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Reliability modelling and maintenance policy
optimization for a repairable parallel system

Reza Ahmadi, Shaomin Wu, Amirhossein Sobhani

Abstract—This paper proposes an integrated approach for
reliability modelling and maintenance scheduling of repairable
parallel systems subject to hidden failures. The system consists of
heterogeneous redundant subsystems whose failures are revealed
only by inspections. Inspections at periodic times reveal the
components state and repair actions are decided by the excursion
of a basic state process describing the total number of failed
components in each subsystem. Using the standard renewal argu-
ments, the paper aims at minimizing the average cost rate by the
joint determination of the optimal inspection interval, the partial
repair threshold and the preventive replacement threshold. We
illustrate the procedure for the case as the components’ lifetimes
conform to the Weibull distribution. Numerical examples are used
to illustrate the proposed model and the response of the optimal
solutions to the model’s parameters.

Index Terms—Maintenance; Partial repair; Hidden failure;
Heterogeneity population; Renewal-reward theorem.

I. INTRODUCTION

A. Background

During past decades, failure modelling and maintenance
scheduling of safety systems such as fire detectors, and
protective device, has attracted great attention. These safety
systems are composed of components in parallel and keeping
them at a high availability is crucial. This arises from inherent
characteristic of such systems whose failures are revealed only
by inspections (known as hidden failures). For practitioners,
undetected failures in these systems can be of great concern
when costs associated with maintenance are significant and
undetected downtime can lead to not only a significant loss
of revenue but also grave consequences related to health,
safety, and environment. Thus, for such systems, an appro-
priate failure model and maintenance strategy are essential to
respectively assess the probability of the system failure and to
increase the system availability. A maintenance action incurs
cost, which raises an intriguing question: how can the system
be inspected and repaired so that the availability of the system
[1] can be ensured and the relevant maintenance costs can be
minimized? This paper attempts to answer those questions by
considering some characteristics that have not been addressed
or studied in the literature.
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B. Novelty and contributions

The main contributions of this paper are twofold. First,
to derive the state-driven mean residual lifetime (SDMRL)
function under the heterogeneity assumption. The pleasant
features of the explored function are that (i) it considers
both the age factor and the effect of components state; (ii) it
derives the ordinary mean residual lifetime (MRL) function
and other specific models.. The second contribution of the
paper is on its development of an integrated decision model,
which allows considering different types of repair actions and
maintenance policies. In literature, there are many maintenance
decision models that are well-developed for the homogeneous
population. However, little has been studied for the systems
composed of components from heterogeneous populations.
When the components of a system are from different pop-
ulations, which are characterized by different failure rates,
the major challenge is to explore a methodology capable of
handling such scenarios while providing effective decision-
making.

C. Overview

The paper is organized as follows. Section II conducts a
literature review. Section III describes the deterioration model
and the maintenance decision mechanism. Using the standard
renewal theory arguments, Section IV formulates the average
cost rate for optimizing the model with respect to maintenance
parameters. In the next Section we demonstrate the generality
of our model by showing that several existing models are
emerged as special cases. The proposed model and the effect of
the model’s parameters on the optimal solutions are illustrated
in Section VI. In the last Section, the main findings of the
model are summarized and future research directions are
underlined.

II. RELATED WORK

In order to elucidate the contribution of the paper and
its positioning in contrast to existing models, we provide
a brief literature review of research works, mostly centered
on reliability modelling and the aspect of inspection and
preventive maintenance policies.

During past decades, enormous reliability indicators includ-
ing MRL functions [2, 3] are adopted for assess the probability
of failures of multi-component systems composed of compo-
nents from with the same population. Typically, the MRL of a
system is defined as the remaining time to the end of the useful
life, that is, T−t|T > t, where T is the failure time of a system
and t is the current time. However, this modelling approach
can result in biased estimate of system reliability when the
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MRL function cannot adapt itself to the variation of condition
monitoring data. To reduce this accuracy, authors [e.g. see 4–6]
attempt to correct this shortcoming by incorporating historical
condition monitoring data X(t) into the MRL:

MRL := E(T − t|T > t,X(t)) .

For example, Huynh et al. [4] present a preventive maintenance
model based on a MRL indicator accommodating the effect of
deterioration level via incorporating a damage process. Wang
and Zhang [6] formulate a recursive prediction model for the
residual life of an aircraft engine, given measured oil moni-
toring information. Although reliability modelling in literature
is well-developed for homogeneous multi-component systems,
in practice the system consists of components characterized
by different failure patterns. This motivated us to devise a
state-driven MRL function for an n-component parallel system
consisting of heterogeneous components:

m(t;X(t)) = E(T − t|X(t)) ; X(t) 6= n.

The above model is further developed by exploring an
integrated maintenance policy when considering joint inspec-
tion and threshold-type policy for repairable systems. Essen-
tially the model is an extension of previous works [7–13]
whose attention is restricted to inspection policies. Among
existing models, for example, Jiang and Jardine [8] propose
an optimum inspection scheduling model that outperforms
classical optimum checking policies [7]. Berrade [10] proposes
a model with a two-phase inspection policy and allows the
inspection adapt to the actual state of the system. Golmakani
and Moakedi [11] proposes an optimal non-periodic inspection
policy for a multi-component repairable system. Keleş et al.
[12] schedule (periodic) inspections for a three-state Marko-
vian deteriorating system under two types of repair actions (no
action and perfect repair). More recently, Seyedhosseini et al.
[13] obtain an optimal periodic inspection interval for a two-
component system subject to hidden and two-stage revealed
failures.

As an extension of the models cited above, recent works
[14–19] are developed by integrating both the inspection and
preventive replacement policy. For instance, Berrade et al. [14]
develop hybrid block replacement and age-based inspection
policies for a heterogeneous multi-component protection sys-
tem. Babishin and Taghipour [16] consider the optimal inspec-
tion and preventive replacement policy for a multi-component
system subject to soft hidden failures and hard failures. Age
and the number of minimal repairs are respectively used
as decision variables for replacement of hard-type and soft-
type components. More recently, Babishin and Taghipour [17]
explore an approach to the joint determination of optimal in-
spection and replacement policy of k-out-of-n systems. Similar
to the earlier work [16] the number of minimal repairs is
used as a basis for replacement. Given partial information,
Ahmadi and Wu [18] present a new approach to jointly
determining optimal inspection and preventive replacement
policy for parallel systems. Recently, Qiu et al. [19] proposes
an optimal maintenance policy for a two-component system
with dependent soft and hard failures.

III. A NOVEL MODEL

A. Justification of the idea

In contrast to the aforementioned models, our approach
allows modelling inspection and also exploring a general
repair model including partial repair [20–22, 24, 24–32] with
some unprecedented characteristics. This is motivated by the
extension of earlier works (e.g., see [33]) that include three
types of repair actions (no action, partial repair and corrective
replacement) and those models whose attentions are restricted
to inspection and perfect repair. This deficiency or restriction
particularly for heterogeneous population arises from compli-
cated nature of modelling of repairable systems and complex-
ities of the cost model formulation. In this paper we address
these problems with two tools, firstly, incorporating a virtual
age process into the underlying decision variable, secondly, the
probabilistic modelling of the associated transition mechanism
induced by a partial repair action.

We will see the present model with the aforementioned
characteristics not only accommodates actual situations, but
also allows different scenarios to be explored.

Before proceeding to model developments, we optimize a
cost model for preventive maintenance in the following setting.
We consider the problem of inspecting and maintaining a
multi-component parallel system subject to non-self announc-
ing failures. It is assumed that components of the considered
system includes two types of components [34], characterized
by two different failure rates. The decision process for repair
and maintenance of the system is driven by the excursion of the
bivariate counting process X(t) = (X1(t),X2(t)) that describe
the total number of failed components in both categories up
to age t. The system state X(t) is determined by inspections
at fixed intervals [35, 36] Π = {kτ : 1,2, · · ·} and corrective
and preventive maintenance actions are carried out in response
to the observed system state. In preference to earlier works
(e.g. see [33]), the approach in this paper is developed by the
inclusion of four kinds of preventive repair actions decided by
partitioning the state space Ω into four exclusive subsets no
action (Ω0), partial repair action (Ω1), preventive replacement
(Ω2), and corrective replacement (Ω∗). More specifically,
preventive maintenance actions are implemented on the basis
of the total number of failed components and the maintenance
parameters: partial repair threshold (denoted by κ) and pre-
ventive replacement threshold (`) as follows: on inspection
if the revealed state falls in Ω0, that is, the total number of
failed components is less than κ , the system is not repaired
and is left to continue (no action); the system undergoes a
partial repair if the failure frequency of components is to be
somewhere between κ and `− 1; the system is preventively
replaced with new one if without a failure the total number of
failed components reaches `. The partial repair model adopted
here is similar to that used by some authors (e.g., [33]; the
effect of a partial repair is reflected in the system state through
a change of the time origin. In this way, via a virtual age
concept the system state is restored as far back as the system
state at the start of the last intervention. However, our model
uses a general kernel density governing state translations of
a virtual age process. One of the main advantages of the
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developed approach is that it enables decision makers to
address the trade-off between repair level controlled by some
repair parameters and repair costs. We address the problem
with the further tool that is the standard method of seeking
the regeneration points of the stochastic process X(t). The
sequence of regeneration points defined by replacement epochs
makes an embedded renewal process and this allows using the
renewal-reward theorem and formulating the average cost rate.
The average cost rate is used as a measure of inspection and
preventive maintenance policy for optimizing the model with
respect to maintenance parameters (τ∗,κ∗, `∗).

B. Degradation model

Consider a parallel system consisting of n independent com-
ponents classified in k categories. Denote ni (i = 1,2, · · · ,k)
as the number of components in the ith category and Ci

j as
the jth component in the ith category with lifetime Ti j and
the corresponding lifetime distribution function Fi j(t). This
approach is common in application when a heterogeneous
system is composed of components with different material,
deterioration process, and environmental characteristics.

Lemma 1: Let X(t) be an n-variate counting process with
elements Xi(t), which counts the total number of failed com-
ponents in ith category (i = 1,2, · · · ,k) up to age t. Then,
the transition probability of the state process X from state
i = (i1, i2, · · · , ik) at v to the state j = ( j1, j2, · · · , jk) at τ

(0 < v < τ) becomes

πij(v,τ) = P(X(τ) = j|X(v) = i
)

=
k

∏
u=1

B
(

ju− iu,nu− iu,1−
F̄u(τ)

F̄u(v)

)
(1)

where B(x,m, p) represents the binomial density function with
parameters m and p:

B(x,m, p) =
(

m
x

)
px(1− p)m−x.

To facilitate the presentation due to the homogeneity of
components in each category, the subscripts j is dropped of
Fi j.

Proof. The result follows from the probability principles and
the independence assumption of components.

The following lemma presents a state-driven reliability
indicator function that plays a key role in the failure prediction
of the system and decision making. The devised indicator
shares some features of the ordinary mean residual lifetime
function, but it differs through incorporating the basic process
X(t), which reflects the true state of components.

Lemma 2: Let Tn:n be the system’s lifetime and m(t; i) de-
note the state-driven mean residual lifetime (in short SDMRL)
function of the system at age t given the observed state
X(t) = i, assuming that i0 = ∑

k
u=1 iu 6= n. In other words,

m(t; i) = E(Tn:n− t|X(t) = i) .
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Fig. 1. SDMRL as a function of t given the observed state X(t) = (i1, i2).

Then,

m(t; i) =
n−1

∑
v=i0

∑
A(v)

∫
∞

t

k

∏
u=1

B
(

ju− iu;nu− iu,1−
F̄u(w)
F̄u(t)

)
dw

(2)

where A(v) denotes the set of nonnegative integer solutions to
the equation ∑

k
u=1 ju = v:

A(v) =

{
j :

k

∑
u=1

ju = v, iu ≤ ju ≤ nu;u = 1,2, · · · ,k

}
.

Proof. For proof see Appendix A.
Figure 1 is given to examine the response of the reliability

indicator (2) as a function of t for different state values
X(t) = (i1, i2) when ni = 2 (i = 1,2) and components’ life-
times in category 1 and 2, respectively, which conform to
the Weibull distribution with parameters (α,β1) = (2,2) and
(α,β2) = (2,

√
2).

Remark 1: It is sometimes of interest to study of the scaled
SDMRL function g(t; i) for t ∈ [0,∞):

g(t; i) =
m(t; i)
m(0;0)

; g(t; i) ∈ (0,1], (3)

where m(0;0) implies the mean time to failure (MTTF) of
a heterogenous multi-component parallel system given the
starting state X(0) = 0. When the system has operated up to
time t, then g(t; i) gives the m(t; i) as a percentage of the initial
MMTF.
For illustration purpose, an evolution of the scaled SDMRL
function for different state values X(t) = (i1, i2) is given
(see Figure 2). If, for example, the observed state of failed
components in two categories at age t is X(t) = (i1, i2) and
g(t; i) = x, then the scaled SDMRL is x% of MTTF at t = 0
given that X(0) = 0.

Before proceeding to the next section, results are developed
by considering some specific models emerging as special case.
The special cases are described in the following.
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Fig. 2. Scaled SDMRL as a function of t given the observed state X(t) =
(i1, i2).

Result 3.1: (Homogeneous population) In a particular case,
let the homogeneous population be recovered by k = 1. In this
instance, the SDMRL function (2) turns into

m(t; i) =
n−1

∑
j=i

∫
∞

t

(
n− i
j− i

)(
1− F(ω)

F̄(t)

) j−i( F̄(ω)

F̄(t)

)n− j

dω.

(4)

Result 3.2: (Exponential homogeneous population) Let k =
1 and the components’ lifetimes conform to an exponential
distribution with mean value λ . In this instance, the SDMRL
function (2) becomes

m(t; i0) = λ

n−1

∑
j=i0

1
n− j

. (5)

Another important aspect of the explored model (2) is that
under the homogeneity assumption, the MRLs function of
an x-component series system characterizes the SDMRL of
a multi-component parallel system.

Proposition 1: Let k = 1 and ms(t;x) denote the MRL
function of an x-component series system. Then, the SDMRL
function (4) can be characterized with respect to ms(t;x) as
(6):

m(t; i) =
n−i

∑
x=1

(
n− i

x

)
(−1)x+1ms(t;x). (6)

Proof. For proof see Appendix B.
It would be of interest to note that in a particular case when

components’ lifetimes are distributed exponentially with mean
value λ , we have

m(t; i) = λ

n−i

∑
x=1

(
n− i

x

)
(−1)x+1 = λ

n−1

∑
x=i

1
n− j

,

and so,
n−i

∑
x=1

(
n− i

x

)
(−1)x+1 =

n−1

∑
x=i

1
n− j

.

Example 1: Let the observed state of an n-component
homogeneous parallel system be X(t) = i (i = 1,2, · · · ,n−1)

t
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Fig. 3. The decomposed representation of the SDMRL function of an 5-
component parallel system, m(t;2), in terms of the MRL functions of an
x-component series system ms(t;x) (x = 1,2,3).

and components’ lifetimes are distributed with a Weibull
distribution with parameters (α,β ) = (2,β ). Then,

m(t; i) = β

n−i

∑
x=1

(
n− i

x

)
(−1)x+1

√
π

x

[
1−φ

(√
2xt
β

)]
× exp

(
x(t/β )2) .

Figure 3 shows the SDMRL function of an 5-component ho-
mogeneous parallel system m(t;2) decomposed into the MRL
function of an x-component series system ms(t;x) (x = 1,2,3):

m(t;2) = 3ms(t;1)−3ms(t;2)+ms(t;3).

In contrary fashion, the MRL function of a series system can
be decomposed into the SDMRL functions of parallel systems
in the following way.

Proposition 2: Under the homogeneity assumption, a de-
composed representation of the MRL function of an i-
component series system in terms of the SDMRL function (4)
of an n-component parallel system given X(t) = n−x becomes

ms(t; i) =
i

∑
x=1

(
i
x

)
(−1)x+1m(t;n− x). (7)

Proof. For proof see Appendix C.
Figure 4 indicates the MRL function of an 3-component series
system ms(t;3), characterized through the SDMRL function of
an 5-component parallel system m(t;5− i) (i = 1,2,3):

ms(t;3) = m(t;2)−3m(t;3)+3m(t;4).

C. Maintenance model

In this section, we address the maintenance problem for
systems composed of two types of components (k = 2). The
maintenance decision mechanism described below involves
periodic inspections Π = {τ,2τ, · · ·}. Inspections are perfect
and reveal the true state of the bivariate process X(t) =
(X1(t),X2(t)) ∈ Ω. Corrective and preventive maintenance
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Fig. 4. The decomposed representation of the MRL function of an 3-
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component parallel system m(t; i) (i = 2,3,4).

actions are carried out in response to the observed system state.
Preventive actions including three kinds of repair actions are
decided by partitioning the state space Ω into non-overlapping
sets. Partitioning Ω is triggered by the maintenance parameters
κ and ` (κ < `), respectively, used as the definition of the
partial repair action and the preventive replacement action.

More specifically, assume that the starting state of the
system be X(0) = 0 and A denotes an action matrix of
order (n1 +1)× (n2 +1) with elements ars =

〈
a,r,s

〉
denoting

the repair action taken in response to the bivariate state
(X1(t),X2(t)) = (r,s) at age t:

A= [ars] =
[〈

a,r,s
〉]

=


a00 a01 . . . a0n2
a10 a11 . . . a1n2

...
...

. . .
...

an10 an11 . . . an1n2

 .

Further assume that for 0 < κ < `≤ n1 +n2−1

A0 = {0,1, · · · ,κ−1}
A1 = {κ,κ +1, · · · , `−1}
A2 = {`,`+1, · · · ,n1 +n2−1}

and

Ω0 = {(r,s) ∈Ω : r+ s ∈ A0}
Ω1 = {(r,s) ∈Ω : r+ s ∈ A1}
Ω2 = {(r,s) ∈Ω : r+ s ∈ A2}
Ω
∗ = {(n1,n2)}

are the subsets of the state space

Ω = {(r,s) : r = 0,1, · · · ,n1, s = 0,1, · · · ,n2}

associated with actions {a0} (no action), {a1} (partial repair),
{a2} (preventive replacement) and {a∗} (corrective replace-

ment). Then,
〈
a,r,s

〉
with respect to the bivariate state (r,s)

can be expressed as

ars =
〈
a,r,s

〉
=


a0, (r,s) ∈Ω0;
a1, (r,s) ∈Ω1;
a2, (r,s) ∈Ω2;
a∗, (r,s) ∈Ω∗;

Therefore the action space including four actions is Ωa(4) =
{a0,a1,a2,a∗}. Note that in the case that the starting state of
the system is X(0) = i = (i1, i2) both the action matrix A and
the subsets Ωi (i = 0,1,2) are modified as

A(i) = [ars]

=
[〈

a,r,s
〉]

=


ai1i2 ai1(i2+1) . . . ai1n2

a(i1+1)i2 a(i1+1)(i2+1) . . . a(i1+1)n2
...

...
. . .

...
an1i2 an1(i2+1) . . . an1n2

 .

and

Ω0(i) = {(r,s) ∈Ω : r+ s ∈ A0 : r ≥ i1,s≥ i2} ,
Ω1(i) = {(r,s) ∈Ω : r+ s ∈ A1 : r ≥ i1,s≥ i2} ,
Ω2(i) = {(r,s) ∈Ω : r+ s ∈ A2 : r ≥ i1,s≥ i2} .

In the present work, the modelling approach is extended by
means of a virtual age model. The virtual age process through
the change of time origin in bivariate process X(t) allows the
system state to be restored as far back as the system state at
the start of the last intervention. More specifically, let t and
X(t) denote the virtual age and the system state just after
the last intervention at (i− 1)τ . On finding the system in
state X(t + τ) ∈ Ω1 at iτ the decision maker carries out a
partial repair which restores the virtual age (t + τ) 7→ V (τ; t)
somewhere between the virtual age after the last intervention,
t, and the virtual age just before repair, (t + τ). The effect
of the partial repair at iτ is reflected in the state process
through a change of the time origin. In other words, the system
found with state X(t + τ) is restored to the state X(V (τ; t))
where (V (τ; t),X(V (τ; t))) = ρ (t + τ,X(t + τ)). The function
ρ describing the repair is a mapping from pre-repair state
X(t +τ) revealed upon inspection at age (t +τ) to post-repair
state induced by a repair action based on exclusive state sets
Ωi (i = 0,1,2) and Ω∗:

ρ
(
t+τ,X(t+τ)

)
=


(t + τ,X(t + τ)), X(t + τ) ∈Ω0;
(V (τ; t),X(V (τ; t))), X(t + τ) ∈Ω1;
(0,0), X(t + τ) ∈Ω2;
(0,0), X(t + τ) ∈Ω∗.

The approach is extended by the use of a flexible transition
density specifying the location of the post-virtual age state
V (τ; t) ∈ (t, t + τ) given the pre-state (t + τ):

fτ(v; t) =
1

τa+b−1 ×
(v− t)a−1(τ− v+ t)b−1

β (a,b)
; t < v < t + τ,

(8)

with corresponding expected value

E(V (τ; t)) = t +
(

a
a+b

)
τ,



6

v

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
x
p
e
c
te

d
 n

u
m

b
e
r 

o
f 
fa

ile
d
 c

o
m

p
o

n
e
n
ts

0

2

4

6

8

10

12

14

(β
1
,β

2
)=(  2, 2)

(β
1
,β

2
)=(  3,3)

(β
1
,β

2
)=(2,4)

Fig. 5. Expected number of failed components at virtual age v∈ (0,2) induced
by a partial repair.

where a > 0 and b > 0 refer to the parameters of the beta
function B(a,b):

β (a,b) =
∫ 1

0
xa−1bb−1dx.

In the particular case a= b= 1, we get the uniform distribution
with CDF:

Fτ(v; t) =

 0, v < t;
v−t

τ
, v ∈ (t, t + τ);

1, v≥ t + τ .
(9)

To facilitate average cost modelling adopted as a measure
of policy, Lemma 3 establishes the transition probability of
the basic process X(t), induced by a partial repair action.

Lemma 3: Let V (τ;0) = v denote the updated virtual age,
induced by a partial repair at age τ . Then, given the assumption
of lemma (1), the transition probability from X(τ) = j to the
post-repair state X(v) = i (0 < v < τ) becomes

πji(τ,v) =
2

∏
k=1

B
(

ik; jk,
FTk(v)
FTk(τ)

)
.

Proof. It results from lemma 1 and the Bayes’ theorem.
Note that under the assumptions of population homogeneity

(n1 = 0), the transition model turns into

π ji(τ,v) = B
(

i; j,
FT (v)
FT (τ)

)
.

Assuming that the observed state at intervention time t = 2
is X(t) = (5,8), Figure 5 illustrates the response of the ex-
pected number of failed components to degradation parameters
(β1,β2) at virtual age v ∈ (0,2), induced by a partial repair
action. Figure indicates that the expected number of remaining
failed components after repair is a decreasing function of
degradation parameters (β1,β2); as the system becomes more
susceptible to failure, few failed components are brought back
to the functioning state.

IV. AVERAGE COST RATE

A. Expected cost per cycle

A cycle consists of a sequence of inspections and mainte-
nance actions that ultimately ends with (un)planned replace-
ment. Corrective and preventive maintenance actions costs
incurred in a cycle are random. Let Ci

τ denote the cost per cycle
given starting state X(0)= i, that is, the system starts operating
with n0 = (n1− i1,n2− i2) components of two categories. At
inspection time τ , if the bivariate state process X(τ) = (r,s) is
observed in Ω0 no action is taken,

〈
a,r,s

〉
= a0, and the system

restarts from the current state X(τ)∈Ω0. It incurs the planned
inspection cost C0 and the future costs starting in state X(τ).
If the system is found in Ω1 and a partial repair is taken,〈
a,r,s

〉
= a1, then the system restarts from the post-repair

state X(V (τ;0)) with the planned partial repair cost C(a,b)
(C(a,b)>C0) and the future cost starting in state X(V (τ;0)).
An additional cost would be incurred if on inspection the
revealed state falls in Ω2. In this case the system is returned to
the perfect working state,

〈
a,r,s

〉
= a2, with the replacement

cost Cr (Cr > C(a,b)) and the future cost starting in state
X(0) = 0. If the system is found in failed state, X(τ) ∈Ω∗, it
undergoes a corrective maintenance, i.e.

〈
a,r,s

〉
= a∗. It incurs

an unplanned replacement cost C f (C f >Cr) and a penalty cost
per unit time Cp due to an undetected failure within inter-
inspection times. In other words,

Ci
τ =

(
C0 +CX(τ)

τ

)
I
(
X(τ) ∈Ω0(i)

)
+
(

C(a,b)+CX(V (τ;0))
τ

)
I
(
X(τ) ∈Ω1(i)

)
+
(

Cr +C0
τ

)
I
(
X(τ) ∈Ω2(i)

)
+
(
C f +Cp(τ−T )

)
I
(
X(τ) ∈Ω

∗)
(10)

where T denotes the lifetime of the system, C(a,b) = pC0 +
(1− p)Cp for p = a

a+b ∈ (0,1) and C0
τ arises from the preven-

tive replacement which resets all processes to zero. It is noted
that the cost function C(a,b) defined as above adapts itself to
the repair level, determined by the partial repair parameters
(a,b): higher level of repair induced by smaller (larger) value
of the partial repair parameter a(b) incurs more costs.
Taking the expectations of both sides of (10) gives the ex-
pected cost per cycle C i

τ(κ, `) = E(Ci
τ):

C i
τ(κ, `) = ∑

j∈Ω0(i)

(
C0 +C j

τ (κ, `)
)
πij(0,τ)

+
(
Cr +C 0

τ (κ, `)
)

∑
j∈Ω2(i)

πij(0,τ)

+πin0(0,τ)
(
C f +Cpµ(τ;n0)

)
+
∫

τ

0
∑

j∈Ω1(i)
∑

k∈Ω(i,j)

(
C(a,b)+C k

τ (κ, `)
)
πjk(τ,v)πij(0,τ) fτ(v;0)dv

(11)

where n0 = (n1− i1,n2− i2),

Ω(i, j) = {(r,s) : r+ s≤ j1 + j2,r = i1, · · · , j1,s = i2, · · · , j2}

and

µ(τ;n0) =

∫
τ

0 πin0(0,u)du
πin0(0,τ)

,
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is the mean past lifetime of an [(n1+n2)−(i1+ i2)]-component
system.

B. Expected cycle length

Let Li
τ denote the cycle length starting in X(0)= i. Using the

same argument as above the expected cycle length, `i
τ(κ, `) =

E(Li
τ) is obtained: if at inspection time τ the bivariate state

process X(τ) is observed in Ω0, the cycle length consists of
an inspection time and an additional cycle length starting from
X(τ). When finding the system in Ω1 the random time Li

τ is
made up of an inspection time and a cycle length with starting
state X(V (τ;0)) is updated after partial repair. In the perfect
repair case, the cycle length is made up of a full period τ and
an additional random time L0

τ starting in state X(0) = i. On
failure at τ the cycle length is completed. In other words,

Li
τ =

(
τ +LX(τ)

τ

)
I
(
X(τ) ∈Ω0(i)

)
+
(

τ +LX(V (τ;0))
τ

)
I
(
X(τ) ∈Ω1(i)

)
+
(

τ +L0
τ

)
I
(
X(τ) ∈Ω2(i)

)
+ τI

(
X(τ) ∈Ω

∗) (12)

Taking the expectations of both sides of (12) gives the ex-
pected cost per cycle `i

τ(κ, `) = E(Li
τ):

`i
τ(κ, `) = τ + ∑

j∈Ω0(i)
`j

τ(κ, `)πij(0,τ)+ `0
τ(κ, `) ∑

j∈Ω2(i)
πij(0,τ)

+
∫

τ

0
∑

j∈Ω1(i)
∑

k∈Ω(i,j)
`k

τ (κ, `)πjk(τ,v)πij(0,τ) fτ(v;0)dv.

(13)

Thus, using the equations (11) and (13), the average cost rate
can be given by

Ci
τ(κ, `) =

C i
τ(κ, `)

`i
τ(κ, `)

.

The optimal period of inspection τ∗ and preventive mainte-
nance thresholds (κ∗, `∗) can then be determined as:

(τ∗,κ∗, `∗) = argmin
(τ,κ,`)∈(0,∞)×Ω̄

Ci
τ(κ, `). (14)

where Ω̄ = Ω\{(n1,n2)}.

C. Obtaining solutions

The optimization problems above contain equations (11) and
(13) so that discretization of the inspection interval with a
specific step size h produces corresponding equivalent matrix
equations with the general form

(I−B)C = bc, (15a)
(I−B)`= bl , (15b)

where I is an identity matrix, B and bc,bl are a matrix and
two column vectors with known elements and C and ` refer to
column vectors with elements C i (11) and `i (13) respectively.
Equations (15a) and (15b) are solved numerically using the
function X = Linsolve(A,B) in matlab solving linear system
of equations given in matrix form AX = B.

V. RELATIONSHIP TO OTHER MODELS

The proposed model covers some maintenance models
emerging as special cases. They are recovered by an appro-
priate choice of decision parameters (κ, `) or varying other
parameters of the model.

A. Variant 1 model: Ωa(3) = {a0,a2,a∗}
The variant 1 repair model corresponds to dropping Ω1(i)

(partial repair action) by setting κ = `. This restricts the
action space Ωa(4) to three kinds of repair actions Ωa(3) =
{a0,a2,a∗}. The equations (11) and (13) become

C i
τ(`) = ∑

j∈Ω0(i)

(
C0 +C j

τ (`)
)
πij(0,τ)

+
(
Cr +C 0

τ (`)
)

∑
j∈Ω2(i)

πij(0,τ)+πin0(0,τ)
(
C f +Cpµ(τ;n0)

)
and

`i
τ(`) = τ + ∑

j∈Ω0(i)
`j

τ(`)πij(0,τ)+ `0
τ(`) ∑

j∈Ω2(i)
πij(0,τ).

B. Variant 2 model: Ωa(3) = {a0,a1,a∗}
The variant 2 repair model with three kinds of actions, i.e.

Ωa(3)= {a0,a1,a∗} (excluding preventive replacement action)
is recovered by letting `= n. This turns (11) and (13) into

C i
τ(κ,n) = πin0(0,τ)

(
C f +Cpµ(τ;n0)

)
+ ∑

j∈Ω0(i)

(
C0 +C j

τ (κ,n)
)
πij(0,τ)

+
∫

τ

0
∑

j∈Ω1(i)
∑

k∈Ω(i,j)

(
C(a,b)+C k

τ (κ,n)
)
πjk(τ,v)πij(0,τ) fτ(v;0)dv

and

`i
τ(κ,n) = τ + ∑

j∈Ω0(i)
`j

τ(κ,n)πij(0,τ)

+
∫

τ

0
∑

j∈Ω1(i)
∑

k∈Ω(i,j)
`k

τ (κ,n)πjk(τ,v)πij(0,τ) fτ(v;0)dv.

C. Variant 3 model: Ωa(3) = {a1,a2,a∗}
The variant 3 model with three possible actions Ωa(3) =
{a1,a2,a∗} (excluding no action) emerges as particular case
by letting κ = i0 (i0 = i1 + i2). The assumption reformulates
(11) and (13) as

C i
τ(i0, `) = πin0(0,τ)

(
C f +Cpµ(τ;n0)

)
+
(
Cr +C 0

τ (κ, `)
)

∑
j∈Ω2(i)

πij(0,τ)

+
∫

τ

0
∑

j∈Ω1(i)
∑

k∈Ω(i,j)

(
C(a,b)+C k

τ (i0, `)
)
πjk(τ,v)πij(0,τ) fτ(v;0)dv

and

`i
τ(i0, `) = τ + `0

τ(i0, `) ∑
j∈Ω2(i)

Pij(0,τ)

+
∫

τ

0
∑

j∈Ω1(i)
∑

k∈Ω(i,j)
`k

τ (i0, `)Pjk(τ,v)Pij(0,τ) fτ(v;0)dv.
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D. Variant 4 model: Ωa(2) = {a0,a∗}

The variant 4 model is recovered by merging subsets Ωi
(i = 0,1,2) to Ω0 (no action) by assuming κ = ` = n. This
partitions the action space into two regions associated with no
action {a0} and corrective replacement {a∗}. The equations
(11) and (13) become

C i
τ(n) = ∑

j∈Ω0(i)

(
C0 +C j

τ (n)
)
πij(0,τ)

+πin0(0,τ)
(
C f +Cpµ(τ;n0)

)
and

`i
τ(n) = τ + ∑

j∈Ω0(i)
`j

τ(n)πij(0,τ).

E. Variant 5 model: Ωa(2) = {a1,a∗}
The variant 5 repair model with two kinds of actions,

i.e. Ωa(2) = {a1,a∗} (excluding no action and preventive
replacement action) is recovered by letting κ = i0 and ` = n.
This turns (11) and (13) into

C i
τ (i0,n) = πin0(0,τ)

(
C f +Cpµ(τ;n0)

)
+
∫

τ

0
∑

j∈Ω1(i)
∑

k∈Ω(i,j)

(
C(a,b)+C k

τ (i0,n)
)
πjk(τ,v)πij(0,τ) fτ (v;0)dv

and

`i
τ(i0,n) = τ

+
∫

τ

0
∑

j∈Ω1(i)
∑

k∈Ω(i,j)
`k

τ (i0,n)πjk(τ,v)πij(0,τ) fτ(v;0)dv. (16)

F. Variant 6 model: Ωa(2) = {a2,a∗}

The variant 6 model corresponds to dropping subsets Ω0
(no action) and Ω1 (partial repair action) from the model by
letting κ = ` = i0 (i0 = i1 + i2). The equations (11) and (13)
become

C i
τ(i0) =

(
Cr +C 0

τ (i0)
)

∑
j∈Ω2(i)

πij(0,τ)

+πin0(0,τ)
(
C f +Cpµ(τ;n0)

)
and

`i
τ(i0) = τ + `0

τ(i0) ∑
j∈Ω2(i)

πij(0,τ).

Given the starting state i = 0, the average cost rate becomes

C0
τ(i0) =

Cr +FTs(τ)
(
C f +Cpµ(τ;n)

)
τ

.

This is similar to the periodic replacement policy implemented
whenever the system reaches age τ (regeneration instant). The
costs in the cycle (0,τ) are made up from the planned replace-
ment cost Cr and the possible additional cost of replacement
on failure and a penalty cost incurred due to undetected failure.

VI. NUMERICAL EXAMPLE

Using the solution procedure IV-C with the step size h =
0.01, we obtain an optimal solution to maintenance parameters
(τ∗,κ∗, `∗). Numerical results are developed by investigating
the effect of model’s parameters on the optimal solutions.

Let the failure mechanism in both categories be expressed
by Weibull distributions. The Weibull distribution function
associated with category i is

FTi(t) = 1− exp(−(t/βi)
αi).

The choice for the degradation parameters is (α1,β1) =
(1.5,

√
2) and (α2,β2) = (1.5,2). The transition mechanism

of the virtual age process is expressed by the kernel function
(8):

fτ(v;0) =
1

τa+b−1 ×
va−1(τ− v)b−1

β (a,b)
; 0 < v < τ,

with (a,b) = (1,0.5). For numerical illustration of the model,
we set C0 = 0.5, Cr = 5, C f = 8 and Cp = 5. This characterizes
both the expected post-repair state and the partial repair cost
as E(V (τ; t)) = t + 2

3 τ and C(a,b) = 2.
The results summarized in Table I indicate that to reveal

the true state of components inspections should be scheduled
according to a periodic policy Π∗ = {kτ∗ : k = 1,2, · · ·} with
τ∗ = 0.62: on inspection if the system is found in state
Ω0 = {(0,0),(0,1),(1,0),(1,1),(1,2),(2,1)} (at most three of
six components experiences failure) the decision maker does
not need to take action and leave the system to continue;
otherwise the system undergoes a partial repair, or preventive
replacement if the system state falls in Ω1 = {(2,2)}, (two
of three components in each category experiences failure) or
Ω2 = {(2,3),(3,2)}. This maintenance policy characterized by
optimal solutions (τ∗,κ∗, `∗)= (0.62,4,5) incurs the minimum
maintenance cost C0

τ∗(κ
∗, `∗) = 1.47.

As seen in Table I and Table II, the numerical results are
developed by examining the effect of optimal maintenance
parameters to the partial repair parameter a and the redundancy
level (n1,n2). The different values for a ∈ {0.5,1,2,4} reflect
the decision maker’s attitude towards repair. The higher value
of a corresponds to almost a minimally repaired system (a
risky position) and the higher level of repair corresponds to
a certain partial repair bringing the system state back to the
condition just after the last intervention. Table I indicates
that the optimal preventive replacement threshold `∗ remains
constant in all four case, but changes in a induces changes
in the optimal inspection policy τ∗ and the resulting expected
cost per unit time. The model adapts itself to the decision
maker’s attitudes to repair (the value of a= 4) by moving down
the optimal partial repair threshold κ∗ : 4 7→ 3: as a increases
partial repairs will be considered more often to maintain a
minimum level of performance. This results in an increase
in the expected cost rate. Also, for illustration purpose an
evolution of C0

τ∗ as the function the inspection interval τ for
different redundancy levels n∈ {6,8} is given by Figure 6 and
Figure 7.

Table II indicates that for higher level of redundancy,
n : 6 7→ 8, the optimal parameters respond to the (partial)
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TABLE I
OPTIMAL PARAMETERS FOR DIFFERENT REPAIR LEVELS AND n1 = n2 = 3.

Optimal maintenance parameters

a κ∗ `∗ τ∗ C0
τ∗

0.5 4 5 0.63 1.38
1.0 4 5 0.62 1.47
2.0 4 5 0.62 1.55
4.0 3 5 0.60 1.61

TABLE II
OPTIMAL PARAMETERS FOR DIFFERENT REPAIR LEVELS AND n1 = n2 = 4.

Optimal maintenance parameters

a κ∗ `∗ τ∗ C0
τ∗

0.5 5 7 0.72 1.0716
1.0 5 7 0.70 1.1619
2.0 5 7 0.67 1.2323
4.0 5 7 0.64 1.3067

repair parameter a ∈ {0.5,1,2,4} almost in the same way.
However, increasing the level of redundancy makes inspections
less frequent and gives higher values for the optimal repair
thresholds κ∗ and `∗ implying a reduction in the amount of
maintenance and the resulting optimal expected cost.

The results in Table III also show the effect of the penalty
cost Cp on the optimal maintenance parameters and the optimal
expected cost. The results demonstrate that the threshold
parameters are not sensitive to Cp, but as the penalty cost
increases, the optimal inspection interval decreases marginally
to restrain penalty costs. As shown, in all cases changes in Cp
induces a slight increase in the optimal expected cost.

Also, the optimal solutions are examined under the general
repair model and particular repair models (see Table IV). The
results reveal that given repair parameter (a,b) = (1,0.5) only
the variant 2 characterized by three possible repair actions
Ωa = {a0,a1,a∗} is economically preferable to the general
repair model, however, in contrast to the general repair model,
inspections are scheduled less frequently. Furthermore, in
the absence of the preventive replacement action {a2}, the
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TABLE III
OPTIMAL PARAMETERS FOR DIFFERENT PENALTY COSTS Cp AND

(n1,n2) = (4,4).

Optimal maintenance parameters

Cp κ∗ `∗ τ∗ C0
τ∗

0.5 5 7 0.70 1.1584
2.5 5 7 0.70 1.1599
5.0 5 7 0.70 1.1619
7.5 5 7 0.69 1.1638
10.0 5 7 0.69 1.1656

TABLE IV
OPTIMAL PARAMETERS FOR DIFFERENT REPAIR MODELS AND

(n1,n2) = (4,4).

Optimal maintenance parameters

Repair model κ∗ `∗ τ∗ C0
τ∗

General 5 7 0.70 1.1619
Variant 1 - 7 0.83 1.6871
Variant 2 6 - 0.80 0.9447
Variant 3 - 7 1.15 1.7900
Variant 4 - - 0.74 1.8233
Variant 5 - - 1.21 1.5354
Variant 6 - - ∞ 5

TABLE V
OPTIMAL PARAMETERS FOR DIFFERENT REPAIR MODELS AND

(n1,n2) = (4,4).

Optimal maintenance parameters

Repair model κ∗ `∗ τ∗ C0
τ∗ (κ

∗, `∗)

Model Ia 5 7 0.76 0.7309
Model IIb 5 7 0.73 0.9641
Model IIIc 5 7 0.89 0.6214
a General repair model given (a,b) = (0.5,2).
b General repair model given a = b = 1.
c General repair model given (α1,β1) = (α2,β2) = (1.5,2) and (a,b) =
(0.5,2).
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variant 2 adapts itself by moving up the optimal partial repair
threshold (κ∗ : 5 7→ 6), which results in reducing the frequency
of partial repairs and hence reducing costs.

In addition to the six variants of repair models, our pro-
posed model subsumes other repair models, recovered by
an appropriate choice of degradation and/or maintenance pa-
rameters (see Table V). Model I and Model II, respectively,
are referred to the general repair model under the modified
repair parameters (a,b)= (1,0.5) and (a,b)= (1,1). The latter
assumption turns the kernel transition density into (9). Model
III is similar to Model I, but it differs through using only one
type of failure model. This allows the maintenance analysis
of homogeneous population. As demonstrated, the optimal
maintenance thresholds (κ∗, `∗) remains constant in all three
cases. The two first rows give an insight into the effect of
the partial repair level characterized by the repair parameter
b. The results reveal that the higher level of repair results in a
reduction in both the inspection frequency and the optimal
expected cost. A comparative study between the first and
the last row reveals that decreasing the failure proneness of
components in the first category to the same level of the second
category’s (β2 :

√
2 7→ 2) makes inspections less frequent. This

results in a reduction in the resulting expected cost.

VII. CONCLUSIONS

This paper explored an approach to assessing the proba-
bility of failure of repairable parallel systems composed of
components from heterogeneous populations. The proposed
modelling approach differs from others in the sense that it
derives a response SDMRL function and associated unprece-
dented results. This method allows the joint determination
of optimal inspection intervals and preventive maintenance
policies. The decision process is driven by the excursion of a
bivariate state process falling into exclusive subsets determined
by maintenance thresholds (κ, `).

For given parameters, the results provides an insight into the
optimal decision process and the behaviour of optimal solu-
tions as the model’s parameters change. The model favourably
adapts itself to the partial repair level by moving the optimal
parameters. It has been shown that the amount of maintenance
undertaken on the system decreases when both the redundancy
and the partial repair level increase. It is important to notice
that the optimal solutions remains almost unchanged by the
increase in penalty cost. Also, as the redundancy level remains
fixed, changes in the model’s parameters makes no changes
in optimal replacement threshold `∗ implying a relatively
constant frequency of planned replacements.

This paper outlined an approach which can be developed
in several directions. Possible future work includes the study
of more complex systems characterized by multiple types of
subsystems and the extension of the inspection modelling
technique to the non-periodic inspection policy implemented
through using the response function.

APPENDIX

A. Proof of Lemma 2

According to the definition of expectation we have

m(t; i) = E(Tn:n− t|X(t) = i) =
∫

∞

0
P(Tn:n− t > ω|X(t) = i)dω

=
∫

∞

t
P(Tn:n > ω|X(t) = i)dω.

Let i0 = ∑
k
u=1 iu and A(v) for v = i0, i0 + 1, · · · ,n− 1 be the

subset of the state space Ω:

A(v) =

{
j :

k

∑
u=1

ju = v : iu ≤ ju ≤ nu;u = 1,2, · · · ,k

}
.

Since (Tn:n > ω) ≡ (X(ω) ∈ A(v)) the expectation term (17)
becomes

m(t; i) =
∫

∞

t
P(X(ω) ∈ A(v)|X(t) = i)dω

=
∫

∞

t

n−1

∑
v=i0

∑
A(v)

P(X(ω) = j|X(t) = i)dω

=
n−1

∑
v=i0

∑
A(v)

∫
∞

t

k

∏
u=1

B

(
ju− iu;nu− iu,1−

F̄u(ω)

F̄u(t)

)
dω.

The last line of the proof results from Proposition 1.

B. Proof of Proposition 1

To facilitate the presentation let Gt(ω) = F̄(ω)
F̄(t) with re-

spective derivative gt(ω) = dGt (ω)
dt = λ (t)×Gt(ω) where λ (t)

denotes the common failure rate of components. The derivative
of m(t; i) with respect to t yields that

m′(t; i) =−1+A1 +A2 (17)

where

A1 =
∫

∞

t
gt(ω)

n−1

∑
j=i

(n− j)
(

n− i
j− i

)(
1−Gt(ω)

) j−iGn− j−1
t (ω)dω,

and

A2 =−
∫

∞

t
gt(ω)

n−1

∑
j=i

( j− i)
(

n− i
j− i

)(
1−Gt(ω)

) j−i−1Gn− j
t (ω)dω.

The terms A1 and A2 can be rewritten as

A1 = (n− i)

×
∫

∞

t
gt(ω)

n−1

∑
j=i

(
n− i−1
n− j−1

)(
1−Gt(ω)

) j−iGn− j−1
t (ω)dω,

and

A2 =−(n− i)

×
∫

∞

t
gt(ω)

n−1

∑
j=i+1

(
n− i−1
j− i−1

)(
1−Gt(ω)

) j−i−1Gn− j
t (ω)dω,

By using binomial expansion A1 and A2 become

A1 = (n− i)λ (t)ms(t;1),
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and

A2 =−(n− i)λ (t)ms(t;1)

+(n− i)λ (t)
∫

∞

t

F̄(ω)

F̄(t)

(
1− F̄(ω)

F̄(t)

)n−i−1

dω

=−(n− i)λ (t)ms(t;1)

+(n− i)λ (t)
n−i−1

∑
x=0

(
n− i−1

x

)
(−1)x

∫
∞

t

(
F̄(ω)

F̄(t)

)x+1

dω︸ ︷︷ ︸
ms(t;x+1)

.

By plugging A1 and A2 into (17), we get

m′(t; i) =−1+(n− i)λ (t)
n−i−1

∑
x=0

(
n− i−1

x

)
(−1)xms(t;x+1),

where ms(t;x+ 1) denotes the mean residual lifetime of an
(x+1)-component series system. Since

ms(t;x+1) =
1+m′s(t;x+1)
(x+1)λ (t)

,

(readers are refereed to Ref. [37]) we have

m′(t; i) =−1+(n− i)
n−i−1

∑
x=0

(
n− i−1

x

)
(−1)x

(
1+m′s(t;x+1)

x+1

)
=−1+

n−i

∑
x=1

(
n− i

x

)
(−1)x+1 (1+m′s(t;x)

)
,

Using the fact that ∑
n−i
x=1

(n−i
x

)
(−1)x+1 = 1 we get

m′(t; i) =
n−i

∑
x=1

(
n− i

x

)
(−1)x+1m′s(t;x). (18)

Integrating the both side of (18), we obtain

m(t; i) =
n−i

∑
x=1

(
n− i

x

)
(−1)x+1ms(t;x),

and the proof is complete.

C. Proof of Proposition 2

Setting i = n− j in (2) we get for j = 1,2, · · · ,x (x =
1,2, · · · ,n)

m(t;n−1) = ms(t;1)
m(t;n−2) = 2ms(t;1)−ms(t;2)
m(t;n−3) = 3ms(t;1)−3ms(t;2)+ms(t;3)

...

m(t;n− x) =
x

∑
i=1

(
x
i

)
(−1)i+1ms(t; i).

Or, in the matrix form we have

m(t) = B(x)ms(t)

where m(t) = (m(t;n− i)) and ms(t) = (ms(t; i)) are vectors
of order x (x = 1,2, · · · ,n) and B(x) = (bi j) ∈ Zx×x:

B(x) =



1 0 0 0 0 · · · 0
2 −1 0 0 0 · · · 0
3 −3 1 0 0 · · · 0
4 −6 4 1 0 · · · 0
...

...
...

...
...

. . .
...(x

i

)
−
(x

2

) (x
3

)
−
(x

4

) (x
5

)
· · · (−1)x+1


.

The equivalent system of equations with respect to the
SDMRL functions m(t;n− i) (i = 1,2, · · · ,x) can be given by

ms(t;1) = m(t;n−1)
ms(t;2) = 2m(t;n−1)−m(t;n−2)
ms(t;3) = 3m(t;n−1)−3m(t;n−2)+m(t;n−3)

...

ms(t;x) =
x

∑
i=1

(
x
i

)
(−1)i+1m(t;n− i),

or, in a matrix form

ms(t) = B(x)m(t).

and the proof is complete.
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[31] P.D. Van and C. Bérenguer. 2012. Condition-based main-
tenance with imperfect preventive repairs for a deterio-
rating production system. Quality and Reliability Engi-
neering International; 28(6), 624-633.

[32] J.H. Cha, S. Lee and J. Mi. 2004. Comparison of
steady system availability with imperfect repair. Applied
Stochastic Models in Business and Industry; 20(1), 27-
36.

[33] R. Ahmadi. 2020. A new approach to maintenance opti-
misation of repairable parallel systems subject to hidden
failures. Journal of Operational Research Society; 71(9),
1448-1465.

[34] X.Y. Li, Y. Liu, C.J. Chen and T. Jiang. 2015. A copula-
based reliability modelling for nonrepairable multi-state
k-out-of-n systems with dependent components. Journal
of Risk and Reliability; 230(2), 1-14.

[35] Q. Qiu, L. Cui and J. Shen. 2018. Availability and
maintenance modelling for systems subject to dependent
hard and soft failures. Applied Stochastic Models in
Business and Industry; 34(4), 513-527.

[36] S. Mercier and H. Pham. 2014. A condition-based im-
perfect replacement policy for a periodically inspected
system with two dependent wear indicators. Applied
Stochastic Models in Business and Industry; 30(6), 766-
782.

[37] M. Rausand and A. Høyland. 2004. System reliability
theory: Models, Statistical Methods, and Applications,
2nd Edition (Wiley Series in Probability and Statistics).


