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Abstract

Engineered and infrastructure systems deteriorate (e.g., loss capacity)
as a result of adverse environmental or external conditions. Modeling de-
terioration is essential to define optimum design strategies and inspection
and maintenance (intervention) programs. In particular, the main pur-
pose of maintenance is to increase the system availability by extending
the life of the system. Most strategies for maintenance optimization fo-
cus on defining long term strategies based on the system’s condition at
the decision time (e.g., t = 0). However, due to the large uncertainty
in the system’s performance through life, an optimal maintenance policy
requires both permanent monitoring and a cost-efficient plan of interven-
tions. This paper presents a model to define an optimal maintenance
policy of systems that deteriorate as a result of shocks. Deterioration
caused by shocks is modeled as a compound Poisson process and the op-
timal maintenance strategy is based on an impulse control model. In the
model the optimal time and size of interventions are executed according
the the system state, which is obtained from permanent monitoring.

Keywords: Impulse control, compound Poisson process, maintenance,
optimization, shock model

1 Introduction

Engineered and infrastructure systems deteriorate as a result of the normal use
or due to external demands imposed by adverse environmental conditions. The
main challenge in modeling deterioration is to manage the damage accumula-
tion mechanisms and the associated uncertainties. Deterioration mechanisms
can be divided into progressive (e.g., corrosion, fatigue) and shock-based (e.g.,
earthquakes, blasts)[14].
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In the particular case of large infrastructure, progressive deterioration can be
caused by, for instance, chloride ingress, which leads usually to steel corrosion,
loss of effective cross-section of steel reinforcement in RC structures, concrete
cracking, loss of bond and spalling [3]. The details of these deterioration mecha-
nisms are beyond the scope of the paper but are well described by, for instance,
[7] and [6]. On the other hand, deterioration caused by extreme events is usually
associated with earthquakes, hurricanes or blasts (including both accidents and
terrorists attacks). Extensive research has been carried out on mathematical
models for shock degradation in infrastructure and in other types of engineered
artifacts; for more details see [2], [1], [10], [11], [5], [14], [20] and [18].

A maintenance program is as a set of actions directed to keep a deteriorating
system (e.g., machine, building, infrastructure) operating above a pre-specified
level of service; thus, maintenance is carried out to improve the availability or
to extend the life of the system [19] [12]. The long-term benefits of an optimum
maintenance strategy include: improvement of the system reliability, replace-
ment cost reduction, system downtime decrease and better spares inventory
management[12].

Frequently, a comprehensive maintenance program includes preventive and/or
corrective or reactive actions [9], [4]. Preventive maintenance involves all ac-
tions directed to avoid failure or to avoid higher cost at a later stage by keeping
the component in a safe or operational condition. Preventive maintenance is
frequently carried out without knowing the actual state of the component at
the time of the intervention. On the other hand, corrective maintenance fo-
cuses on interventions once failure has been identified. Corrective maintenance
is frequently more expensive than preventive maintenance since the cost may
include, in addition to the repair cost, downtime costs or replacement of undam-
aged system components. While preventive maintenance is commonly carried
out at fixed time intervals, corrective maintenance is performed at unpredictable
intervals because failure times cannot be known a priori [16][17].

Most work on defining maintenance strategies focuses on establishing action
plans of interventions [16]. However, for infrastructure systems or large sys-
tems with long expected lifetimes (e.g., bridges that last over 75 years), these
approaches are not realistic. Over time, the system functionality may be modi-
fied, some unplanned demands may appear or technology changes, thus, forcing
changes in the original maintenance plans. Predefined long-term maintenance
plans are rarely implemented or they need to be modified as new information
becomes available.

Given the uncertainty associated to the component’s performance, the best
maintenance policy should be based on a permanent monitoring strategy that
leads to optimum interventions. This paper presents a maintenance strategy
based on impulse control models in which the time at which maintenance is
carried out and the extent of interventions are optimized simultaneously to
maximize the cost-benefit relationship. In the model the optimal time and size
of interventions are executed according the the system state, which is obtained
from permanent monitoring.

The paper is organized as follows: the basic concepts of the impulse control
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model are presented in section II and, in section III, some basic theorems are
outlined. The core of the proposed optimum strategy is presented and discussed
in section IV and a description of the numerical solution is presented in section
V. Finally, in section VI the proposed approach is illustrated with an example
and the main results and conclusions are summarized in section VII.

2 Impulse Control Model

Let’s define a system component (e.g., bridge) whose performance is defined
by a random variable R; for instance, it can be the component’s reliability.
Furthermore, assume that the component is subject to shocks, which occur
according to a Poisson process, and every shock causes a random amount of
damage S. Thus, if (Ω,F , P ) is the probability space in which we define all the
stochastic quantities, we define the process R = {Rt, t ≥ 0}

Rt = r0 −

Nt
∑

i=1

Si (1)

where N = {Nt, t ≥ 0} is an homogeneous Poisson process with intensity λ > 0.
The sequence of the sizes of the shocks {Si}i∈N are independent and identi-
cally distributed random variables with probability distribution F on (0,∞).
We assume that {Si}i∈N is independent of the Poisson process N . The initial
reliability level is R0− = r0 (Fig. 1a).

Definition 2.1. A maintenance policy for the system is a double sequence ν =
{(τi, ζi)}i∈N of intervention times τi at which the performance is improved an
amount ζi (in R-units). The policy is an impulse control if satisfies the following
conditions:

1. 0 ≤ τi ≤ τi+1 for all i ∈ N,

2. τi is a stopping time with respect to the filtration Ft = σ{Rs−|s ≤ t} for
t ≥ 0,

3. ζi is a Fτi-measurable random variable,

Note that the class of impulse control policies is very general and include,
in particular, policies with fixed time interventions.

Given an impulse control ν, the controlled process Rν = {Rν
t , t ≥ 0} is de-

fined by

Rν
t = r0 −

Nt
∑

i=1

Si +

∞
∑

i=1

ζiI{τi≤t}. (2)

where I{τi≤t} is the indicator function (Fig. 1b).
Total failure occurs when the system performance falls bellow a pre-defined

threshold k∗ with 0 ≤ k∗. Thus, the time of total failure of the controlled
process is denoted by
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τν = inf{t > 0|Rν
t ≤ k∗}, (3)

and it is assumed that if the system reaches the threshold the process is stopped.
We denote by τ the time of total failure of the uncontrolled process R. With-
out any loss of generality we assume that k∗ = 0. While k∗ denote a lower
limit for the process, we also assume that there is a maximum (i.e., optimum)
performance level O that cannot be improved.

Any intervention (i.e., maintenance) at time τi depends on the state of the
system just before the intervention Rτi−. Therefore, the set of possible actions is
[0, O−Rτi−] and we call I the set of impulse controls such that ζi ∈ [0, O−Rτi−]
for all i. We will only consider maintenance policies that are impulse controls
and maintenance policies that are impulse controls in I.

If we denote Er0 [·] := E[·|Rν
0− = r0], for a given ν ∈ I and initial component

state r0 ∈ [0, O], the expected profit (Benefits-Costs) can be computed as:

J(r0, ν) = Er0

[

∫ τν

0

e−δsG(Rν
s )ds−

∑

τi<τν

e−δτiC(Rν
τi−, ζi)

]

, (4)

where G is a non-negative continuous, increasing and concave function on [0, O]
with G(0) = 0. C is continuous and increasing in both variables function such
that C > 0, and δ is the discount factor. The term e−δs corresponds to the
discounting function used to evaluate the net present value. Note that the first
term in equation (4) corresponds to the discounted benefits; where the function
G can be interpreted as an utility function. On the other hand, the second term
describes the discounted costs of interventions with C(r, ζ) the cost of bringing
the system from level r to level r + ζ.

The objective of the model is then to find the policy that maximizes the
profit among all admissible impulse controls; in other words, we want to find

V (r0) = sup
ν∈I

J(r0, ν) (5)

for a given level r0 in the state space [0, O]. Note that it is very difficult to
calculate V (r0) directly from (5). First, given a policy ν, we can use Monte
Carlo simulations to estimate the expected profit J(r0, ν). Then, we have to
repeat this process for all possible policies ν, which clearly cannot be obtained
at a reasonable computational cost.

Instead, we will solve the problem for all r ∈ [0, O] at the same time, that
is, we want to find the value function

V (r) = sup
ν∈I

J(r, ν). (6)

Although apparently this is a harder problem, we will characterize V as the
unique solution of certain equation (that does not involve expectation) and solve
this equation numerically.
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From the definition of the value function, we can easy see that V ≥ 0 since
we can choose to do nothing. Also, V (0) = 0 and V is bounded. We will use
this to characterize the function V .

3 Preliminaries

In this section we will present some definitions and fundamental concepts that
are required to find V in equation (6). We start with the following lemma whose
proof is presented in the Appendix.

Lemma 3.1. Let T be a stopping time with respect to the filtration Ft. Then
for all r ∈ [0, O]

V (r) ≥ Er

[

∫ T∧τ

0

e−δsG(Rs)ds+ e−δTV (RT )I{T<τ}

]

. (7)

Furthermore, we have equality in (7) if it is not optimal to intervene the
system before T .

In order to characterize the value function V in equation (6) we need to
define two operators. The first one is the intervention operator M defined as

Mf(r) = sup
0≤ζ≤O−r

f(r + ζ)− C(r, ζ) (8)

for a given function f defined on [0, O] and r in the same interval. We are
interested in applying M to the function V . Hence, if we consider any policy ν

such that τ1 = 0 and write ν = (0, ζ) ∪ ν̂ = (0, ζ) ∪ {(τi, ζi)}i≥2, then

V (r) ≥ J(r, ν) = −C(r, ζ) + J(r + ζ, ν̂),

and since ν̂ is arbitrary we obtain

V (r) ≥ V (r + ζ)− C(r, ζ).

Taking the supremum over all admissible ζ, we obtain that

V (r) ≥ sup
0≤ζ≤O−r

V (r + ζ)− C(r, ζ) = MV (r). (9)

The second operator is the infinitesimal generator of the uncontrolled process
R, that is:

Af(r) = λ

(
∫ r

0

f(r − s)dF (s) − f(r)

)

. (10)

The infinitesimal operator has the property that the process

e−δtf(Rt)− f(r) +

∫ t

0

e−δs (δf(Rs)−Af(Rs)) ds (11)
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is a Martingale with respect to Ft, for bounded f (see [13] and [15]). Taking
expectation in (11) and using Optional Sampling Theorem we obtain the so-
called Dynkin’s Formula: given T1 ≤ T2 almost sure (a.s.) finite stopping times,
then

E[e−δT2f(RT2
)− e−δT1f(RT1

)]

= E

[

∫ T2

T1

e−δs (Af(Rs)− δf(Rs)) ds

]

. (12)

Bellow, we will use this Formula with f replaced by V .

4 Optimal maintenance policy

Since the process R is Markovian, the future is independent of the past given the
present. Thus, in order to obtain an optimal policy it is necessary to differentiate
between the component states at which an intervention is required and those
where there is no need to intervene the system. It is important to stress that
because of the Markovian property, this classification will always be the same
and will only depend on the state of the system.

We use now the intervention operator M to describe the optimal policy.
Using equation (9) V ≥ MV , we can divide the state space [0, O] into the
subsets

A = {r ∈ [0, O] : V (r) = MV (r)}

and
B = {r ∈ [0, O] : V (r) > MV (r)}.

For r ∈ A we must intervene the system immediately and improve the per-
formance process by ζ∗, where

MV (r) = V (r + ζ∗)− C(r, ζ∗)

= sup
0≤ζ≤O−r

V (r + ζ)− C(r, ζ). (13)

Therefore, we call the set A the intervention region.
Now, for r ∈ B we must do nothing and let the system evolve. Therefore,

we obtain equality in (7), and using Dynkin’s Formula we have that δV (r) −
AV (r) = G(r). We call the set B the no intervention region (Fig. 2).

The previous discussion is the intuition behind the following theorem (proved
in Appendix).

Theorem 4.1. The value function V solves the equation

min{δV (r) −AV (r) −G(r), V (r)−MV (r)} = 0, (14)

for all r ∈ [0, O].
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Figure 2: Description of the impulse control model.

Remark It is possible that ζ∗ is not attainable in the equation above. In
this case there is not attainable optimum policy, but we can find controls with
expected profit within any degree of accuracy from the value function V .

To obtain a full characterization of the value function V (and the optimal
policy), we show now that V is the only solution of (13).

Theorem 4.2. Let g be a non-negative bounded function on [0, O] that solves
(13) such that g(0) = 0. Then g = V .

Proof. Let ν = {(τi, ζi)}i∈N ∈ I and initial reliability level r ∈ [0, O]. Using
Dynkin’s Formula, for t ≥ 0 we have

Er[e
−δ(t∧τν)g(Rν

t∧τν )]

=g(r) + Er

[

∫ t∧τν

0

e−δs (−δg(Rν
s ) +Ag(Rν

s )) ds

]

+ Er

[

∑

τi<t∧τν

e−δτi(g(Rν
τi− + ζi)− g(Rν

τi−))

]

.

Since g solves (13), then

Er[e
−δ(t∧τν)g(Rν

t∧τν )]

≤g(r)− Er

[

∫ t∧τν

0

e−δsG(Rν
s )ds

]

+ Er

[

∑

τi<t∧τν

e−δτiC(Rν
τi−, ζi)

]

.
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Letting t → ∞, bounded convergence we get J(r, ν) ≤ g(r) and taking sup over
I we obtain

V (r) ≤ g(r).

To prove the reverse inequality, let ǫ > 0 and define the following admissible
impulse control νg:

τ
g
i = inf{t ≥ τ

g
i−1 : g(Rνg

t ) = Mg(Rνg

t )}

and ζ
g
i such that

g(Rνg

τ
g

i
−) ≤ g(Rνg

τ
g

i
− + ζ

g
i )− C(Rνg

τ
g

i
−, ζ

g
i ) +

ǫ

2i
.

Note that δg(Rνg

s )−Ag(Rνg

s ) = G(Rνg

s ) for s between interventions. Therefore,
from the previous calculations we obtain

Er[e
−δ(t∧τνg

)g(Rνg

t∧τνg )]

≥g(r)− Er

[

∫ t∧τνg

0

e−δsG(Rνg

s )ds

]

+ Er





∑

τ
g

i
<t∧τνg

e−δτ
g

i C(Rνg

τ
g

i
−, ζ

g
i )



− ǫ.

Letting t → ∞ again, we get g(r) ≤ J(νg, r)+ ǫ ≤ V (r)+ ǫ. Since ǫ is arbitrary
we get the reverse inequality

g(r) ≤ V (r).

5 Numerical solution

To obtain the optimal policy is necessary to find the value function V by solv-
ing equation (13). Once we have V we can compute the intervention and no
intervention regions. Thus, for r ∈ B, we have that

δV (r) −AV (r) −G(r) = 0.

Using the definition of the infinitesimal operator A (equation (10)) with
f = V and solving the above equation for V (r) it is obtained that

V (r) =
1

λ+ δ

{

G(r) + λ

∫ r

0

V (r − y)dF (y)

}

. (15)

On the other hand, for the region where interventions are required; i.e.,
r ∈ A, we have that

V (r) −MV (r) = 0.

9



Then, using the definition of the intervention operator (equation (8)), V (r)
satisfies:

V (r) = sup
0≤ζ≤O−r

V (r + ζ)− C(r, ζ). (16)

To approximate V we follow the Jacobi iteration method described in [8].
First, we discretize the interval [0, O] in N = 1

h
intervals and initizialize the

vector V h
0 ≡ 0 ∈ R

N+1. Now, given V h
n we compute

V h
n+1[j] =

max

{

1

λ+ δ

{

G(jh) + λ

j
∑

i=0

V h
n [j − i]pi

}

,MV h
n [j]

}

,

where pi is the discretized density of F for ih and

MV h
n [j] = max

0≤i≤N+1−j
V h
n [j + i]− C(jh, ih).

Note that V h
n [0] = 0 for all n and all h since V (0) = 0.

We continue iterating over n until

max
j

∣

∣V h
n [j]− V h

n+1[j]
∣

∣ < ǫ,

for a given error tolerance ǫ.

6 Illustrative example

Consider an infrastructure system subject to shocks (e.g., earthquakes) whose
occurrence times follow an exponential distribution with rate λ = 0.5. The
sizes of the shocks are log-normally distributed with µ = 0.3 and σ = 1; and,
consequently, distribution parameters µlog = 2.23 and σlog = 2.9. Furthermore,
assume that the performance (state) of the system is permanently monitored.
This means that it is possible to know the state of the system when required (e.g.,
at periodic inspection times). The system state (which should be in practice
measured in physical units) is normalized and evaluated within the interval [0, 1];
where 1 means that the system is in “as good as new” condition, and k∗ = 0
indicates that it is not in operating condition. The objective of the study is to
define an optimal maintenance policy.

For the purpose of this example, the following assumptions are made. The
function G(r) (equation (4)), which is the utility function is given by:

G(r) = C
1

α
(1− e−αr), (17)

where C = 5 and α = 2. Note that this curve has the form of an exponential
risk aversion utility function. On the other hand, it is assumed that the costs
associated to an intervention are given by the following function (equation (4)),
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C(r, ζ) = r + ζ2 +K (18)

where the constant K = 0.1 reflects the fixed costs of any intervention. Note
that the intervention costs are proportional to the current state of the system
and grow with the square of the size of the intervention. For both utility and
cost, these values are discounted to the time of the decision by using a discount
factor δ = 0.2.

The outcome of the approach consists of two parts. First, it is necessary to
define, for every system state r, the intervention intensity ζ that maximizes the
expected profit (equation 4). This requires dividing the system in two states: a
region (state space values) where no intervention is required and a set of values
for which it is necessary. Thus, for a given system state obtained (measured)
at the time of inspection, the intervention level that maximizes the expected
profit at that particular time (i.e., discounted) can be obtained from this result.
The second result, is the value function V that provides the optimum expected
profit value obtained if the required actions (defined previously) are conducted.
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Figure 3: Description of the intervention requirements

Following the numerical approach presented in section 5 we obtain the results
after 8 iterations at a minimum computational time. The division between the
intervention and not intervention states (i.e. regions A and B) can be observed
in Fig. 3. Clearly, if the system is operating at a level r > 0.328 there is
no need for an intervention. However, if an inspection indicates that its state
is r ≤ 0.328 and intervention is required and the size of the intervention is
shown in the figure. For instance, if after an inspection at time t the system
state is Rt = 0.6 no intervention is required, but if Rt = 0.3 and intervention
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of magnitude ζ = 0.64 will be necessary to maximize the profit. This means
that immediately after the intervention the system will be at state 0.94 (i.e.,
0.3+0.64=0.94). Notice that Fig. 3 does not change with time as mentioned
earlier. If in the next inspection the observed state of the system is, say 0.6, no
intervention will be necessary

Furthermore, if this maintenance policy is carried out, the maximum ex-
pected profit can be observed in Fig. 4. Therefore, if after an inspection at
time t the system state is Rt = 0.3, the maximum expected profit that we
can obtain, by following the above policy, is V (0.3) = 3.77. Otherwise, if the
inspection yields a state Rt = 0.6, we can obtain a maximum of V (0.6) = 4.13.
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Figure 4: Maximum expected profit.

7 Summary and conclusions

The paper presents an approach to define the optimum maintenance policy of
a system that deteriorates with time as a result of shocks. The deterioration
process is modeled as a compound Poisson process. The proposed maintenance
strategy follows an impulse control model that requires the permanent (or at
least frequent) monitoring of the system state. Then, at every inspection time
the model can be used to make a decision as to whether the system should be
intervened or not. In case of requiring an intervention, the extent of the opti-
mum repair can be obtained from the model. The decisions based on the model
guarantee that the net present value of the utility at the time of the interven-
tion is maximum. It is suggested in the paper that this maintenance approach
is of particular importance for engineering systems that operate under adverse
environments for long time periods (e.g., > 25 years); for instance, physical in-
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frastructure (e.g., bridges, highways). Traditional maintenance strategies define
long term inspection and maintenance plans at a given point in time (usually
t = 0) without considering possible variations in the system’s use or condition,
and the technology available at the time of the decisions. Thus, it is argued
that the best maintenance policy in these cases can be obtained by combining
both permanent monitoring and optimum interventions.

Lemma 3.1. Let T be a stopping time with respect to the filtration Ft. Then
for all r ∈ [0, O]

V (r) ≥ Er

[

∫ T∧τ

0

e−δsG(Rs)ds+ e−δTV (RT )I{T<τ}

]

. (7)

Furthermore, we have equality in (7) if it is not optimal to intervene the
system before T .

Proof. Let r ∈ [0, O] and ν = {(τi, ζi)}i∈N ∈ I, then J(r, ν) = Er [η] where

η =

∫ τν

0

e−δsG(Rν
s )ds−

∑

τi<τν

e−δτiC(Rν
τi−, ζi).

Given T a stopping time with respect to the filtration Ft, the control ν + T =
{(τi + T, ζi)}i∈N is also an admissible control. If we call Θt the usual shift
operator (see [13]), from the strong Markov property of the process R we have

J(r, ν + T )

= Er

[

∫ T∧τ

0

e−δsG(Rs)ds+ e−δTΘT ηI{T<τ}

]

= Er

[

∫ T∧τ

0

e−δsG(Rs)ds+ e−δT
ERT

[η]I{T<τ}

]

= Er

[

∫ T∧τ

0

e−δsG(Rs)ds+ e−δTJ(RT , ν)I{T<τ}

]

Taking sup over ν ∈ I we obtain (7). If it is optimal not to intervene before T ,
then V (r) = supν∈I J(r, ν + T ).

Theorem 4.1. The value function V solves the equation

min{δV (r) −AV (r) −G(r), V (r)−MV (r)} = 0, (13)

for all r ∈ [0, O].

Proof. Let r ∈ [0, O]. From equation (9) V ≥ MV . On the other hand, for any
stopping time T ≤ τ a.s., by Dynkin’s Formula and boundedness of V , we have

V (r) − Er[e
−δTV (RT )]

= Er

[

∫ T

0

e−δs (δV (Rs)−AV (Rs)) ds

]

.
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Using (7) we get that

Er

[

∫ T

0

e−δs (δV (Rs)−AV (Rs)−G(Rs)) ds

]

≥ 0.

If we choose T = T1, the time of the first shock, then Rs = r for 0 ≤ s < T1

and therefore δV (r) −AV (r) −G(r) ≥ 0. Now, suppose that V (r) > MV (r),
hence it is not optimal to intervene at time 0, so it is not optimal to intervene
before T1. Then, by lemma 3.1 we get δV (r)−AV (r)−G(r) = 0.
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