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Convolutional Neural Networks For Automatic
State-Time Feature Extraction in Reinforcement
Learning Applied to Residential Load Control

Bert J. Claessens, Peter Vrancx, Frederik Ruelens

Abstract—Direct load control of a heterogeneous cluster of temperature is measured, whilst the temperature of thdibgil
residential demand flexibility sources is a high-dimensioal con-  envelope is not [4].
trol problem with partial observability. This work propose s a When considering energy constrained flexibility, energy
novel approach that uses a convolutional neural network to . . . ’ .
extract hidden state-time features to mitigate the curse opartial Storage is the most important source, either thrqugh direct
observability. More specific, a convolutional neural netwok is  El€ctric storage or through power to heat conversion. Exam-
used as a function approximator to estimate the state-actiovalue ples of direct electric storage are the battery in an electri
function or Q-function in the supervised learning step of fited Q-  vehicle [5] or a stand alone domestic battery. Thermostyic
iteration. The approach is evaluated in a qualitative simuétion, Controlled Loads (TCLs)[]1] are an important example of

comprising a cluster of thermostatically controlled loadsthat only t th h to heat . buildinmatie
share their air temperature, whilst their envelope temperaure ~SOrage through power to heat conversion, €.g. buildiimg

remains hidden. The simulation results show that the preseed control [4] and domestic hot water storage [1]. As TCLs are
approach is able to capture the underlying hidden features ad an abundant source of flexibility, they are the focus of this

successfully reduce the electricity cost the cluster. work [6]. When designing a controller for a large cluster
Index Terms—Convolutional neural network, deep learning, Of TCLs one not only faces technical challenges from a
demand response, reinforcement learning. control perspective. One should also take into account the
economic cost of the control solution at the level of indivadl
l. INTRODUCTION households as the economic potential per household islimit

and on the order o£50 a year[[2], [[6]. A popular control

D IRECT load control of a large heterogeneous cluster, - jigms found in the recent literature regarding resialen
. of residential ‘?'ema“d ﬂ?X'b'l'ty SOUTCes IS a researqfag control is model-based control such as Model Predictiv
topic that has received considerable attention in the teCbntrol (MPC) [7]. In MPC, control actions are selected at
literature. The main driver behind direct load control itth f, o4 time intervals by solving an optimization problem with
it can be a cost-efficient technology supporting the integmna , finite time horizon, following a receding horizon approach

of distributed renewable energy sources in a power systefyq oimization problem includes a model and constraints

Typlcal appllcatlons of d|re9t load control considered fre t of the system to be controlled and forecasts of the exogenous
literature are ancillary servicesl[1], voltage control {2jd information, such as user behaviour, outside temperatute a

energy arbitrage’ [3]. When designing a controller for aebargsolar radiance. When controlling a large cluster of flexipil

heterogeneous cluster of residential flexibility sourae® is sources however, solving the optimization problem ceistell

confronted with several challenges. A first important Ch%’uickly becomes intractablé1[8]. To mitigate these scilabi

lenge i§ that mqst residential flexibility sources are e}ner.gty issues, distributed optimization techniques provieéef
constrained, which results in a sequential @eC'S'F’“'”!P"'By decomposition of the master problem into sub-problems.
problem. A s_econd challenge is the large dmgnsmnahty Another approachaggregate-and-dispatglyaining interest is
the state-action space of the cluster of flexibility SOUSCes) 1se abulk model of reduced order making the centralised

since each source has its own state vector and control 8gsiniation tractable by defining a setpoint for the entire

tion. Furthermore, there is heterogeneity accompanyig i qter pissaggregation of the setpoint occurs through a
dynamics of each state, which is intrinsically stochagii.a heuristic dispatch strategy.

consequence, mature control solution needs to be scalable
adapt to the heterogeneity of the cluster and take the &itrin

uncertainty into account. An important challenge, recgjvi

' The mathematical performance of the aforementioned ap-
proaches however, is directly related to the fidelity of the
model used in the optimization problem] [3[,! [9]. Obtaining

less attention in the literature is that of partial obseititgthin and maintaining an accurate model, is a non-trivial tash [10
the sense that there are states that are r.elevant for themt;mawhere the cost of obtaining such a model can outweigh its
of the system that are not observed directly. For example ARancial benefits

the context of building climate control, only the operatbair Given this context, model-free control solutions are con-
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or Q-function based upon interactions with the system to ltieis bulk model is of a reduced dimensionality, making a
controlled. In [[13], [14], [15], RL has been been applied toentralised MPC approach tractable. The subsequent sgspo
the setting of residential demand response at the deviet leare dispatched at device level by using a simple heuristic,
whilst in [14] and [16], RL has been used in aggregate- requiring little intelligence at device level. For exampie
and-dispatctsetting with a large cluster of TCLs. [16], the TCLs are clustered based upon their relative jposit

In the literature, different approaches are presented thethin their dead-band, resulting in a state vector at elust
obtain an estimate of the Q-function. In this work, as[in| [17]evel containing the fraction of TCLs in each state bin. A
batch RL [18] is used, where an estimate of the Q-function ligear state bin transition model describes the dynamics of
obtained offline using a batch of historical tuples. A regi@s this state vector, the dimensionality of which is indeperide
algorithm is used to generalize the estimate of the Q-fonctiof the number of TCLs in the cluster. This model is in turn
to unobserved state-action combinations.[In| [14], exteas used in an MPC, resulting in a control signal for each state bi
[18] has been used as a regression algorithm in combinati@rsimple heuristic is used to dispatch the control signals to
with hand-crafted features, furthermore perfect statermf- individual control actions at device level. The resultssgrged
tion was assumed. This resulted in a low-dimensional state[3] show that careful system identification is requiredian
space, evading the curse of dimensionality. A next impartaam generictank model is preferred for example for energy
step is to add automatic feature extraction as this enab&bitrage. Moreover, in([21] it is argued that the first order
to work with higher dimensional state representationssTHILC model presented in_[3] needs to be extended with a
in turn, allows to add historic observations to the stategpresentativbulk temperature that is not directly observable,
following Bertsekas[[19], as it can compensate for the phrtinecessitating a model-based state estimation such as aKalm
observability of the state by extracting state-time feadur filter [8]. Also in[22], a low-order tank model is used as a
Recent developments in the field of RL, and more specifiulk model to describe the flexibility of a large cluster of
deep reinforcement learning _[20], have demonstrated hAWCLs allowing for tractable stochastic optimization. A éned
by using a Convolutional Neural Network (CNN) automati@approach is presented by lacovetiaal. in [4]. Here, a small
feature extraction can be obtained in a high-dimensiorét st set of representative TCLs are identified to model the dynami
space with local correlation. Inspired by these findingss thof the entire cluster. Through this, the heterogeneity o$ter
work applies deep reinforcement learning to the setting &f accounted for and the auction-based dispatch dynamics
aggregate-and-dispatctvith a high-dimensional state spacecan be included in the central optimization. This work is an
which includes past observations, allowing to extractestatextension of the work presented in| [5] where a tank model
time features, thus mitigating the effect of incompleteestahas been used for a cluster of electric vehicles, again in
information. combination with an auction-based dispatch strategy. Tai@a m

The remainder of this work is summarized as follows. Iadvantage of aggregate-and-dispatch is that it mitigdtes t
Section[Il an overview of the related literature is providedurse of dimensionality allowing to hedge against uncetyai
and the contributions of this work are explained. Secfidh Iat a centralised leve[ [22] and requires little and transpar
sketches the main motivation behind this paper. Followirgy tintelligence at the level of a TCL, restricting the local tds
approach presented inh [17], in Sectlon IV a Markov decisicsystem identification step at centralised level howevestilk
process formulation is provided. In Sectioh V, the implememequired.
tation of the controller is detailed, while Sectibnl VI prese A different paradigm is that of distributed optimization
a guantitative and qualitative assessment of its perfoceman[23], [24], where the centralised optimization problem is
Finally, Section[VIl outlines the conclusions and discesselecomposed over distributed agents who interact itetgtive

future research. throughvirtual prices which are the Lagrangian multipliers
related to coupling constraints. For exampléin [24], distted
II. RELATED WORK AND CONTRIBUTION MPC through dual decomposition was presented as a means

This section provides a non-exhaustive overview of relaté%r energy arbltrag_e of a large clugter of TCLs s_up_Ject ©
work regarding the control of heterogeneous clusters ofs'IZCLa coupling .copstralnt re!atgd .to an mfrgstructure linndtat
batch RL applied to load control and automated featu though _d|str|buted optm_u_zaﬂon te(_:hnlques convergeat_o
extraction. g obal optlmgm l_mder sufflf:lent cond|t|025], the tectai
implementation is not straightforward. This results frone t
) need for a system identification step for each sub-problem
A. Aggregate and dispatch (often at the level of a TCL) and the fact that on the order
As mentioned in Sectiofl I, two important challenges iof ten iterations are necessary before convergence isnettai
model-based control of a cluster of TCLs are the dimensioAithough the merits of distributed optimization are recizgd,
ality of the state-action space and obtaining a high-figelithis work focuses on aggregate-and-dispatch techniques in
model. To mitigate these challenges, two importaciools the scope of residential flexibility, as the local intelige at
can be identified (amongst others), i.e. that of distributatévice level is simple and transparent.
optimization anchggregate-and-dispatciihe general concept
behind aggregate-and-dispatch techniques [1], [4] is ® uB. Reinforcement Learning for demand response
a bulk model representing the dynamics of the cluster of As discussed in Sectioll I, RL is a model-free control
TCLs instead of individual modelling at TCL level. Typicall technique whereby a control policy is learned from intdoanst
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with its environment. When integrated in an aggregate-anakchitecture to map low level inputs to Q-values. Following
dispatch approach, it allows to replace or assist a mod#tis result a number of approaches combining reinforcement
based controlle [15]. This paves the way for generic cdntriearning with CNNs have been proposed. Gebal. [37]
solutions for residential demand response. When consiglercombine a DQN agent with offline planning agents for sample
RL applied to aggregate-and-dispatch techniques, i€am. generation. In[[38], Lillicraget al. use the DQN architecture in
applied Q-learning[[16] to the binning method presented am actor-critic setting with continuous action spacesalyn

[1]. In [14], Ruelenset al. applied batch RL in the form of Levine et al. [39] introduce a different approach using a
Fitted Q-Iteration (FQI) to a cluster of TCLs using an auatio CNN to represent policies in a policy search method. In this
based dispatch technique effectively learning the dynarhic paper, we combine a CNN and a multilayer perceptron to
the cluster, including uncertainty and effects of the dispa approximate Q-values in the batch FQI setting. It offers the
strategy. A second implementation is presented_in [26],rezhefollowing contributions:

FQI was used to obtain an accurate day-ahead consumptioQ A merged Artificial Neural Network (ANN), comprising
schedule for a cluster of electric vehicles. The focus was 5 CNN [20] and a multilayer perceptron, tailored to a
on finding a day-ahead schedule that results in the lowest gemand response setting, is used as a regression algorithm

electricity cost considering day-ahead and intra-daytetiy within FQI. To the best of our knowledge, this work is
prices. Although the results demonstrated that RL is oféeste the first description of such a network to be used in com-

for demand response, the state dimensionality was small and pination with a batch reinforcement learning algorithm.
the features in the state were handcrafted, furthermoie ful , By presenting the CNN with a series of state-bin dis-
observability was assumed. This is a limitation when consid  {rihytions, state-time features that are relevant to learn
ering a very heterogeneous cluster and partial obsertyabili near-optimal policies can be extracted.

In this setting, a richer state description is required, @9, The resulting control strategy is evaluated on a simplified
in [I] using a state bin distribution. Furthermore, follagi  anqd qualitative test scenario comprising a heterogeneous
[19] the state vector needs to be extended to include previou juster of TCLs with partial observability, exposed to a
observations as it allows to extract state-time featured th  {jme varying price. The results demonstrate that the pre-
can be representative for non-observable state informatio  sented approach can be successfully applied to residential
This however, requires automatic high-dimensional featur |59 control.

extraction.

IIl. BACKGROUND AND MOTIVATION

) ] . As detailed in [[21], [[40], [[41], the dynamics of a Ther-
As mentioned in Sectiofi I, recent results show that degpystatically Controlled Load (TCL) is dominated by at least
approximation architectures such as CNNs can be usedi@§ time scales, a fast one (related to the operational air
a regression algorithm in RL applied to a problem with gmperature) and a slow one (related to the building mass).
high-dimensional state vector. Artificial neural netwok&er A getailed description of the second-order dynamics of a
an attractive option for value function approximation. ¥hetc| can be found in Sectidi VI3A. This model describes the
can approximate general nonlinear functions, scale to'hi%mperature dynamics of the indoor air and of the building
dimensional input spaces and can generalize to uns_eersinpgﬁvempe_ Typically, only the operational air temperatise
Furthermore, deep network architectures stack multigier® ayajlable from which all information needs to be extracted.
of representations and can be used with low level sensotsnpy, a3 model-based implementation all non-observable states
(e.g. image pixels) to learn multiple levels of abstrac&ml 416 determined using a Kalman filtér [41]. However, before
reduce the need to manually define features. _ one can implement this filter, one first needs a calibrated
Unfortunately, when used with sequential updating angodel. This is typically a non-linear optimization problem
correlated observations, as is typical in online reinfareat gg presented i [41]. In a model-free approach, information
learning, neural networks can suffer from issues such @agjarding the non-observable states needs to be extraoted f
divergence of the estimates or catastrophic forgettind, [2¢he lastN' observations. This results in a severe extension of
[28]. The FQI algorithm[[20] used in this paper, sidestenge state space. Driven by this challenge, this paper cagsbin
this problem by relying on offline approximation of the valug, patch RL technique with a convolutional neural network to

function using batch training of the function approximatdt ake up for the partial observability of the problem.
has previously been applied to a range of control applinatio

[30], [31], [32]. Additionally, FQI was successfully conmed

with deep architectures by Lang al. [33], [34], who ex- IV. PROBLEM FORMULATION

tended the algorithm using deep autoencoders to learrésatu  Before presenting the control approach in Secfidn V, the
from image pixel inputs. Another approach to combine neurgbision-making process is formulated as a Markov Decision
networks with RL was recently proposed by Mréhal. [20].  process (MDP)T19] following the procedure presentedii.[17

Here a database of transition samples is used with experieng, MDP is defined by its state space, its action spacé/,
replay [35] to break correlations in the training set in n8li gnd its transition functiory:

value function approximation [36]. As is the case in thisgrap
the proposed deep Q-network (DQN) algorithm uses CNN Tpt1 = [(xk, ug, wy), Q)

C. High-Dimensional Feature Extraction
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which describes the dynamics from, € X to xx.1, under whereﬂ: andTZ denote the lower and upper bound set by

the control actionu;, € U, and subject to a random processhe end user.

wy, € W, with probability distributionp,, (-, ). The costey The exogenous state informatieg, ;, cannot be influenced

accompanying each state transition is defined by: by the control actione;, but has an impact on the physical dy-

namics. In this work, the exogenous information comprikes t

outside temperaturg, ;.. A forecast of the outside temperature

The objective is to find a control polick : X — U that TOE| is assumed available when calculating the Q-function, as

minimizes theT-stage cost starting from staig, denoted by detailed in Sectioh V-B1.

Jh(xy): The observable state vectef™ of the cluster is defined
as:

ck(Tr, Uk, Trt1) = p(Tr, Uk, Wi). 2

(@) =E (R(@1, w1, wr)), & 2 = (o Tl T o) (11)

with:

T . . .
B. Backup controller and physical realisation
Rh(wlawla“'7wT) = § p(mkah(wk)awk) (4) . . . . . .
st The control action for each TCL is a binary value indicating

A convenient way to characterize the poliyis by using if the TCL needs to be switched ON of OFF:

a state-action value function or Q-function: ut € {0,1}. (12)
Q" (w,u) = wNPIE(-\m) [p(z,u,w) + J"(f(®,u,w))]. (5) Similar as in[1] and[L7], each TCL is equipped with a backup

o ) ) controller, acting as a filter for the control action resujtirom
The Q-function is the cumulative return starting from state o policy h. At each time stepk, the functionB maps the

taking actionu, and followingh thereafter. _ requested control action;, of devicei to a physical control
The optimal Q-function corresponds the best Q-functioh thgtjop ,,P1s? depending on its indoor air temperatufg:
can be obtained by any policy: ko

Q" (@, u) = min Q" (a, u). ®)

Starting from an optimal Q-function for every state-actair,
the optimal policy is calculated as follows:

WP = BT}, u, 0Y), (13)

where 8¢ contains the minimum and maximum temperature
boundariesT; andT, set by the end user arfél(-) is defined

as:
h*(x) € arg rgin Q" (x,u), @) 1 i T <
uc . . . . ) i __i —i
whereQ* satisfies the Bellman optimality equatidn [42]: B(T, uj,, 0°) = | uj !f L Szk <T. (14)
0 it T} >T,
" : * ’
Q" (z,u) = w~pI\E(»|z) p(x,u,w) + min Q (f (2, u, w),uw)| . The hackup controller guarantees the comfort settings @f th

(8) end user by overruling the requested control actigrwhen
the comfort constraints of the end user are violated. For
example, if the temperature of TCL drops belowT’;, the

A. State description , . )
. . o backup controller will activate the TCL, independent of the
Following [17], the state spaceX consists of: time- requested control action, resulting ™', which is needed
dependent state informatio¥y;, controllable state information to calculate the cosET15).

Xphys, and exogenous (uncontrollable) state informathag.
Since the problem of scheduling a TCL includes time .
dependence, i.e. the system dynamics are non-stationaryc-i Cost function

is important to include at time-dependent state comporent t pifferent objectives are considered in the literature when
capture these patterns. As in [15], the time-dependene stapntrolling a large cluster of TCLs, for example, tracking a
compon_entXt contains mfor_matlon related to timing. In thispalancing signalJ1] or energy arbitradé [3]. In this worke w
work, this component contains the hour of the day: consider energy arbitrage, where TCLs can react to an eltern
2o € Xy ={1,...,24}. 9) price vectorA. The cost functiorp is defined as:

. . ID|
By adding a time-dependent state component to the state / .. physt phys|D| physi pi
vector, the learning algorithm can capture the behavioral” (wk P U ’/\’“) = Atk Zuk P
patterns of the end users. The rationale is that most corrsume =t (15)

behavior tends to be repetitive and tends to follows a diurnghere P’ is the average power consumption of tile TCL

pattern. during time intervalAt and )\, is the electricity price during
The controllable state informatiompnys; comprises the time stepk.

operational temperaturg’ of each TCLi € D:

) — 1The notationz.x is used to indicate a forecast of the exogenous state
T, <T.<T, (10) information zex.
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uy, € arg min Q*(wk u)
u

1. Aggregation ? 1. Optimization III.Real-time control

xy = (wo k2R, Tok)

b = (B Nyt 1s - b
by | by xp = {br— Ny +1 5}
5|l
A : % U,
~
s e L
k—1 ). Time
—_—
T SoC'
Binning (Algorithm 1)
SoC}_y, ..., SoCIP! SOCé,T. .., SoC!P! |
‘ : ‘ ‘ |
; ] I [] v
/’ % “, 7 ~
S T U Ty 7|/ [ g T;‘:,)I‘c
TaT T ¢T T&T T ™7

Fig. 1: Three steps are identified, i.e. aggregation, optimizatiod real-time control. The models indicated at the bottorty pnovide
access to the room temperatdfe whilst the temperature of the building m&Bs is hidden.

Algorithm 1 Calculate the binning vectd;. B. Step 2: Batch Reinforcement Learning
Input: P, by In the second step, a control action for the entire cluster is
» let b, be zeros everywhere di/®:| determined following[{[7). In this work, FQI is used to obtain
2 fori=1,...,|D| do an approximationQ* of the state-action value functiof*
s SoCi = I —L, from a batch of four tuplesF, as detailed in[[18]:
T, —1Ii
& j* =arg rﬁa)jgs7j . F= {(mlvulvxgacl)v l= 17 7#‘F}v (18)
5 s.t. bs; < SoC}, . . .
b b 1 1) Fitted Q-lteration: Building upon recent results [17],
o [15], FQI is used to obtairQ*(x,u). The cost function is
7 end for . .
Output: by, assumed knowr(15) and the resulting actions of the backup

controller can be measured. As a consequence, Algoiithm 2
uses tuples of the forrﬁml, w, z},u’™°). Herex, denotes the
V. IMPLEMENTATION successor state te;. To leverage the availability of forecasts,
In this section the implementation details of the present&dAlgorithm 2 the observed exogenous information (outside
controller are described. Similar as [A [1] afid [5] a thresps temperature) inc, ; is replaced by its forecasted valig, ,

approach is used (Figl 1). (line 5 in Algorithm[2). In step 6, a neural network is used
|U| times to determine the minimum value of the current
A. Step 1: Aggregation approximation of the Q-functiod_1(&;],.). In step 8, the

In the first aggregation step, an aggregated state repneural network, used in step 6, is trained using all tuples

resentation is created fromVy;, historical observations ("’Il’“l) as input and alil Q-valueQy,; as outpgjlt da:cta. I
x5\ L 1...., @3 Each observatiomy® is processed sim- 1 Ouf Previous wor [[14],[[26], an ensemble of extremely

ilar as in [1], i.e. each TCL in the state vectef™ is binned randomized tree$ [18] was used as a regression algorithm to

according to its state of charg84C) in the binning vectob estimate the Q-function. Given the high dimensionalitylod t

b Npin X Nhis i -ti
with support pointds. The vectob, containsVy,i, equidistant state(xy € R™ **) and given that state-time features are
points between the minimum and maximum state of char épected to have strong local correlations, this work psego

of the cluster. For each TCL in the cluster, Algorithl n artificial neural network with a convolutional component

calculates the correspondistpC}. (line 3) and allocates this 2)t.Regres§|on ?Igonthm:‘l’lhe tpara:(metrlhz.?tmtn of the Qt
SoC? within the corresponding state of charge interval (IinIeunC lon 1S given by a nfaura network architecture consgst
4 and 5), indexed by € {1,..., Ny 1. of two subcomponents: a convolutional component and a

In a second step, the binning vectors of subsequent tilﬁt@ndard multi-layer perceptron._The full architegtureh’gwn
steps are concatenated, resultingi e RNvin <N In'Fig.[2. The network takes as input a state action fxain)
' and returns an approximated Q-val@g(x,u). The inputs

xp = {by_ Ny 155 b}, (16)  of the neural network are split into two parts. The first part

where Ny, denotes the number of historical time steps ifontains aNuin X Nnis grid corresponding to the binned state

cluded inz?. As a result, the final state vector is defined agéPresentations:” and the second part contains the time-
dependent state informatian, the exogenous state informa-

b
Tk = (fft,ka L, To,k) : (A7) tion x.x and the actionu;,. The binned state representatioh
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Fig. 2: Overview of the regression step as used in the fitted Q-iteramplementation (line 8 in Algorithri]2). The controllabktate
information, represented in the form of a matrix, goes imto tonvolutional layers that identify state-time featur€se other parts of the
state, i.e. time-dependent and exogeneous state infamedgether with the control action go through a dense neneddiork where also
features can be extracted. Finally both layers are merdémvied by two fully connected layers.

Algorithm 2 Fitted Q-iteration using a convolutional neurational and pooling layers are followed by fully connected

network to extract state-time features. layers that combine all the feature maps produced by the
Input: F = {z;, u, w;7u?hys fg’XEX — {iiex,k}le A convolutional part anq produce the final ne_twork outputs Th
. let Oy be zero everywhere o x U CNN processes the binnad € RNbin X Niis with 1 dimension
» for N=1,...,T do of the |r_1put grid corrgspondlng to .tH@bin bins anq the qther
s forl=1,...,4F do dlmenspn representmg_obser_vauonsmﬁis previous time
. ¢ — p(wlju?hysj A) steps. T|_me and state d|men3|pns are treated equglly aqd 2d
. &)« (), x &) cor_‘wolutlon o_peratlons are apphed over b_oth these dino@ssi
N On i C’l + min @Nﬂ(ﬁlﬁ w) Th|s_ resu_lts in the |dent|f|_cat|0n of spatlo-tempora_l featu
’ uelU ’ that identify local structure in the state information anstdry.
»  end for , , This enables the network to identify features correspandin
= use the convolutional neural network in Flig. 2 to obtaif, gyents that occur over multiple time steps. These festure
Qn from T = {((w, w), Qna) I =1, #F} are then used as input by higher network layers. The time-
o endfor dependent state informatiaf ;,, exogenous input values.
Output: Q" = Qn and actionsu;, are fed into a separate fully-connected feedfor-

ward architecture. This multi-layer perceptron first malps t

inputs to an intermediate hidden representation. Thisédridd
is processed using a CNN. CNNs process inputs structuredr@gresentation is then combined with the CNN output and
a 2-dimensional grid (e.g. images, video) by convolving thgoth networks are merged into fully connected layers. A final
input grid with multiple linear filters with learned weight®  linear output layer maps the combined hidden features df bot
this way, CNNs can learn to detect spatial features in thallogetworks to the predicted Q-value of the input state-action
structure of the input grid. A convolutional layer consisfs pair. This 2-stream network structure that combines diffier
multiple filters1W*, each giving rise to an outpégature map sources of information is similar to the organisation used i
The feature maph* corresponding to theth filter weight supervised problems with multimodal inputs|[43].
matrix W* is obtained by:

hiy = oW s z)i; + 0", (19) c. step 3: Real-time control

wherex represents a 2d convolution operatierare the layer  In the third step, a control action for the entire cluster
inputs, b* is a bias term andr is a nonlinear activation is selected using an-greedy strategy, where the exploration
function. Multiple layers can be stacked to obtain a degpobability is decreased on a daily basis according to a
architecture. Convolutional layers are often alternatdth w harmonic sequence [12]. Following] [3}, is dispatched over
pooling layers that downsample their inputs to introduce dhe different TCLs using an auction-based multi-agentesyst
amount of translation invariance into the network. Convolun this market, each TCL is represented by a bid function
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ft:a» Which defines the power consumed versus a heugistic T 5 —
resulting in the following expression for each TGL E

5 204 i
i _[PTif 0<p <Pl £ 202 ]
foia(pe) = { 0 if e > pf: ) (20) E) 20 ‘ : ; ! s s \ LA

5 10 15 20 ' 2‘5 30 35 40 45
wherep( is the comer priority. The coer priority indicates Time [hours]

the wish (priority) for consuming at a certain power ratin
Pi. The closer the state of charge drops to zero, the mc
urgent its scheduling (high priority), the closeripthe lower

the sched.uhng priority. The corner .pr|0r|ty of thth TCL is T T 5 0 s 0 3 a0 5 %
given byp. = 1—SoC", whereSoC" is the state of charge of Time [hours]

TCL i. At the aggregated level, a clearing process is used & 2! ‘

Power [kW]
o
wn
T
.

S

. . .. —T --.T
translate the aggregated control actignto a clearing priority g 2o a m
* . s Sl T
pr,k . &
D 5 L s
* _ : % a 0 5 10 15 20 25 30 35 40 45 50
D = argmn Z foia(pr) — ukl. (21) Time [hours]
Pr .
i=1

) ) o ) ) Fig. 3: Top graph, evolution of the distribution of the TCL popubati
Note, in [21) the clearing priority; , is found by matching over time. Middle graph, the average power evolving overetim
the aggregated control actian in the aggregated bid function after about 30 hours full decoherence is observed. Lowegshgréne

of the cluster. This clearing priority’ ,, is sent back to the dif- average observable and non-observable temperature agt@fuof
ferent TCLs, who start consuming accordiag= f{,4(p; ;)- time.

VI. RESULTS N(0.2,0.004) respectively. The internal heatingis sampled

In order to evaluate the functionality of the controllefrom A/(0,0.01) for each time step. The poweP’ is set
presented in SectidnlV, a set of numerical experiments wee (o 5 kW for each TCLs and the minimum and maximum
performed on a qualitative scenario, the results of whieh afemperatures are set at 20 and@Zor each TCL. To illustrate
presented here. The simulation scenario comprises a clugfR effect of the heterogeneity of parameters, [Fig. 3 defhet
of 400 TCLs exposed to a dynamic energy pricel [44]. Th@mperature dynamics of 1000 TCLs where a backup-back
thermal inertia of each TCL is leveraged as a source ghntroller [15] is used. The top graph in Fig. 3 shows the
flexibility allowing the electric demand to be shifted towar eyolution of the temperature distribution, initially allCTs

moments when the energy price is low. A backup controligfaye the same state, however, after one day de-phasing has
(12) deployed at each TCL safeguards the comfort consstaidccurred which is a direct measure for the heterogeneity of
In the following simulation experiments, we define a contrahe cluster. The middle graph shows the aggregated power
period of 1 hour and an optimization horizon of 24 controds a function of time. The initial coherence, resulting in
periods. At the start of each optimization horizon Algamith strongly correlated consumption, is gone after around 30
2 is used to compute a control policy for the next 24 contrgloyrs. The lower graph shows the average valugs afd 7,
periods. This control policy is updated every 24 hours USi%spectively. As discussed in Sectioh V, odly is assumed

a new price profile and forecast of the outside temperatuggsailable, whilst features representiffy, are inferred from
During the day, are-greedy exploration strategy is used tast measurements @f by the convolutional section in the
interact with the environment and to collect new transEioqegression algorithm. The coefficients of the model were

that are added systematically to the given batch. Since m@¥sen as such that,, has a small but significant effect on
interactions result in a better coverage of the state-aspace, the objective.

the exploration probability,; is decreased on a daily basis,
according to the harmonic sequentél™, wheren is set to
0.7 andd denotes the current day. B. Theoretical benchmark

An optimal solution of the considered control problem is

A. Simulation model found by using a mathematical solvér [45]. The objective of
Following [4], [21], a second-order model has been used tae benchmark is to minimize the electricity cost of the us

describe the dynamics of each building as illustrated in[Big

D] T
TP = & (T,-T) +& (Th—T) + Pl + ¢, min Y > Auf™ P (23)
T.’rl;l = C}l (T'Z - Trln) ) ==t

(22) subject to the second-order models](22) and comfort con-
whereT* is the measured indoor air temperature &rigis straints [I#) of the individual TCLs in the cluster. Notee th
the not observable building mass temperature. For each T8&nchmark optimization haperfect information about the
in the simulation, the value$/C: and 1/C¢, are selected model and hadull access to the temperature of the building
random from a normal distributiond/(0.004,0.0008) and mass, resulting in a mathematical optimal result. Thisltesu
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can be seen as a lower limit on the cost, indicating how fA4RABLE I: Overview of simulation results.
from the optimum the controller is. A: without state-time features. B: with state-time feature

To demonstrate the impact of ignoring the non-observabieéxperimentl

L . e I I 1] [\ \Y VI

stateTy, on the objective, the theoretical benchmark optimiza
tion was performed for coefficients corresponding to themrmea A 1.0176 1.0255  0.9924  1.0043  0.9958 10157
p p g B 0.9774 1.009 0.9922 0.9917 0.9902 0.9873

of previous normal distributions. Ignoring the non-obsdxe

. . t-test 3.2%
stateT,, resulted in a cost increase of 2.5%. | » 2

C. Deep regression architecture with the daily cost obtained using the theoretical benctmar
This subsection describes the exact architecture of thehewrhe results in Fig[]6 are obtained by averaging the scaled
network depicted in Fig. 2 used during the simulations. performance over 6 statistical runs. It is observed thatkies
fragment of the Python code of the neural network can kg the order of 30 days before the control policy converges
found in the appendix section. The input of the CNN ig a scaled performance of 0.95, after which its performance
provided byz" € RNvin*Nuis In the simulations, the numberremains stable. Note that in Figl 6, a scaled performance of

of bins Ny, is set to 28 and the number of previous tim@ne corresponds to the solution of the theoretical benckhmar
stepsNVy;s to 28, resulting in &8 x 28 grid. The first hidden

layer convolves foulf x 7 filters with stride 1 with the input
xP and applies a rectifier nonlinearity (ReLu). The second  giate-time features

hidden | I ight < 5 filt ith stride 1, i . . I o
idden layer convolves eighitx 5 filters with stride 1, again To identify the contribution of taking into account the

followed by a rectifier nonlinearity. The convolutional &g | . . ) .

. . history of observations into the state, a set of numericpéex
are followed by a single fully connected layer mapping the :
feature maps t®2 hidden nodes. The time-dependent stafB1ents (spanning 80 days) has been conducted, the results of

which are presented in Tablé |. Six numerical experiments

components; ., €xogenous state compon and action ) . )
P b,k 9 ponefk have been performed where the history of observations is

uy are processed using a single, fully connected hidden laye ded as discussed in Sectigh V. Similar, six numericalrexpe

of 16 units. The combined output of the CNN and feedforward tsh b ducted where the hist f ob i
network are processed using two fully connected layerdh egq'ents have been conducted where the history of obsengtion

consisting of24 units. All layers used RelLu activations and"'®S omitted. In order to evaluate the contribution of the

no pooling layers were used. The final hidden representati'cg'rgormat'on present in the past observations, the network

is mapped to a single output using a fully connected line Fchltecture has been left unchanged. The state howewr, ha

output layer with a single hidden output. The network wa een constructed by copying the last observaion Nus

. ) . . s mes. Tablelll presents the scaled cumulated cost for both
g?g;g fglng the RMSProp algorithi [46] with m|n|batche§ets of simulations, i.e. with and without taking into aacbu

the history of observations. The cumulated cost is caledlat
D. R for the last 30 days to make the results less sensitive for the
. Results . . .
i ) ) ) _effects of exploration. For clarity, the results are nolised

The simulations span a period of 80 days, each simulatigfy, the mean cumulated cost over the twelve experiments. As
taking about 16 _hOLES During the last eight days, the ex-he expected difference is on the order of one to two percent,
ploration probability was set to zero, resulting in a cortglie 5 yo-sample t-test has been conducted indicating that with
greedy policy according t@X7). In Figl 4 one can see a selectiainost 9794 probability the results originate from disttibos
of the results of the presented approach after differento®im i 5 different mean. Adding the history of observations to

of days for different outside temperatures. The number gfe state, reduces the average cost by approximately 1.2%.
days are indicated in the titles of the top row, i.e. after 20,

60 and 70 days. The bottom row depicts the corresponding VIl. CONCLUSIONS

outside temperatures. Added in the graph are the results of a_ . . .
benchmark optimization as discussed above. It is obsehad t %rlven by recent successes in the field of deep leardiing [20),

the results obtained after 60 and 70 days are close to optirﬂg worI§ has demonstrated how a ”.e“_ra' _network_, con_tamlng
. . . convolutional layers, can be used within fitted Q-iteration
and this for different outside temperatures.

Since a random exploration term is used, the experime ealls.tﬁderphandtr(tespolrtﬁe setting with r;artlalt ol;sequa?
were repeated 6 times. The results of these 6 simulati y enre 'ln?. elslae Wi ?jstequstnge of past o .ser\t/_a |0n]:°,,
runs can be seen in Fifl] 5. This figure depicts the pow convolutional 1ayers used to obtain an approximation o

consumption profiles and corresponding electricity prioés t € Q'f“”"“‘?” were able_ to extract s_t_ate—t|me features tha
the cluster for different days during the learning proc@sse mitigate the issue of partial observability. The approaa h

last two subplots in the bottom row of the figure correspo en evaluated in aqualitative_simulation, comprisingtarioe
to the last eight days obtained with a pure greedy policy. geneous cluster of thermostatically controlled loadst ¢imdy

This is presented more quantitatively in Fig. 6, where th%1are their operational air temperature, whilst thexivelope

scaled performance is depicted. The scaled performanae isgmperature remains hidden. The simulation experimems ha

fined as the daily cost using our approach (Algorithm 2) stal emonstrated that our approach was able_ to obtain near-
optimal results and that the regression algorithm was able t

2InteR Core™ i5 2.5 GHz, 8192 MB RAM benefit from the sequence of past observations.
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Day 20 Day 60 Day 70 T T ; 30
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Fig. 6: lllustration of the learning process, depicted is the stale
performance (averaged over six runs) with and without idiclg the
state-time features. Also depicted is the average outsitiparature.

Fig. 4: lllustration of the learning process, the black lines in tow
depicts the power profiles obtained with the approach ptedeim
this paper after 20, 60 and 70 days respectively, the red limdicate
profiles corresponding to a benchmark solution. Depicteth \the
dashed lines are the corresponding price profiles, whilkstldver
graphs depict the corresponding outside temperature. network was done using Kerds [49] and The&nd [50].

Day 6

60| — Power~< a
- - -Price — A '

from keras.optimizers import RMSprop
from keras.models import Sequential

Power [kW]

from keras.layers.core import (Dense, Activation, Merge,

Flatten, Reshape, Convolution2D)

widthl = 7 # width first filter

CNN = Sequential()

CNN.add(Dense (28%28,28*28))
CNN.add(Reshape (1, 28, 28))
CNN.add(Convolution2D(4,1,widthl,widthl,

Power [kW]

border_mode= 'valid'))
CNN.add(Activation( 'relu'))

Power [kW]

Price [€/MWh]

width2 = 5 # width second filter
8 12 16 20 8 12 16 20 12
Time [h] Time [h] Time [h] CNN.add(Convolution2D(8, 4, width2, width2))
Fig. 5: Average power consumption of the cluster (black linef¥V-add(Activation( relu ))
surrounded by a gray envelope containing 95% of the power cofN.add(Flatten())
sumption profiles (of six simulation runs) for different dagluring scaledGraph = 28—widthl+l—width2+1
the learning process (left y-axis). Daily price profileslied line, cyn.add(Dense (8% scaledGraph*scaledGraph, 32))

right y-axis). CNN.add(Activation('relu'))

Future work will be oriented towards the application of°del = SequentialQ , .
high-fidelity building models, which we already started extodel-add(Merge ([CNN,Dense(2,16)], mode= concat ))
ploring in [47], and testing the performance of the proposdidel-add(Dense (48,243
approach for other objectives such as tracking a refererftie! -add(ActivationC relu )
profile. In terms of research, other regression technicie) medel-add(Dense(24,24))
as long short-term memory networks, will be investigateg] [4 ™°del-add(Activation( relu))

model .add(Dense (24, 1))
APPENDIX: CONVOLUTIONAL NEURAL NETWORK o
ARCHITECTURE # RMSProp optimizer [44]

The following fragment of Python code shows thers - G n TP SR R

construction of the neural network (Figl 2) used during the ' - - ’

simulations (Sectiofl_VI). The implementation of the neural
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