bound of LSf (D) with β > 0, if ∀D,S(D) ≥ LSf (D) and
∀D,D′ with d(D,D′) = 1, S(D) ≤ eβS(D′).

The β-smooth sensitivity of function f with β > 0 is

S∗f,β(D) = max
D′
{LSf (D′) · e−β·d(D,D′)}.

When β = 0, S(D) becomes the constant GSf to satisfy the requirements in
Definition 5. Global sensitivity is a simple but possibly loose upper bound on
LSf . When β > 0, global sensitivity is a conservative upper bound on LSf . LSf
may have multiple smooth bounds, and the smooth sensitivity is the smallest
one that meets Definition 5.

Again, consider the median function as an example. We construct a function
A(k)(D) that counts how much the sensitivity can change when up to k entries
are modified.

A(k)(D) = max
D′∈D:d(D,D′)≤k

LSf (D′)

where D is the domain of all possible datasets. Then, the smooth sensitivity
can be expressed using A(k)(D) as

S∗f,β(D) = max
k=0,...,n

e−kβ( max
D′∈D:d(D,D′)≤k

LSf (D′)),

= max
k=0,...,n

e−kβA(k)(D).

To compute A(k)(D), we need to calculate the maximum of LSf (D′) where
D′ and D differ by up to k tuples. Recall that D is sorted, f(D) = xm, and
LSf (D) = max{xm − xm−1, xm+1 − xm}. Thus, we have

A(k)(D) = max
D′∈D:d(D,D′)≤k

LSf (D′)

= max
0≤t≤k+1

{xm+t − xm+t−k−1}.

Then, the smooth sensitivity of the median function can be calculated by
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S∗fmed,β(D) = max
0≤k≤n

(e−kβ · max
0≤t≤k+1

(xm+t − xm+t−k−1))

In general, computing smooth sensitivities for functions such as the number
of triangles in a graph is non-trivial and even NP-hard [44]. Therefore, a smooth
upper bound is used to replace a smooth sensitivity when the latter is hard to
compute. Next, we show how to employ a β-smooth sensitivity (or upper bound)
to calibrate noise for ε-differential privacy.

According to the framework of differential privacy presented in Section 2.3.1,
A(D) = f(D) + Z is returned for query f on dataset D, where Z is a random
variable drawn from a distribution. If Z ∼ Lap(GSf/ε), A(D) provides ε-
differential privacy. In ε-differential privacy, the magnitude of the added noise
should be as small as possible to preserve data utility and should be independent
of the database for strong privacy protection. Noise calibrated according to
global sensitivity is independent from the database D but the magnitude may
be too big to make the query results unusable. Noise calibrated according
to local sensitivity is dependent on D and makes it fail differential privacy.
To address this challenge, Nissim et al. [68] proposed to use noise calibrated
according to the smooth upper bound (more preferably, the smooth sensitivity)
of local sensitivity. The basic idea is to add noise proportional to Sf (D)

α , that
is, A(D) = f(D) +

Sf (D)
α · Z, where Sf is a β-smooth upper bound on the

local sensitivity of f , Z is a random variable with probability density function
h. Nissim et al. [68] pointed out that h must be (α, β)-admissible in order to
achieve differential privacy based on smooth sensitivity.

Definition 6 ((α, β)-admissible noise distribution [68]) For all ∆ ∈ R
and λ ∈ R such that |∆| ≤ α and |λ| ≤ β, a probability density function h

is (α, β)-admissible if it satisfies the following conditions:

Sliding Property: h(z) ≤ e ε2 · h(z + ∆) + δ
2

Dilation Property: h(z) ≤ e ε2 · (eλh(eλ · z)) + δ
2

The sliding and dilation properties ensure that the noise distribution cannot
change much under sliding and dilation, and the values of α and β are the upper
bounds of ∆ (the sliding offset) and λ (the dilation offset) based on h. If h of
Z is (α, β)-admissible,the database access mechanism A(D) = f(D) +

Sf (D)
α ·Z

is (ε, δ)-differentially private [68].
There are three families of admissible distributions: Cauchy, Laplace, and

Gaussian [68]. A Cauchy admissible distribution yields a “pure” ε-differential
privacy with δ = 0. Laplace and Gaussian admissible distributions can produce
an approximate differential privacy with δ > 0 with different α and β values.

Consider the median function again and let D = (x1, x2, . . . , xn), where x1 ≤
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Figure 4: Comparison of noise calibrations.

x2 ≤ · · · ≤ xn and xi ∈ [0,M ]. The global sensitivity of the median function
f is M . Figure 4 illustrates the two differentially private mechanisms based on
global sensitivity and smooth sensitivity, both utilizing Laplace distributions.
The two corresponding probability density functions are shown in Figure 5.
The noise calibrated to the smooth sensitivity is less, since the probability of
the random variable Z taking a value closer to 0 is larger, and that of Z being
a larger value is smaller. Thus, more noise is added to the output of the global
sensitivity based mechanism. In conclusion, for median, at the same privacy
protection level (same ε), noise calibrated to smooth sensitivity has a smaller
magnitude, thus better preserving data utility.

2.4 Composite Differential Privacy

Sometimes a complex privacy preservation problem needs a composite algorithm
that involves more than one differential privacy algorithms. More specifically,
one may need to sequentially apply various differential privacy algorithms to a
dataset, or may need to run various differential privacy algorithms over disjoint
datasets to solve a composite problem. The privacy budgets of the composite
algorithms for those two cases are summarized by the following two theorems,
and the basic concepts are further demonstrated in Figure 6.

Let A1, A2, . . . , An be n ε-differential privacy algorithms, whose privacy bud-
gets are respectively denoted by ε1, ε2, . . . , εn.
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Figure 6: Composition properties of differential privacy.

Theorem 1 (Sequential Composition [64]) The composite algorithm obtained

by sequentially applying A1, A2, . . . , An on the same dataset D provides
n∑
i=1

εi-

differential privacy.

Theorem 2 (Parallel Composition [64]) Let D1, D2, . . . , Dn be n arbitrary dis-
joint datasets. The composite algorithm obtained by applying each Ai on a
corresponding Di provides max{εi}-differential privacy.

The above two theorems provide the so-called “sequential composition” and
“parallel composition” properties. Theorem 1 states the sequential composition
property: the level of privacy preservation provided by a composite algorithm
consisting of a sequence of differential privacy algorithms over the same dataset
is determined by the sum of the individual privacy budgets. Theorem 2 presents
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the “parallel composition” property: when differential privacy algorithms are
applied to disjoint datasets, the overall level of privacy preservation provided
by the composite algorithm depends on the worst privacy guarantee among all
the differential privacy algorithms, that is, the one with the largest privacy
budget. These two theorems can be used to determine whether a composite
algorithm satisfies the differential privacy requirement and to reasonably control
the allocation of the total privacy budget to each algorithm.

3 Two Variations of Differential Privacy

To adapt to various problem domains and settings, different variations of dif-
ferential privacy have been developed. In this section, we introduce two most
popular variants. Dependent differential privacy is to handle queries involving
correlated database tuples. Local differential privacy is to handle the scenarios
where an untrustworthy third-party is employed to collect data.

3.1 Dependent Differential Privacy

Differential privacy assumes that the tuples in a database are independent from
each other. This assumption is not always true in practice. As indicated by Kifer
and Machanavajjhala [46], the correlation or dependence between tuples may
undermine the privacy guarantees of differential privacy mechanisms. Consider
a simple example [57]. Let D = (x1, x2) be a database, and tuples x1 and x2

have a probabilistic dependence of x2 = 0.5x1 + 0.5Y , x1 and Y have uniform
and independent distributions over [0, 1], and Y is a random variable to model
the relationship between x1 and x2 and to keep x1 and x2 over [0, 1]; thus we can
obtain the global sensitivity 1. Assume that the Laplace mechanism is applied
to the sum query f(D) = x1 + x2. One can see from Figure 7 that the privacy
guarantee is exp(1.5ε) when x1 and x2 are correlated while it is exp(ε) if we
assume that x1 and x2 are independent.

3.1.1 Definition of Dependent Differential Privacy

In a database D, if any tuple is dependent on at most L − 1 other tuples, the
dependence size is L. Denote by R the probabilistic dependence relationship
over the L dependent tuples. Two datasets D(L,R), D′(L,R) are dependently
neighboring if changing one tuple in D(L,R) can impact at most L − 1 other
tuples in D′(L,R), where R is the probabilistic dependence relationship among
the dependent tuples.

Definition 7 (Dependent Differential Privacy [57]) A randomized algo-
rithm A is ε-dependent differentially private if for any two dependent neigh-
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Figure 7: Privacy guarantee for a dependent dataset.

boring datasets D(L,R) and D′(L,R), and for all sets S of possible outputs, we
have

max
D(L,R),D′(L,R)

P (A(D(L,R)) = S)

P (A(D′(L,R)) = S)
≤ exp(ε)

Dependent differential privacy limits the capacity of an adversary to infer
sensitive information, and thus can defend against all possible adversarial infer-
ences even if the adversary has full knowledge of the tuple correlations.

3.1.2 Laplace Mechanism

A Laplace mechanism achieving ε-dependent differential privacy for a dataset
D(L,R) with dependence size L was proposed [57]. For a dataset D with de-
pendence size L and a query function f with global sensitivity GSf , the Laplace
mechanism A(D) = f(D) + Lap(L ·GSf/ε) is ε/L-differentially private.

Consider the example shown in Figure 7. The global sensitivity for the sum
query is 1 and the dependence size L = 2. Thus, the output for this Laplace
mechanism is A(D) = f(D) + Lap(2/ε). However, this mechanism implies that
all the dependent tuples are completely dependent on each other, which makes
the query sensitivity L · GSf = 2, while the sensitivity of the sum query for
the two dependent tuples is 1.5. In real world datasets, there may be very few
tuples that are completely dependent on each other, though they may be re-
lated. Thus, many mechanisms consider a fine-grained dependence relationship
between tuples to obtain a small dependent sensitivity of queries. For exam-
ple, Zhao et al. [95] adopted the probability graphical models to represent the
dependency structure of tuples and achieved high utility.
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Figure 8: A framework of local differential privacy.

3.2 Local Differential Privacy

The basic differential privacy setup relies on a trusted third party to collect
data, add carefully crafted noise to a query result according to the specification
of differential privacy, and publish the noisy statistical results. Nevertheless,
in practice it is often difficult to find a truly trusted third party to collect and
process data. The lack of trusted third parties greatly limits the applications
of the basic, centralized differential privacy. To address this issue, local differ-
ential privacy [25] emerges, which does not assume the existence of any trusted
third-party data collector. Instead, it transfers the process of data privacy pro-
tection to individual users by asking each of them to independently deal with
and protect personal sensitive information. Figure 8 shows the framework of
local differential privacy. One can see that local differential privacy extends its
centralized counterpart by localizing perturbed data to resist privacy attacks
from untrusted third-party data collectors.

3.2.1 The Definition of Local Differential Privacy

Definition 8 (Local Differential Privacy [25]) Consider n users, with
each possessing one record. A randomized algorithm A with input and output
domains Dom(A) and Ran(A), respectively, is said to satisfy ε-local differential
privacy if the probability of A obtaining the same output result t∗ (t∗ ⊆ Ran(A))

on any two records t and t′ (t, t′ ∈ Dom(A)) satisfies

Pr[A(t) = t∗] ≤ eε × Pr[A(t′) = t∗]

Local differential privacy ensures the similarity between the output results
of any two records. By this way it is almost impossible to infer which record
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is the input data according to an output result of algorithm A. In centralized
differential privacy, the privacy guarantee of algorithm A is defined on neighbor-
ing datasets, and requires a trusted third-party data collector. Nevertheless, in
local differential privacy, each user processes its individual data independently,
that is, the privacy preserving process is transferred from the data collector to
individual users, so that a trusted third party is no longer needed and privacy at-
tacks brought from an untrusted third-party data collector is thus avoided. The
implementation of local differential privacy requires data perturbation mecha-
nisms.

3.2.2 Perturbation Mechanisms

The random response technique [85] proposed by Warner in 1965 is the main-
stream perturbation mechanism adopted by local differential privacy. The main
idea is to protect data privacy by making use of the uncertainty in the responses
to sensitive questions. Consider an example of n persons with an unknown pro-
portion π of diseased patients. To calculate π, a survey question is launched:
"are you a patient with some disease?" Each user responds with either “Yes” or
“No”. For privacy preservation, a user may not respond with the true answer.
Assume that a user responds with the help of a non-uniform coin flip in which
the probability of heads showing up is p and the probability of tails showing
up is 1 − p. Then if a head shows up, the user responds with the true answer;
otherwise, it responds with the opposite.

The mechanism achieves ε-local differential privacy, where ε = | ln p
1−p |. Con-

sider the concrete example in Figure 9, where each individual randomly responds
the survey question with a biased coin flip of p = 3/4. The data collector aggre-
gates all responses from the users and estimates the count of diseased persons.
This mechanism achieves ln 3 local differential privacy.

The Warner model mentioned above is simple and influential. Some vari-
ations and extensions are developed, such as the Mangat Model [62] and the
forced alternative response [31]. Some other perturbation mechanisms such as
information compression and distortion were also employed by different appli-
cations [74, 89].

3.2.3 Composition

As mentioned in Section 2.4, sequential composition and parallel composition
are employed to provide a differentially private solution to a complex problem
that involves more than one queries. Sequential composition emphasizes that
the privacy budget can be allocated in different steps of an algorithm, while
parallel combination guarantees the privacy of the algorithm satisfying differ-
ential privacy on the disjoint subsets of a database. By definition, centralized
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Figure 9: An example of LDP mechanism.

differential privacy is based on “neighboring datasets” and local differential pri-
vacy is defined on any two records of a dataset. The forms of privacy guarantee
are the same. Therefore, local differential privacy inherits the sequential and
parallel composition features mentioned in Section 2.4.

4 Privacy Attacks and Types of Differential Pri-
vacy for Social Networks

In this section, we first summarize the popular privacy attacks and provide
insights on how to model privacy in social networks. Then, to adapt differen-
tial privacy from tabular data to social network data, we present the types of
differential privacy, including node privacy, edge privacy, out-link privacy and
partition privacy.

4.1 Privacy Attacks in Social Networks

Privacy attacks [24, 33, 66, 67, 96, 98] refer to a wide variety of activi-
ties that leak sensitive information to unauthorized parties who should not
know the information. The most serious type of privacy attacks in on-
line social networks is inference attacks [3], which breach users’ private in-
formation by analyzing background knowledge, such as user occupations or
salary. Two classes of inference attacks are observed in social networks,
namely private attribute inference [12, 24, 33, 48, 51, 65, 86] and user de-
anonymization [40, 41, 43, 66, 67, 69, 75, 77, 87].
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Private attribute inference aims to reveal a hidden attribute value that is
intentionally protected by the user or service provider. Neighbor-based inference
attacks [24, 33, 51, 65] abuse the fact that adjacent users may have the same or
similar attribute values with a high probability and infer the private attribute
of one user by exploiting the known attribute values of some other users sharing
similar interests [13]. For example, if the majors of more than half of a user’s
friends are “computer science”, then the user has a high probability of majoring
in “computer science”. Behavior-based inference [12, 48, 86] tries to identify
the similarities of certain attribute values through the behavioral data, such
as interests, characteristics and cultural behaviors. For example, if most of
the apps, books, and musics that a user likes are from China, there is a high
probability that the user was originally from China.

User de-anonymization [40, 41, 43, 66, 67, 69, 75, 77, 87] takes an anonymized
graph and a reference graph having the true user identities as inputs and maps
the nodes in these two graphs such that the identities of the users in the
anonymized graph can be reidentified. An anonymized social network graph
is usually released by a service provider to various requesters, such as re-
searchers, advertisers, application developers and government agencies, after
hiding private identifiable information by various anonymization techniques,
such as pseudonyms, graph modification, clustering and generalization. A refer-
ence graph can be easily obtained through the gathered information from other
sources such as a different social network which has overlapping users with a
published social graph. Typically, a reference graph may have less attributes
about nodes than an anonymized social network graph.

These two categories of privacy attacks lead to the exposure of different sen-
sitive information. To protect private data in a social network and formalize the
notion of “privacy” in social networks, distinctive privacy threats are recognized,
which are shown in Figure 10.

• Identity disclosure [47, 96]: In social networks, the identity of an indi-
vidual may be considered private, while attackers may exploit various user
information to reidentify a social network user or to determine whether
or not a target individual is present in a social network. For instance,
AOL released an anonymized partial three-month search history to the
public in 2006. Although personally identifiable information was carefully
processed, some identities were accurately reidentified – The New York
Times immediately located the following individual: the person with num-
ber 4417749 was a 62-year-old widowed woman who suffered from some
diseases and had three dogs.

• Attribute disclosure [6, 37, 58, 96, 98]: A social network user’s profile
usually includes various attributes such as age, gender, major and occupa-
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Figure 10: Privacy attacks in online social networks.

tion, some of which, such as salary, health status and disease information,
are considered sensitive and private.

• Link disclosure [47, 96, 98]: The social relationships between individu-
als can be modeled as edges in a social graph. The link information may be
considered sensitive in some cases. For example, Kossinets and Watts [49]
analyzed a graph derived from email communications among students and
faculty members in a university, of which the email relationships of “who
emailed whom” was deemed sensitive [36].

• Graph Metrics disclosure [42]: Since social networks can be modeled
as graphs, graph metrics, such as degree, betweenness, closeness central-
ity, shortest path length, subgraph counting and edge weight, may be
employed to conduct social network analysis. The disclosure of such in-
formation may indirectly lead to privacy leakage. For example, many de-
anonymization attacks are based on the structure information of a social
graph.

Modeling privacy is critical for realizing privacy preservation in social net-
works. Differential privacy assumes the maximum background knowledge for
adversarials. In the subsequent section, we present how to protect a social net-
work under differential privacy by extending the differential privacy definition
from traditional databases to graphs, and demonstrate how to formally define
differential privacy in social networks based on the privacy threats mentioned
above.
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4.2 Types of Differential Privacy for Social Networks

A social network can be modeled as a graph G(V,E), where V is a set of nodes
and E is a set of relational activities between nodes. Differential privacy orig-
inates from traditional databases. The key to extending differential privacy to
social networks is to determine the neighboring input entries, that is, how to
define “adjacent graphs”. In this subsection, we review the applications of differ-
ential privacy in social networks by instantiating the adjacent graphs into node
privacy [44], edge privacy [44], out-link privacy [82] and partition privacy [83].

4.2.1 Node Privacy

A privatized query Q preserves node privacy [36] if it satisfies differential privacy
for every pair of graphs G1 = (V1, E1) and G2 = (V2, E2) such that |(V1 ∪ V2) \
(V1 ∩ V2)| = 1 and {(E1 ∪ E2) \ (E1 ∩ E2)} = {(u, v)|u = x ∨ v = x}, where x
is the only node in (V1 ∪ V2) \ (V1 ∩ V2) and (u, v) represents the edge between
nodes u and v.

In node privacy, an adjacent graph G′ of a given social network G is the
one obtained by deleting or adding a node and all edges incident to the node.
Node differential privacy tries to prevent an attacker from determining whether
or not an individual node x appears in the graph. It guarantees privacy preser-
vation for individuals and relationships simultaneously rather than just a single
relationship, at the cost of strict restrictions on queries and reduced-accuracy
results. A differentially private algorithm must conceal the worst-case discrep-
ancy between adjacent graphs, which may be substantial under node privacy.
For example, if we consider an extreme case where a node connects to all other
nodes (a star graph), then the sensitivity is high and the added noise has to
be dramatic, too. Generally speaking, node privacy is infeasible to provide
high utility (accurate network analysis) due to high sensitivity, but it provides
desirable privacy protection [36].

4.2.2 Edge Privacy

A privatized query Q preserves edge privacy [36] if it satisfies differential privacy
for each pair of graphs G1 = (V1, E1) and G2 = (V2, E2) such that V1 = V2 and
|(E2 ∪ E1) \ (E2 ∩ E1)| = 1. In edge privacy, an adjacent graph G′ of a given
social network G is obtained by deleting or adding one edge from G. It can be
generalized to allow at most k edges are changed.

Edge privacy protects against learning about specific relationships between
users and prevents an attacker from determining with a high certainty whether
two individuals are connected. Comparing with node privacy, edge privacy can
only provide protection on information about relationships between users thus.
Nodes with higher degrees still have a higher impact on query results, despite
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the fact that the relationships between these nodes have been protected. Edge
privacy provides meaningful privacy protection in many practical applications
and is more widely used than node privacy [82]. For example, Kossinets and
Watts [49] employed edge privacy to protect email relationships.

4.2.3 Out-Link Privacy

A privatized query Q preserves out-link privacy [82] when it meets the definition
of differential privacy for every pair of graphs G1 = (V1, E1) and G2 = (V2, E2)

such that V1 = V2 and there exists a node x such that {(E1∪E2)\ (E1∩E2)} =

{(x → v)|x ∈ V1 ∧ v ∈ V2 or x ∈ V2 ∧ v ∈ V1}, where (x → v) is a directed
link from x to v. In out-link privacy, for a given social network G, an adjacent
graph G′ is obtained by either removing all the existing out-links of a node x,
or adding one or more new out-links to a node whose out-degree in G is 0.

Out-link privacy can reduce the distinguishing properties of high-degree
nodes, that is, a high-degree node can deny that the friendships are mutual
in query results although others claim to be friends with this node. Out-link
privacy is strictly weaker than node privacy, but for certain query functions
it has better performance than edge privacy [83]. Out-link privacy simplifies
the calculation of sensitivity and reduces the amount of injected noise required,
thus allows certain queries that are infeasible under node privacy and edge pri-
vacy [82]. We take the degree distribution as an example and demonstrate that
the out-link privacy requires less noise in Section 5.1.

4.2.4 Partition Privacy

A partitioned graph G is comprised of multiple disjoint components Hi [83]. A
privatized query Q preserves partition privacy if it satisfies differential privacy
for every pair of graphs G1 and G2, where G1 = G2−Hi with Hi ∈ G2∧Hi /∈ G1

or G2 = G1 −Hj with Hj ∈ G1 ∧Hj /∈ G2.
In partition privacy, an adjacent graph of a given social networkG is obtained

by adding a new or deleting an existing subgraph from G. Most social-structure
queries are conducted over a set of subgraphs instead of a connected social graph.
Some attributes of the nodes such as address, major, and education level can be
used to partition a large social graph into multiple subgraphs, and each subgraph
can be treated as a multi-attribute data point. Then, deleting or inserting a
subgraph is equivalent to removing or adding a data point [83]. Accordingly,
traditional differential privacy can be applied to the set of subgraphs (data
points).

Partition privacy provides broader preservation than node privacy, and the
protection is applied not to a single node, but to a social group.
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5 Differential Privacy in Social Network Analysis

In this section, we summarize the state-of-the-art research on a series of most-
widely used differentially private social network analysis techniques. Social net-
work analysis refers to the quantitative analysis on the data generated by social
network services using statistics, graph theory and other techniques. Some
popular tasks of social network analysis include degree distribution, triangle
counting, k-star counting, k-triangle counting and edge weight analysis. In this
section, we analyze a few widely used techniques in social network analysis un-
der differential privacy preservation. Table 4 summarizes the major existing
differentially private social network analysis techniques for degree distribution
and subgraph counting while those for edge weight is summed up in Table 5.

5.1 Degree Distribution

Degree distribution is one of the most widely studied graph characteristics. It
reflects the graph structure statistics and may affect the whole process of graph
operations. Degree distributions can be employed to describe the basic social
network structures, design graph models and measure graph similarities.

The degree distribution of a graph can be simply transformed to a degree
sequence by counting the frequency of each degree. Here we use a degree his-
togram to describe the degrees of the nodes in a graph. Consider the example
shown in Figure 11. One can see that the degree counts change significantly
when deleting node A. This implies that the sensitivity of degree distribution
is high under node privacy since the change of one node may affect multiple
degree counts. A careful analysis reveals that a node of degree k affects 2k + 1

values of the histogram at most. In the worst case, the addition or deletion of
a node of the maximum degree results in the change of 2n + 1 values, which
indicates that the global sensitivity depends on the value of n, the number of
nodes in the graph. Since n is unbounded, the degree histogram (distribution)
query is not feasible for differential privacy protection under node privacy.

Under edge privacy, protecting degree histogram queries using differential
privacy is feasible, as illustrated in Figure 12. One can see that removing an
edge from a network only changes the degrees of two nodes, thus affecting 4

counts at most. The sensitivity is 4k under the k-edge privacy. Accordingly,
when k is small, the amount of added noise is relatively small and even negligible
for a graph that is large enough, providing preservation in data utility.

Out-link privacy requires less noise for a degree histogram query. Removing
out-links of one node from a graph affects one value in the histogram when only
out-degrees are counted, as shown in Figure 13. Under the out-link privacy,
a high-degree node may be identified according to its neighbors’ out-degrees.
Nevertheless, a slightly higher-than-expected node degree in a graph may not
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Figure 11: Degree histogram under node privacy.
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Figure 12: Degree histogram under edge privacy.

be easily identified [83]. Therefore, if an attacker intends to guess the presence
of a high-degree node with certainty, she may have to learn full knowledge about
the social network. Thus, out-link privacy improves edge privacy to some extent.

To obtain differentially private results in degree distribution analysis, a num-
ber of techniques are proposed, such as post-processing [36, 38], projection (also
known as bounded degree) [23, 45, 61, 78], Lipschitz extension [71], Erdös-Rényi
graph [84] and random matrix projection [4]. Post-processing and projection are
most commonly used.

5.1.1 Post-Processing Techniques

Hay et al. [38] proposed a post-processing technique to boost the accuracy of
the existing differentially private algorithms. The key idea is to find a new set of
answers that is the “closest” to the set of noisy ones returned from differentially
private algorithms by means of “constrained inference” for better accuracy, that
is, enforcing consistency constraints among the noisy query results. It involves
three steps. First, an analyst sends to the data owner a set of queries with
constraints holding among the corresponding answers for a given task. Then
the data owner replies to the set of queries using standard differentially private
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Figure 13: Degree histogram under out-link privacy.

algorithms. In the third step, the analyst post-processes the set of noisy answers
with constrained inference to resolve the possible inconsistencies among the
noisy answers for the purpose of finding a new set of answers that is the closest
to the old one while satisfying the consistency constraints. Here, "closest"
is measured in L2 distance, and the result is a minimum L2 solution. This
technique can be viewed as an instance of linear regression.

Let us use an example to illustrate the procedure. Suppose an analyst needs
answers to the total number of students xt, the numbers of students xA, xB ,
xC , xD and xF , respectively, receiving grades A, B, C, D and F , and the
number of passing students xp, from a private student database. Intuitively the
analyst can obtain differentially private answers to (xA, xB , xC , xD, xF ), and
then use them to compute those for xt and xp. Nevertheless, based on the post-
processing approach proposed in [38], the analyst first requests differentially
private answers to all queries xt, xp, xA, xB , xC , xD, xF , then applies the two
constraints xt = xp + xF and xp = xA + xB + xC + xD to derive more accurate
answers for xt and xp. Hay et al. [38] claimed that the above post-processing
technique does not sacrifice privacy.

Hay et al. [36] adapted the definition of differential privacy to graph-
structure data and proposed a differentially private algorithm based on the
post-processing technique proposed in [38] to obtain an approximation of a
graph’s degree distribution. The authors provided the minimum L2 solution to
the degree distribution query. The basic idea is to obtain the query results of
a graph’s degree sequence in a non-decreasing order, then transform them to
a degree distribution by counting the frequency of each degree. Let S denote
the degree sequence query S = 〈deg(1), . . . , deg(n)〉, of which deg(i) denotes the
ith smallest degree in G. For example, assume that the degrees of a five-node
graph are {3, 3, 3, 2, 1}, then S = 〈1, 2, 3, 3, 3〉. Let S̃ denote the sorted results
of the differentially private algorithm seeking the degree of each node. Since the
degrees are positioned in a sorted order, S is constrained, which can be denoted
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by S[i] ≤ S[i + 1] for 1 ≤ i < n. Then the minimum L2 solution S̄ is obtained
by applying constrained inference to S̃.

5.1.2 Bounded Degree Techniques

Kasiviswanathan et al. [45] proposed a carefully-designed projection scheme
mapping an input graph to a bounded degree graph to obtain the degree distri-
bution of the original one under node privacy. Aiming at obtaining statistical
information with low sensitivity, the original network is projected to a set of
graphs whose maximum degree is lower than a certain threshold. In a bounded
degree graph, node privacy is easier to achieve as the sensitivity can be much
smaller for a given query function. When the degree threshold is carefully cho-
sen for realistic networks, such a transformation leaks little information. Two
families of random distributions are adopted for the noise: Laplace distributions
with global sensitivity and Cauchy distributions with smooth sensitivity. The
key difficulty of this approach lies in that the projection itself may be sensitive
to the change caused by a single node in the original graph. Thus, the process of
projection should be “smooth” enough to ensure the privacy-preservation prop-
erty of the entire algorithm. Two different techniques were proposed in [45].
The first one defines tailored projection operators, which have low sensitivity
and protect information for specific statistics. The second one is a “naïve”
projection that just simply discards the high-degree nodes in a graph. Interest-
ingly, the naïve projection allows the design of algorithms that can bound the
local sensitivity of the projected graph and the development of a generic reduc-
tion technique that enables differentially private algorithms for bounded-degree
graphs.

Day et al. [23] proposed an edge-addition based graph projection method
to reduce the sensitivity of the graph degree distribution problem under node
privacy. This improved projection technique preserves more information than
the previous ones. It was proved in [23] that the degree histogram under the
projected graph has sensitivity 2θ+ 1 for a θ-bounded graph in which the max-
imum degree is θ. Based on this sensitivity bound, two approaches, namely
(θ,Ω)-Histogram and θ-Cumulative Histogram, for degree histograms were pro-
posed under node privacy. Macwan et al. [61] adopted the same method of
edge-addition [23] to reduce the sensitivity of the node degree histogram. Note
that the existing projection-based approaches cannot yield good utility for con-
tinual privacy-preserving releases of graph statistics. To tackle this challenge,
Song et al. [78] proposed a differentially private solution to continually release
degree distributions with a consideration on privacy-accuracy tradeoff, assum-
ing that there is an upper bound on the maximum degree of the nodes in the
whole graph sequence.
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5.1.3 Other Techniques

Raskhodnikova et al. [71] proposed an approximation of the graph degree distri-
bution by making use of the Lipschitz extension and the generalized exponential
mechanism under node privacy. Sealfon et al. [84] developed a simple, compu-
tationally efficient algorithm for estimating the parameter of an Erdös-Rényi
graph under node privacy. This algorithm optimally estimates the edge-density
of any graph whose degree distribution is concentrated on a small interval.
Ahmed et al. [4] presented a random matrix approach to social network data
publishing, which achieves differential privacy with storage and computational
efficiency by reducing the dimensionality of adjacency matrices with random
projection. The key idea is to first randomly project each row of an adjacency
matrix into a low-dimensional space, then perturb the projected matrix with
random noise, and finally publish the projected and perturbed matrix. The
random projection retains the graph matrix’s top eigenvectors. As both ran-
dom projection and random perturbation can preserve differential privacy with
a small amount of noise, data utility can be improved.

5.2 Subgraph Counting

Given an input graph G and a query graph H, a subgraph counting query asks
for the number of isomorphic copies of H in G. Example subgraphs include
triangles, k-triangles, k-stars, and k-cliques, where a k-triangle consists of k
triangles sharing one common edge, a k-star is composed of a central node
connecting to k other nodes, and a k-clique is a clique with k vertices. Figure 14
demonstrates these subgraphs.

Note that subgraph counting counts the copies of a subgraph. Therefore a
node of degree d ≥ k contributes

(
d
k

)
to k-star counting. Figure 15 presents a few

examples of subgraph counting. We consider the counting problems of triangle
k-star, and k-triangle in this section, and denote them respectively by f4, fk∗
and fk4. These counting results are keys to many descriptive graph statistics
that are used to describe and compare graph properties and structures. For
example, the clustering coefficient of a graph is the ratio of 3f4 over f2∗.

Subgraph counting queries generally have different privacy characteristics
and high global sensitivities. To realize differential privacy, it is necessary to
add a large amount of noise, which may lead to serious query result distortions.
Therefore, a smooth upper bound of the local sensitivity is usually used to de-
termine the noise magnitude. Additionally, truncation, Lipschitz extension and
ladder function have been adopted in literature [44, 45, 93] to achieve differential
privacy while improving the counting performance.

Before summarizing the state-of-the-art techniques, let us introduce some
notations. For an undirected graph with n nodes, the adjacency matrix is
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Triangle ∆

2-triangle 2∆

3-triangle 3∆

2-star 2

3-star 3

4-clique

Figure 14: Examples of subgraphs.

Subgraph Count

Triangle 5

2-star 25

3-star 15

2-triangle 5

3-triangle 0

An example of graph G

Figure 15: Examples of subgraph countings.

X = (xij), where xii = 0 for all i ∈ [n]. Let aij denote the number of common
neighbors shared by a particular pair of vertices i and j, that is, aij =

∑
l∈[n] xil ·

xlj . Let bij denote the number of vertices connected only to one of the two
vertices i and j, that is, bij =

∑
l∈[n] xil

⊕
xlj . Denote by d(G,G′) the distance

between two n-vertex graphs G and G′, which is the number of edges they differ.
Graph G and G′ are neighbors if d(G,G′) = 1. Let LS4, LSk4 and LSk∗ denote
the local sensitivities of f4, fk4 and fk∗, respectively. Denote by S∗4,β , S

∗
k4,β

and S∗k∗,β the smooth sensitivities of f4, fk4 and fk∗, respectively.

5.2.1 Triangle Counting

As mentioned earlier, node privacy is a strong privacy guarantee, so it is not
feasible to obtain a triangle counting satisfying node privacy in most cases. At
the worst case, adding a vertex to a complete n-node graph brings

(
n
2

)
new

triangles. Since this change depends on the size of the graph, the global sen-
sitivity of triangle counting is unbounded. Moreover, triangle counting is also
not feasible under edge privacy as in the worst case, deleting one edge from
an n-node graph deletes n − 2 triangles. Although the global sensitivity of a
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triangle counting query is not bounded, its local sensitivity for some specific
graphs is bounded under edge privacy. Thus, smooth sensitivity [44, 68] can be
adopted to achieve differential privacy. In the following, we briefly summarize
edge and node differentially private algorithms as well as other techniques to
achieve differential privacy in triangle counting.

Edge Differentially Private Algorithms Nissim et al. [68] introduced an
approach to calculate the smooth sensitivity of triangle counting and provided
the cost of a minimum spanning tree under edge privacy. The local sensitiv-
ity of f4 is LSf4 = maxi,j∈[n] aij , the global sensitivity is GSf4 = n − 2,
while LSf4 at distance s is LS(s)

f4
= max

i 6=j;i,j∈n
cij(s), where cij(s) = min(aij +

b s+min(s,bij)
2 c, n − 2). The β-smooth sensitivity of f4 has time complexity

O(M(n)), where M(n) is the time required for multiplying two matrices of
size n× n.

Karwa et al. [44] presented an efficient algorithm for outputting approximate
answers to subgraph counting queries, such as triangle counting, k-star counting
and k-triangle counting. These algorithms satisfy edge privacy and can be
regarded as an extension of the algorithm in [68] to a bigger class of subgraph
counting problems with privacy guarantees and better accuracy.

Sala et al. [73] proposed a differentially private graph model called Pyg-
malion to generate synthetic graphs. They adopted the dK-graph model and
its statistical series as the query function. The dK-graph model extracts the
detailed structure of a graph into degree correlation statistics, and outputs a
synthetic graph using the dK-series values. A dK-series is the degree distribu-
tion of connected components of certain size within a target graph. Here, the
dK-series is a graph transformation function. Sala et al. [73] first proved that
the dK-series has a high sensitivity, then proposed a partitioning approach to
group tuples with similar degrees, which effectively reduces the noise magnitude
and achieves a desired privacy guarantee.

Zhang et al. [93] proposed an approach of specifying a probability distri-
bution over possible outputs to maximize the utility of an input graph while
providing a privacy guarantee. They applied a ladder function to the subgraph
counting problems of triangle, k-star and k-clique, and achieved high accuracy
with efficient time complexities.

Gupta et al. [34] considered the problem of approximately publishing the
cut function of a graph under edge privacy. They proposed a generic framework
of converting iterative database construction algorithms into privatized query
publishing approaches under non-interactive and interactive settings.

Qin et al. [70] made an effort to ensure individual’s local differential pri-
vacy while gathering structural information to generate synthetic social graphs.
They proposed a multi-phase technique of LDPGen, which incrementally clus-
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ters structurally similar users via refining parameters into different partitions.
Specifically, whenever a user reports information, LDPGen deliberately injects
noise to guarantee local differential privacy. Moreover, LDPGen derives opti-
mal parameters to cluster structurally similar users together. After obtaining a
good clustering, LDPGen constructs a synthetic social network by adopting the
existing Chung-Lu social graph generation model [5].

Node Differentially Private Algorithms Since node privacy is a strong
privacy guarantee, a large amount of noise needs to be added, leading to a
dramatic distortion of the graph structure and a poor utility. One of the most
widely adopted mechanisms is the generic reduction to privacy over a bounded-
degree graph. If a graph is known to have a maximum degree of d, deleting or
adding a node may affect

(
d
2

)
triangles at most. For graphs whose maximum

degree is greater than d, high-degree nodes can be deleted to get a graph with
a maximum degree falling within a threshold. The number of triangles of this
bounded-degree graph can be a good approximation to the true query answer.
Therefore, networks with a small number of large degree nodes can adopt this
approach to achieve node privacy for triangle counting.

Kasiviswanathan et al. [45] proposed algorithms for releasing statistics of
graph data under node privacy. On the basis of smooth sensitivity of truncation,
they presented a generic reduction mechanism in order to apply differentially
private algorithms for bounded-degree graphs to arbitrary graphs, that is, just
simply removing the nodes with high degrees. A continual privacy-preserving
release of subgraph counting under node privacy was investigated in [78], which
assumes that there is a publicly known upper bound on the maximum degree
of the nodes in the graphs.

Jeremiah et al. [9] proposed the definition of restricted sensitivity, which
can improve the accuracy of differential privacy compared with global sensi-
tivity and smooth sensitivity. Two important query classes, namely subgraph
counting and local profile matching of social networks, were analyzed. It was
proved that the restricted sensitivities of these two kinds of queries are much
lower than those under smooth sensitivity. More importantly, when comput-
ing the smooth sensitivity involves higher computational complexity and lower
efficiency, restricted sensitivity performs better.

Other Types of Privacy Rastogi et al. [72] considered general privacy-
preserving social network queries including subgraph counting. They proposed
a relaxation of edge privacy, called a theoretic standard of adversarial privacy.
Their algorithm can release more general graph statistics than the algorithms
in [68], which only deal with triangles. However, the assumption on adversarial
privacy puts some limits on the applicability of this privacy definition [72].
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Task et al. [83] proposed two differential privacy standards, i.e., out-link pri-
vacy and partition privacy, over network data. They also introduced two algo-
rithms respectively satisfying the two privacy standards to release approximate
results of degree distribution query, triangle counting and centrality counting. It
was demonstrated that partition privacy can provide stronger privacy guarantee
with less noise when cross-analyzing multiple social networks.

Gehrke et al. [32] presented a zero-knowledge based privacy definition, which
is stronger than differential privacy. They constructed a zero-knowledge private
mechanism to release the social graph structure information such as the average
degree and the distance to connectivity.

Sun et al. [79] pointed out that it is insufficient to apply local differential
privacy to protect all network participants when collecting extended local views
(ELV). The main problem lies in that each individual has its own local privacy
budget, which covers its own ELV regardless of those the neighbors in her ELV
have. To prevent this attack, a novel decentralized differential privacy (DDP)
mechanism was proposed, which demands each participant to consider not only
its own privacy, but also those of the neighbors in its ELV. Towards this goal, a
multi-phase mechanism under DDP was developed, which allows an analyst to
better estimate subgraph counting. In this framework, an analyst first queries
each individual’s minimum noise scale, which must be performed under DDP
since it relies on the local graph structure and is private. Then, the analyst
calculates the minimum noise scale for the whole network and gathers subgraph
counting accordingly.

5.2.2 k-Star Counting

Karwa et al. [44] extended the approach in [68] to the k-star counting query
and proposed how to compute the local sensitivity and smooth sensitivity of
fk∗. They proved that these two sensitivity values of k-star counting are equal,
that is, S∗k∗,β(G) = LSk∗(G) when dmax ≥ max{k, (k− 1)( 1−β

β )}, of which dmax

is the largest degree in G.
Kasiviswanathan et al. [45] proposed an (ε, δ)-node differentially private al-

gorithm with a linear programming (LP) based function for the special case of
the subgraph H having 3 nodes, e.g., H can be a triangle or a 2-star. If fH(G)

(the number of copies of H in G) is relatively large, the Laplace mechanism
provides an accurate estimate. The release of fH(G) is more accurate with the
LP-based function when fH(G) is smaller.

Zhang et al. [93] presented a ladder function and applied it to the k-star
query under edge privacy. The ladder function relies on a carefully designed
probability distribution that can maximize the probability of outputting true
answers and minimize that of outputting the answers that are far from the true
answers. In addition, to achieve differential privacy, it is constrained that the
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probabilities of outputting a value for the input graph g and its neighbor g′

should be very close. The authors adopted the concept of “local sensitivity at
distance t” in [45] to create a ladder function. In fact, the upper bound of the
“local sensitivity at distance t” was used as the ladder function for the fk∗ query.

5.2.3 k-Triangle Counting

When triangle counting is extended to k-triangle counting, the problem becomes
complicated as it is NP-hard to calculate the smooth sensitivity of k-triangle
counting. Therefore, existing approaches mainly focus on a small k, while the
counting query of fk4 itself is hard.

An approach was proposed in [44], whose main idea is to compute (ε, δ)-
differential privacy (edge privacy) by adding noise proportional to a second-order
local sensitivity instead of a “smooth” upper bound. Since LSk4 has a high sen-
sitivity, it cannot be directly adopted with the Laplace mechanism. Therefore,
LS′, the local sensitivity of LSk4, was employed. It was demonstrated that
LS′ is a deterministic function of a quantity with global sensitivity 1, based on
which the query results can be published with less noise. Another approach was
presented by Zhang et al. [93], which provided a ladder function for k-triangle
counting under edge privacy.

5.3 Edge Weights

In social networks, social relations are modeled on edges with weights. An
edge may reveal different sensitive information between individuals, such as the
communication cost, the interaction frequency between two social network users,
the price of a commercial trade or the similarity between two organizations.
Thus, releasing edge weights must be done in a privacy preserving manner.
Table 5 summarizes the most popular exiting differentially private edge weight
algorithms in social networks.

Liu et al. [59] studied the problems of protecting privacy in edge weights
and preserving the utility of statistics of shortest paths between nodes. They
proposed two edge privacy-preserving approaches, namely greedy perturbation
and Gaussian randomization multiplication. The former mainly focuses on pre-
serving the length of the perturbed shortest paths and the latter retains the
same shortest paths before and after perturbation.

Das et al. [22] conducted edge weight anonymization in social graphs. They
developed a linear programming model to protect graph characteristics such as
shortest paths, minimum spanning trees and k-nearest neighbors, which can be
formalized as linear functions of the edge weights.

Costea et al. [18] considered differential privacy protection to the edge
weights assuming that the graph structure is public and available to users with-
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Table 5: Summary on Existing Edge Weight Preservation Techniques
Approach

[59]
Gaussian randomization multiplication;

Greedy perturbation

[22] Linear programming model

[18] Edge weight-count; Laplace perturbation

[56]
Edge weight-unattributed histogram;

k-indistinguishability

out modification while the edge weights are private. They employed the Dijkstra
algorithm to get the shortest paths for protection quality evaluation.

Last, Li et al. [56] treated the edge-weight sequence as an unattributed his-
togram by merging all barrels with the same count into one group and thus
ensured k-indistinguishability among groups. They proposed an approach with
Laplace noise added to every edge weight to improve accuracy and utility of the
published data.

5.4 Summary

Social networks contain information about social users, their attributes as well
as social relationships, which are usually deemed sensitive. The release of such
information may bring significant privacy concerns or even damages to per-
sonal reputation and properties if the protection on sensitive information is not
sufficiently strong. In this section, we discussed degree distribution, subgraph
counting (triangle, k-star and k-triangle) and edge weights, the most popular
graph analysis techniques in social networks. Note that there exist other statis-
tics on graph structures but the basic methods and ideas are similar and thus
are omitted here.

According to our analysis, most existing differentially private algorithms
cannot obtain good utility (high accuracy) for large-scale and complex graph
structures. Moreover, the complexity of the differentially private algorithms are
generally high or even NP-hard due to the complexity of computing (smooth)
sensitivities. In some cases such as k-triangle counting, even the structure query
itself is already NP-hard.

To the best of our knowledge, no high sensitivity problem was reported in
local differential privacy. However, it is a great challenge for data collectors to
reconstruct a graph structure with high utility based on the disturbed or local
graph data, that is, to ensure the correlations between the original data when
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the perturbation process of each user is independent of each other. Furthermore,
if we only collect graph statistics, such as node degrees and subgraph counting,
to generate composite graphs, the output graph may not retain the important
characteristics of the original one and thus may reduce graph utility.

6 Conclusions and Future Directions

In this article, we provide a survey on differential privacy foundations and ap-
plications in protecting the privacy of social network analytical results. We
explain the underlying design principles of different mechanisms and present
the state-of-the-art research results. To achieve differential privacy, one needs
to specify a privacy budget and calculate the amount of noise to be added to
the query results. The privacy budget determines the level of privacy preser-
vation: the smaller, the better the protection. At the same time, the noise
magnitude affects the accuracy (utility) of the query results, which should be
minimized provided that sufficient privacy protection is achieved. Noise magni-
tude is derived from sensitivity and privacy budget. When global sensitivity is
high, smooth sensitivity may be employed instead.

The research on differential privacy is developing fast, and its applications
in social network analysis enjoy stronger and stronger interest from industry
and academia. In the following we discuss a few open research problems in
differential privacy technologies for social network analysis.

6.1 Differential Privacy for Complex and Correlated So-
cial Network Data

In social networks a user often has relationships with many others at different
levels. Thus, network structures are often complex. Since query sensitivities in
social networks are usually high, much noise has to be added to query results
to achieve differential privacy. Nevertheless, the noise may significantly affect
the output data utility. In addition, it may be hard to effectively compute sen-
sitivities, either global or smooth, precise or approximate, as the computational
complexity may be too high (or even NP-hard) to be practical for many com-
plex social network analysis queries. Even though a large number of studies
reviewed earlier focus on how to apply differential privacy to complex social
structure queries, most of them are limited to “small” queries, such as a small
k in k-star and k-triangle counting. It remains a great challenge to employ
traditional differential privacy for complex graph queries.

Moreover, in social networks, social correlations are usually strong as behav-
iors and attributes of adjacent nodes are often strongly related. For example,
adjacent users may have the same attributes with a high probability. Therefore,
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the private attributes of a social network node may be inferred by exploring the
publicized attributes of its neighbors which share common interests [13]. The
social relations, that is, the edges in a social network, are often not independent,
as the social relationship between two nodes may depend on a third node that
is a common neighbor. To address dependency in data, dependent differential
privacy has attracted a lot of attention in recent years [57, 95]. Nevertheless,
applying dependent differential privacy to social networks remains to be a grand
open challenge due to high dependencies and complex social structures.

To tackle the challenges, one possible direction is the transformation tech-
niques. For example, we may consider adding a sampling process to transform
an original graph data to one in a different domain such that the data tuples
become independent and sparse and thus traditional differential privacy can be
applied. This is motivated by the random but uniform sampling step in [55].
The non-uniform compressive sampling technique [11, 81, 91] may be employed
as it can realize the required transformation with controlled distortions.

6.2 Tradeoff between Privacy Budget and Data Utility

How to allocate an appropriate privacy budget to achieve sufficient privacy pro-
tection on sensitive data and, at the same time, maximize data utility remains
a fundamental challenge [92]. Recently various schemes were developed to in-
vestigate the privacy-utility tradeoff based on techniques such as game theory
and linear programming [17, 19, 28, 39].

Dwork et al. [28] stated that there is little understanding on the optimal
value of privacy budget for a practical scenario. Importantly, their interview
results obtained from surveying different practitioners regarding how organi-
zations made key choices when implementing differential privacy in practice
indicated that there was no clear consensus on how to choose privacy budget,
nor agreement on how to approach to the problem. One challenge is to quantify
the tradeoff between privacy budget and data utility.

6.3 Differentially Private Publishing of High Dimensional
Social Network Data

The unprecedented growth and popularity of online social networks have gener-
ated massive high-dimensional data, such as social users’ attribute information,
healthcare data, location information, trajectory data, and commercial elec-
tronic data, which is often published or made available to third parties for anal-
ysis, recommendations, targeted advertising and reliable prediction. However,
publishing such attribute data may disclose private and sensitive information
and result in increasing concerns on privacy violations. Differentially private
publishing of such data has received broad attentions. Nevertheless, most dif-
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ferentially private data publishing techniques cannot work effectively for high
dimensional data. On the one hand, since the sensitivities of different dimensions
vary, evenly distributing the total privacy budget to each dimension degrades
the performance. Moreover, the “Curse of Dimensionality” leads to two criti-
cal problems. First, a dataset containing many dimensions and large attribute
domains has a low “Signal-to-Noise Ratio” [94]. Second, complex correlations
exist between attribute dimensions, making it impossible to directly and inde-
pendently protect each dimension’s privacy. To address these challenges, one
may conduct data dimensionality reduction. However, it is hard to maintain the
characteristics of high dimensional data to the maximum extent and to prevent
private information from being defected during the process of dimensionality
reduction.

To address these challenges, Bayesian networks [94], random projection [90]
and various sampling techniques are used to support differentially private high
dimensional data publishing [16, 53]. Nevertheless, most of these approaches
still cannot work effectively for releasing high-dimensional data in practice as
they generally ignore the different roles a dimension may play for a specific
query – one dimension may be more important than another for a particular
query. Additionally, one dimension may release more information than another
if the same amount of noise is added. Therefore, how to allocate the total pri-
vacy budget to dimensions and optimize privacy protection is query-dependent
and should be carefully investigated. Moreover, the underlying distribution of
the data may be unknown and the high dimensionality and large attribute do-
mains may skew the distributions of different dimensions, leading to significant
perturbations on the published data and thus affecting data utility. Last, dimen-
sionality reduction and noise addition both introduce defection to the published
data. How they jointly affect data utility is a tough and open problem.

6.4 Differentially Private Publishing of Dynamic Data

Most of the existing differential privacy research focuses on static data pub-
lishing. In practice, many datasets, such as online retail data, recommendation
system information and trajectory data, are dynamically updated. Representing
dynamic social network data as a static graph and discarding temporal infor-
mation may result in the loss of evolutionary behaviors of social groups. Thus,
how to achieve differential private danymic social network data publishing is an
important research direction.

Differential private publishing of dynamic social network data faces two crit-
ical challenges: allocating privacy budget to each data element at each version
and handling noise accumulation over continuous data publishing. In an algo-
rithm with multiple sequential queries, the privacy budget may be exhausted
after a while based on the notion of composite differential privacy, and thus the
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promised privacy protection may not be maintained. Therefore, we need a bud-
get allocation strategy that can make the life cycle of privacy budget as long as
possible while providing sufficient protection in a composite query. Moreover,
since each updated data publishing must consider the added noise in the pre-
vious one to counter the correlation between the two releases, the cumulative
noise increases rapidly as the number of releases increases, resulting in the fast
decreasing utility in the published data over time.

There exist initial efforts on this direction. For example, Chan et al. [14]
and Chen et al. [15] tackled the continual counting problem and the differential
private publishing of sequential data. However, the proposed approaches do not
address the failures caused by early exhaustion of privacy budget. The continual
release of degree distributions in degree-bounded graphs was considered in [78]
but the proposed technique yields poor utility.

Generally speaking, most approaches for differentially private data publish-
ing in a static environment cannot be directly applied to publishing of dynamic
data. Although the data released at a certain moment satisfies differential pri-
vacy, as the number of updates increases, potentially unbounded, the amount
of noise required for each release becomes bigger and bigger, resulting in a large
cumulative error and low data utility. Once the privacy budget is exhausted,
differential privacy protection cannot be guaranteed. New strategies and mech-
anisms are highly needed.
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