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Abstract—The grid-connected electric vehicles (EVs) serve as
a promising regulating resource in the distribution grid with
Vehicle-to-Grid (V2G) facilities. In the day-ahead stage, electric
vehicle batteries (EVBs) need to be precisely dispatched and
controlled to ensure high efficiency and prevent degradation. This
article focuses on considering a refined battery model, i.e. the
electrochemical model (EM), in the optimal dispatch of the local
energy system with high penetration of EVs which replenish en-
ergy through V2G-equipped charge station and battery swapping
station (BSS). In this paper, to utilize the EM efficiently, recursive
EVB constraints and a corresponding matrix-based state update
method are proposed based on EM power characterization. The
charging EV state distribution is profiled and a multi-layer BSS
model along with binary aggregation is proposed, in order to
overcome the computation complexity of combining the refined
battery constraints with the mixed integer optimization. Finally,
a local energy system scenario is investigated for evaluation. The
efficiency and effectiveness of EM consideration are assessed from
the perspective of both the system and battery.

Index Terms—Lithium battery, electric vehicle, electrochemical
model, vehicle-to-grid, battery swapping.
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I. INTRODUCTION

The advancements in LiB, including the material innovation
for higher capacity [1] and manufacturing improvements for
cost reduction [2], have aroused the popularization of EVs. As
one of the key approaches to civil transportation electrification,
EVs, however, have been cast doubt on the problem of “range
anxiety” [3]. To combat such anxiety, besides the trend of
higher LiB density, fast charging and battery swapping are the
two coexisting approaches of fast energy replenishment as the
alternative solution in different real-world applications [4].

In the meantime, with the progressing penetration of EVs
in neighborhoods, uncoordinated charging loads have imposed
heavy uncertainty on the distribution grid as well as the energy
dispatch. Thus, serving as a coordinated interconnection be-
tween EVs and the grid, V2G technology has wide application
in the distribution grid of high EV penetration scenario [5].
It can provide adjustable charging policy to modify the load
curve [6] and the potential of assimilating excess PV [7].

Many researchers investigate the V2G potential based on
CSs, among which V2G can be classified into a uni-directional
and a bi-directional category. The uni-directional V2G only
supports controllable charge other than discharge, enabling
EVs to participate in the energy market as an adjustable load
without extra equipment retrofit [8].

Whereas the bi-directional V2G considers the EVB as the
automotive energy storage, providing regulation potential for
the system operator [7]. The feasibility of penetrating a single
V2G-equipped EV into a residential building is verified in
[9]. While the large-scale EV fleet at V2G-equipped CS
seems more attractive from grid prospects. [6] estimates the
V2G potential of the EV fleet by developing an aggregated
model and a smart charging strategy. [10], [11] investigate the
combination of bi-directional V2G and renewables to obtain
the benefits of renewable assimilation as well as reduced cost.

Multiple grid-side ancillary services can find benefits with
V2G grid-connected EVs, including demand response [12],
[13], spinning reserve [12], and stability regulation [14]–[16].
To address the issue of frequency stability, [15] proposes a
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control strategy that utilizes the potential of V2G operations
to participate in secondary frequency regulation. While in [16],
voltage stability in the distribution network is investigated by
employing reactive power V2G facilities.

Meanwhile, the commercialization of battery swapping in
recent years has exhibited a more appealing V2G potential
due to the fundamental LiB repository on site, which leads
to abundant discussions on BSS scheduling. It is reported
that V2G-equipped BSS has potential applications in scenarios
such as peak-shaving [17], frequency regulation [18], and
resilience provision [19].

To instruct the LiB energy replenishment in BSS, [20]
studies the optimal operation of BSS based on standard LiB
charging strategy and [21] takes the priority and location of EV
charging into account to propose a centralized charge policy.
To deal with the computational complexity from the additional
binary decision variables which are generated to illustrate the
management of swapping LiB dispatch, [22] decouples the
overall optimal charging decision into multiple independent
subproblems by standard dual decomposition to implement
parallel computing. To model the repository variation, [23]
develops a configuration of BSS LiB inventory to manage the
swapping process and estimates the economic benefits, and
[24] provides an inventory-oriented BSS model to obtain the
time-varying swapping price for the allocation. In [25], the
charging center is separated from multiple distributed BSSs,
and day-ahead inventory planning is proposed to determine
the number of full-charged LiB delivery and depleted LiB
recovery at the beginning and end of a day, respectively.

Regarding the V2G-equipped BSS, a few researchers have
studied the power management of BSS from the aspect of a
local grid, where the responsibility of selecting the economical
spot of BSS is assigned to the system operator. [26] investi-
gates the optimal behavior of the BSS under real-time pricing
by formulating the internal operation as a MILP problem. In
[27], the integration of on-site PV along with EV and BSS
is studied on the day-ahead stage according to forecasted PV
data. While in [17], [28], the dispatch is divided into a double-
layer framework to separately make decisions for microgrid
and BSS with exchanged indicators of price and power.

Despite the advantages that BSS can bring to the grid, the
main obstacle to promoting battery swapping is ultimately
a commercial issue: a large amount of initial investment
is required, and the contradictions of battery ownership be-
tween EV owners and BSS operator exist [29]. Besides, EV
manufacturers can hardly comprise to employ standardized
battery pack structure design for swapping [30]. Therefore,
it is estimated that among the energy replenishing modes,
battery swapping will coexist with fast charging and mainly be
engaged in to-business scenarios with the desire for replenish-
ing energy rapidly for a relatively large capacity battery or a
frequent demand, e.g., logistics trucks [27], public transporta-
tion [22] and autonomous mobility on demand (or taxis) [24].
While fast charging will be provided for to-customer scenarios
due to its universal application.

From this perspective, instead of only considering the
operation of BSSs alone like [17], [20]–[24], [26]–[28],
the overall economic benefit of a microgrid consisting of

both CS and BSS is investigated in [31] through the Nash
bargaining approach. [32] focused on the logistic system
between CS and BSS and solves the dispatch problem in a
distributed way. Integrating CS and BSS, a game theoretic
optimization framework is employed in [33] to coordinate
the EVs and the optimal energy management considering the
market. Furthermore, the business model of combined V2G-
equipped CS and BSS along with the renewables and energy
storage in the local grid has been also advocated by several
leading EV infrastructure operators such as NIO [34].

However, among the studies concerning CS and BSS, most
of the existing literature focuses on the formulation of macro
control logic neglecting the precise LiB model by setting a
SOC level and assuming a constant charging period [16],
[21], [23], [25], or with a simplified consideration on LiB
model [10]–[15], [17]–[20], [22], [24], [26]–[28]. The constant
power limitation and direct update of SOC from power, i.e.
SSM, is commonly applied, which leverages the LiB char-
acteristic error from the actuality. A few related research on
energy storage propose the application of the ECM [35], but
its parameters play a crucial role and need artificially modified
under the varying operating situation.

Whereas in V2G-equipped CS and BSS, due to more
frequent EVB charging and discharging, it is demanding for
either SSM or ECM to capture precisely the variation of EVB
physical characteristics, resulting in reduced battery efficiency,
accelerated degradation, and even safety hazards. Thus there
exists the necessity for a more refined LiB model. Fortunately,
other than SSM and ECM, the EM of LiB originates from
the description of the inside chemical reaction and excels in
precise simulating results. By applying EM, some researchers
managed to account for the degradation in optimal battery
control [36], [37] and to obtain a more authentic evaluation
of battery power performance [38], [39]. Meanwhile, this
mechanism-based model can reflect the internal characteristics
to the dispatch level [40], providing adaptability under differ-
ent conditions and exploiting the capability of LiBs under the
premise of safety.

But to the best of our knowledge, there has been no prior
research investigating the optimal energy dispatch model of
grid-connected EVs considering the EM, due to the sophisti-
cated mechanism and the insufficiency of existing commercial
solvers for such integrated complex problems. To enable this
research, it is necessary to take reformulations and simplifica-
tions on both the EM and dispatch, which is key to handling
the complexity of considering the complicated EM states in
the solution of MILP which contains many logic integers.

Thus, motivated by the aforementioned research gap, this
paper proposes an optimal dispatch model of grid-connected
EVs at V2G-equipped CS and BSS, taking EM’s advantage
in interpreting battery performance and precise control. The
main contributions of this paper are presented as follows:

1) This paper accesses EM in energy dispatch through LiB
power characterization to consider dynamic voltage, dynamic
cell temperature, and dynamic available power. A matrix-based
state update is proposed to avoid iterative calculation in the
recursive constraints of EVB states.

2) The EM power characteristics are incorporated efficiently
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with the grid-connected EVs at CS and BSS. Charging EVs’
temporal behaviors are grouped and profiled to capture the
uncertainty of CS state distribution without extra integers.
While a multi-layer BSS model along with binary aggregation
is presented to overcome the complexity of combining the
recursive constraints of EVBs and binary control logic of BSS.

3) The case scenario is set in an LES with high EV
penetration consisting of CS and BSS, exploiting the V2G
potential of grid-connected EVs while effectively preserving
high EVB efficiency and curtailing degradation.

The remainder of this article elaborates as follows: Sec-
tion II presents the methodology of obtaining power charac-
teristics, whereas charging EV and BSS with EM are modeled
in Section III. Section IV establishes the optimal dispatch
problem and Section V carries out the case study. Finally,
Section VI delivers the conclusion of this article.

II. ACCESSING THE POWER CHARACTERISTICS OF EM

A. The Basic Idea

Denote the EM model from [41] by EM(·). The input
current series are denoted by I and material-related parameters
by ψ. V and Θ are sequential external states, i.e. voltage
and cell temperature respectively. Γ denotes the other internal
electrochemical state matrices including lithium concentration
ξ±s , cell energy conversion efficiency η, solution-solid inter-
face potential ϕ−

se, active lithium loss τL and etc. SOC0 and
Θ0 are the initialization of SOC and cell temperature.

A straightforward idea for considering EM in dispatch is
a two-level hierarchical model (M0) in (1), where the upper
level solves the optimization and the lower level simulates
the EM [36]. However, optimizing M0 is impractical in this
dispatch due to the computational burden. The state equations
of EM can hardly be either incorporate with the iteration
of MILP solving process or rewritten with analytic methods
like Lagrange multipliers considering the following EM com-
plexity: a) high sampling frequency (˜1s); b) non-linear and
non-convex; c) sequentially coupled.

(M0) minimize: Cost
subject to: Constraints (EVB operating conditions,

EV distribution, BSS logic, etc)
(V , Θ, Γ) = EM(SOC0,Θ0, I,ψ)

(1)

Therefore, the EM needs further simplifications through
LPC to be considered in dispatch. The core idea of the LPC is
to extract generic power-related state relationships and generic
boundary conditions between adjacent decision points in the
optimization. It is essentially a mapping of EM on the low-
dimension space of the dispatch, i.e. dimensional reduction.

As shown in Fig. 1, LPC is performed on high-sampling
frequency EM (second-level) to retain EM accuracy in terms
of interpreting battery performance. The scope of LPC should
be equal to the decision step size, to eliminate the varying
influence of LPC time duration on battery performance. Be-
sides, the selection of decision step length actually balances
the computational complexity between the LPC and the energy
dispatch problem, i.e., a shorter decision step length decreases

⋯
Decision Step Size

(=EM Simulation Length)

⋯
LPC based on EM

Day-Ahead Dispatch

State Equation

Optimization

kth Sample nth Sample

tth Decision Point Tth Decision Point
𝜟𝜟𝜟𝜟

𝜹𝜹𝜟𝜟
Sampling Interval

1st Decision Point

1st Sample

Fig. 1: Time Resolution of LPC and Day-Ahead Dispatch

the EM simulating time in LPC but increases the number of
decision variables in optimization.

This article addresses the concerning LiB performance in
energy dispatch, including the dynamic voltage, dynamic cell
temperature, and dynamic available power of EVB, which are
implemented by power dynamics, heat dynamics, and SOPT,
respectively. Drawing inspiration from the numerical method
presented in [40], this article enhances the LPC framework
and proposes the recursive constraints and matrix-based state
update to efficiently integrate LPC with MILP optimization.

B. LPC Framework

1) Power dynamics: Power dynamics aim to consider the
dynamic voltage during operation to implement a precise
conversion between energy (unit: kWh) and capacity (unit:
Ah). From the open-circuit voltage curve, it can be known
that voltage is related to the magnitude of SOC. Therefore, in
energy dispatch, SOC instead of battery voltage can be utilized
as the argument of power function to approximate current, i.e.
I = g(SOC,P ). Considering the time resolution of a day-
ahead dispatch, it is assumed that,

Assumption 1. EVB current remains stable between two
adjacent decision points, and the current is equal to the initial
value I0 at the starting point of the decision step.

Denote the sampling interval by δt and decision step by
∆t, where ∆t = nδt. From the assumption, SOC takes the
initial value at i = 1 in a single decision step and power takes
the average value (∆E/∆t) during the current approximation.
Denote the change of energy in a single decision step by ∆E
(unit: Wh), and the change of battery charge (unit: Ah) is:

∆C =

n∑
i=1

I(i)δt ≈ g
(
SOC0,

∆E

∆t

)
∆t (2)

where SOC0 is defined by the normalized average lithium-
ions concentration of solid phase in the negative electrode ξ−s

[41], i.e. SOC0 = SOC(1) =

∑νs
j=1

ξ−s (dj,i=1)

νs
−ξ−min

ξ−max−ξ−min

.

Denote the average power ∆E/∆t by P0, which is ob-
tained by simulating the EM(·) with SOC0 and I0 from
the feasible region given by SOPT as inputs. The uniform
sampling inputs of SOC0 and I0 generate P0 and their com-
bination constitutes the power dynamics surface. Under fixed
cell type (i.e. electrode materials) and ambient temperature,
experimental evidence reveals that the power dynamics surface
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sP (SOC0, P0, I0)|Type,Θamb
= 0 can be fitted as a plane, and

current estimation g equals the inverse function of sP :

I0 ≈ g(SOC0,
∆E

∆t
) ≈ a0 + a1SOC0 + a2P0 (3)

where the first approximation stems from the definition of
P (k) and the second from fitting the coefficients a0,1,2. Denote
the battery cell capacity by C0, thus SOC in dispatch can be
updated by (2),(3):

∆SOC =
−∆C

C0
≈ −I0∆t

C0
(4)

2) Heat dynamics: Dynamic cell temperature of EVB af-
fects the available power performance during dispatch. In a fast
charging scenario, the internal heat generation is significant
enough to change the cell temperature, while the external heat
transfer is also notable.

Therefore, it is necessary to regard the cell temperature
as one of the battery states and estimate it during the opti-
mization. Considering the model complexity, a lumped heat
model (5) from [42] is sufficient for the research requirement
to approximate the temperature variation:

mCp
δΘ(t)

dt
= Hi(t) + hcAsurf (Θamb(t)−Θ(t)) + heHe(t)

(5)
where m is the cell mass, Cp is the heat capacity of battery
cell, and the left side of (5) is the derivative of cell temperature.
On the right side of (5), the first term Hi represents the net
heat generation in the cell due to electro-chemical energy con-
version. hc and he are lumped heat transfer coefficients, He(t)
denotes the net heat generation from other pack components.
The second term and the third term on the right side are the
heat exchange with the external environment and heat transfer
of non-ideal pack components respectively.

In order to establish a connection of EVB temperature
updates between the second-level EM model and the minute-
level optimization, heat dynamics essentially depict the cross-
sectional thermal characteristics of the EM simulation after
one decision step. A lumped function κ is proposed to model
the summation of discrete temperature variation after one
decision step:

∆Θ =

∫ t+∆t

t

δΘ(t) ≈
n∑

i=1

δΘ(i) = κ(Θ0, P0) (6)

where ∆Θ is the temperature variation between decision steps
and Θ0 is the initial temperature of this decision step t. δΘ
can be obtained by solving (5) and the average power P0 can
be derived from the inverse function of g.

To estimate heat dynamics function κ, EM is simulated with
a uniform sampling of Θ0 and I0 bounded by feasible region
as inputs. The experiment demonstrates that κ can be fitted as
two separate planes on the positive and negative intervals of
P0, i.e. discharge and charge power, respectively.

∆Θ ≈ κ ≈

{
e0 + e1Θ0 + e2,disP0, if P0 ≥ 0

e0 + e1Θ0 + e2,charP0, if P0 < 0
(7)

where the first approximation stems from the definition of ∆Θ
and the second from fitting.

3) State of Power-Thermal: SOPT is defined as the max-
imum available power to be dispatched at the present states,
while satisfying the operating requirements in EM simulation
as well. In terms of reaction mechanism, SOC is related to
open-circuit voltage and the potential of power output, while
cell temperature influences the intensity of reaction. Thus both
of them are represented as arguments in SOPT.

Following Assumption. 1, under fixed ambient temperature
and material type, the current I0 is the only independent
variable of EM if SOC0 and Θ0 are taken as arguments, so
its maximum determines the maximum available power. There-
fore, the SOPT can be estimated by a small-scale nonlinear
non-convex optimization of current I0, which can be directly
solved by heuristic methods:

max
I0

: |I0|

subject to: EM(SOC0,Θ0, I,ψ) ∈ Ω, I0 ∈ ΩI

(8)

where Ω represents the set of EVB operating requirements,
and ΩI distinguishes the discharging and charging processes.

In Ω, to ensure the EVB scheduling plan is physically oper-
ating feasible, constraints of cell voltage (V ) and constraints
of remaining-capacity-related Li-ion concentration (ξ±s ) are
included. To implement an efficient and safe dispatch plan,
constraints of cell energy conversion efficiency (η) are intro-
duced in Ω, which helps to curtail the heat generation during
energy conversion in non-ideal cells. To prevent excess EVB
aging, aging-related solution-solid interface potential (ϕ−

se),
and active lithium loss (τL) are set as limitations as well.

By taking material type and ambient temperature as hyper
settings, SOPT can be mapped by uniform sampling arguments
of initial SOC and cell temperature. Denote the optimal current
by Î0 and the corresponding voltage output from EM by V̂ ,
and the total energy during a decision step by ∆Ê. Since
there exists no controlling space for optimization between
two decision steps, regarding the conservation of energy, the
maximum available power defined under time scale ∆t equals
the average power defined under δt:

SOPT ≡ ∆Ê

∆t
=

∑n
i=1 p̂(i)δt

∆t
=

Î0
∑n

i=1 V̂ (i)

n
(9)

Experiments reveal that all SOPT˜SOC0˜Θ0 values consti-
tute a convex hull that can be piece-wised by multiple planes,
where SOPT is expressed in parameterized functions:

fd(SOC0,Θ0) =min(bm2,disSOC0 + bm1,disΘ0 + bm0,dis)

f c(SOC0,Θ0) =max(bm2,charSOC0 + bm1,charΘ0 + bm0,char)
(10)

where m = 1, . . . ,M and M denotes the number of piece-
wise segments. fd and f c denote the SOPT function during
discharging and charging determined by initial SOC and cell
temperature. bm0 , bm1 , bm2 are the fitted coefficients. It should be
noted that the coefficients in power dynamics, heat dynamics,
and SOPT are defined and fitted under a fixed material type
denoted by Type and ambient temperature Θamb, while dif-
ferent settings correspond to different sets of fitted parameters.
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C. Integration of LPC with Dispatch

1) Recursive Constraints: With the linearized LPC results,
performance constraints of an EVB can be given recursively as
Fig. 2. With these recursive constraints, the dispatch problem
can be represented as an elementary MILP problem (M1)
instead of the hierarchical nonlinear form M0.

As shown in Fig. 2, EVB power is the decision variable to
be scheduled, while EVB states are updated with LPC results.

i) SOPT is estimated by (10), where SOC0 equals to SOCt

updated by last step and initial Θ0 equals to Θt;
ii) EVB power subjects to the convex feasible region formed

by both discharging and charging SOPT;
iii) According to power dynamics in section II-B1, both EVB

power and SOC produces the magnitude of current It.
Current updates SOC iteratively, but in (11), vectorization
enables non-iterative SOC update without the explicit
expression of current.

iv) Cell temperature changes according to heat dynamics in
section II-B2 during each step, thus the sequential cell
temperature is updated by EVB power and itself, where
the latter one is an implicit variable in (14) as well.

For ∀t ∈ [1, T − 1], i) - iv) constitute recursive constraints.

𝑷𝑷

𝑺𝑺𝑺𝑺𝑺𝑺

𝑺𝑺𝑺𝑺𝑷𝑷 a) SOP Estimation

c) Power Dynamics
b) Constraint

𝜣𝜣

d) Heat Dynamics

Dispatch Objects Battery States

𝑷𝑷

𝑺𝑺𝑺𝑺𝑺𝑺

𝑺𝑺𝑺𝑺𝑷𝑷𝑺𝑺 i) SOPT Estimation

iii) Power Dynamics

ii) Constraint

𝜣𝜣𝒕𝒕

iv) Heat Dynamics

Dispatch Objects Battery States

𝑰𝑰

Implicit variables

𝜣𝜣𝒕𝒕−𝟏𝟏

Fig. 2: Recursive EVB Constraints

2) Matrix-based state update: When applying power dy-
namics in the MILP optimization problem, iterative updates
of sequentially coupled states of each EVB cause intricate
variable correlations and consume a considerable amount of
time during model formulation and regularization.

Thus in (11) we propose a non-iterative matrix-based SOC
update method with power dynamics. It is a collective up-
date function for the entire problem, covering decision steps
ranging from t = 1 to t = T . The first term of (11) is the
descending effect of initialization as time passes, while the
second term is the summing effect of EVB power at present
and prior to this moment. The third term is the fundamental
effect such as the self-discharge, which is represented by a0.

Moreover, the updating process avoids the need to explicitly
compute the intermediate variable of current in (3), so as to
reduce the number of variables.

SOC = SOCinit∗A+
1

NLC
∗BP (P LC,d+P LC,c)+BCS (11)

χ = 1− a1
C0,LC∆t

, A =
[
χ χ2 · · · χT

]T
(12)

B =


1 0 · · · 0
χ 1 · · · 0
...

...
. . .

...
χT−1 χT−2 · · · 1


BP = − a2∆t

C0,LC
∗B, BCS = − a0∆t

C0,LC
∗B ∗ 1T

(13)

where the LiB category is denoted by LC (LC =
ES/EV/BSS), and SOCinit is the initialization of LiB before
optimization. SOC is a vector, consisting of SOCt that is
defined for each decision step. Similarly, P LC,d and P LC,c
represent discharge and charge power vector, respectively. NLC
denotes the number of cells in a EVB, and 1T is a vector of
ones with a length of T .

Besides, with κ, the temperature in dispatch is updated by
Θt+1 = Θt+κ(Θt, P t

d+P t
c ). To apply heat dynamics without

iterative updates, a similar matrix-based temperature update
(14)-(16) can be derived.

Θ = Θinit ∗C +
1

NLC
∗ (DP,disP LC,d +DP,charP LC,c) +DCS

(14)
C =

[
1 + e1 (1 + e1)

2 · · · (1 + e1)
T
]T

(15)

D =


1 0 · · · 0

1 + e1 1 · · · 0
...

...
. . .

...
(1 + e1)

T−1 (1 + e1)
T−2 · · · 1


DP,dis = e2,dis ∗D, DP,char = e2,char ∗D, DCS = e0 ∗D ∗ 1T

(16)
where Θinit is the initial temperature of the entire optimization
and other notations remain the same as those in the SOC
update.

Equation (10) gives SOPT value. By incorporating the
vectorization of SOC in (11) and Θ in (14), SOPT can be
expressed in matrix-based non-iterative form as well.

III. GRID-CONNECTED EV DISPATCH CONSIDERING EM

A. The Charging EV Dispatch

1) Vehicle behavioral analysis: The temporal characteris-
tics of V2G participation are related to EVs’ states of plug
in. Considering a personally-owned EV operation in one day,
it is divided into three different states: a) Plug in at a com-
mercial building (Sjg,g,t

EV,C = 1), where an assorted bi-directional
V2G-equipped CS is installed. b) Plug in at residential building
(Sjg,g,t

EV,R = 1), where EVs are connected to uni-directional V2G
charging piles as a adjustable load. c) Unplug when cruising
(Sjg,g,t

EV,D = 1), where EVs only discharge.
EVs are divided into several groups g to demonstrate

different living habits of vehicle owners, which lead to varied
features of EV time profile. According to the definition, EVs
are connected to the grid when owners are at work or home
(Sjg,g,t

EV,C = 1, S
jg,g,t
EV,R = 1), complemented by unplug state

between the above two grid-connected states.
2) Day-ahead dispatch of charging EVs: Denote the group

number of EV by g, the serial number of EV by jg , and each
group contains ng EVs with jg = 1, ..., ng .
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a) EV temporal characteristic: Denote each EV’s arrival
and departure time of commercial building by t

jg,g
arrive,α, t

jg,g
leave,α,

which are randomly sampled from the parametric intervals
distinguished by group [T g

arrive,1, T
g
arrive,2], [T

g
leave,1, T

g
leave,2]. EVs

may arrive at or leave the commercial building multiple times,
denoted by α. Thus the state of plug at a commercial building,
S
jg,g,t
EV,C = 1 when t ∈ TC = {t | t

jg,g
arrive,α, ..., t

jg,g
leave,α},∀α.

Denote the randomly parametric length of cruising time by
t
jg,g
LD

, and the state of unplug is intermediate between the
state of plug in at the residential building or the commercial
building, thus S

jg,g,t
EV,D = 1 when t ∈ TD = {t | t

jg,g
arrive,α −

t
jg,g
LD

, ..., t
jg,g
arrive,α − 1} ∪ {t | t

jg,g
leave,α + 1, t

jg,g
leave,α + t

jg,g
LD

},∀α.
EVs are located at the residential building when owners are not
working or driving, thus the state of plug in at the residential
building, Sjg,g,t

EV,R = 1 when t /∈ (TC ∪ TD).
b) Optimal EV charging with EM: The initialization of

EVB SOC is set by parameters and the initial EVB cell
temperature equals ambient temperature. Incorporating grid-
side decision variables, EVB SOC SOC

jg,g,t
EV and cell temper-

ature Θ
jg,g,t
EV can be updated with (11),(14) by the sequential

vector of discharging and charging power of each cell, where
P0 ≡ ∆E/∆t is the power on each cell:

P
jg,g,t
0,EV =

P
jg,g,t
EV,d + P

jg,g,t
EV,c + P

jg,g,t
EV,unplug

NEV

SOC
jg,g,t=1
EV = SOC

jg,g
EV,init,Θ

jg,g,t=1
EV = Θamb

(17)

where SOC
jg,g
EV,init is acquired from dataset and Θamb denotes

the ambient temperature.
At the residential building where uni-directional V2G exists,

EVBs are limited to the charging SOPT constraints to ensure
practical power injection. In addition to this, for bi-directional
V2G at the commercial building, EVBs are limited to both
charging and discharging SOPT constraints:

fd(SOC
jg,g,t
EV ,Θ

jg,g,t
EV )NEVS

jg,g,t
EV,C ≥ P

jg,g,t
EV,d ≥ 0 (18)

f c(SOC
jg,g,t
EV ,Θ

jg,g,t
EV )NEV(S

jg,g,t
EV,C + S

jg,g,t
EV,R ) ≤ P

jg,g,t
EV,c ≤ 0

(19)
where P

jg,g,t
EV,d , P

jg,g,t
EV,c denote the discharging and charging

power respectively and NEV denotes cell amount in an EVB.
In unplug state (Sjg,g,t

EV,D = 1), the rate of EVB discharging
is related to irrelevant factors of scheduling, e.g., road quality
and owners’ driving practices. Thus, it can be assumed that
the average cruising power is proportional to SOPT, where the
ratio parameters denoted by r

jg,g
EV,D of each EV are randomly

sampled within a certain range. Therefore, the cruising power
of unplug state can be derived from SOPT:

P
jg,g,t
EV,unplug = r

jg,g
EV,DS

jg,g,t
EV,D fd(SOC

jg,g,t
EV ,Θ

jg,g,t
EV ) (20)

Considering the benefits of owners and to ensure the energy
feasibility of driving, EVs should be adequately charged
to SOC requirements before the departure from commercial
building SOC

jg,g
EV,req ≤ SOC

jg,g,t=tleave,β
EV , which will transfer

part of the EVB energy cost towards the commercial building.
In order to promote EV owners to participate in V2G and
submit to day-ahead dispatch, the allowable upper and lower
boundaries of EVB SOC should be more conservative to
extend battery life [SOCEV,min, SOCEV,max].

B. The Battery-Swapping EV Dispatch
1) The operation analysis of BSS: BSS provides EV swap-

ping services with full-charged batteries for fast energy re-
plenishment while participating in bi-directional V2G with its
in-station EVB stockings. The major form of BSS dispatch
is MILP where integers designate the swapping logic and the
main goal of the BSS schedule includes: a) Energy Control:
Precise and efficient charging and discharging strategy of the
in-station EVBs. b) EVB Allocation: Profitable dispatch of
EVBs and swapping decisions.

2) The design of multi-Layer optimization model (M2):
Incorporating LPC results with typical BSS dispatch models
can be inefficient or even impractical in the case of large-scale
BSS. Because in NP-hard MILP, the numbers of binary deci-
sion variables and EVB recursive constraints are mixed with
each other, which are both proportional to BSS storing size.
Thus, there exists a necessity to propose an enhanced dispatch
model which utilizes the EM effectively and efficiently.

To address this issue, a multi-layer optimization model
of BSS is proposed in this paper, denoted by M2. In M2,
EVBs are virtually divided into online and offline cate-
gories, which represent whether the battery is operating (either
charge/discharge) or not. A virtual warehouse layer contains
all offline EVBs and separates the grid-connected layer and
business layer. Only online EVBs in grid-connected layer are
dispatched for providing V2G service, while offline EVBs in
the virtual warehouse are assigned to retain two discrete SOC
states (Full-Charged/Depleted, denoted by subscript f and e
respectively). The dispatcher takes the SOPT and SOC of each
online EVB but only quantities of offline EVBs into account.

The virtual warehouse serves as a buffer between the
inconsistency of aggregated binary signal and single external
demand as well. Besides, instead of swapping one for one
like the swapping logic in [26], the allocation of online EVBs
in M2 is unified dispatched, i.e. the exits of full-charged
batteries from CDs are independent of the entrance of depleted
batteries. In such cases, the associated CDs are allowed to be
occasionally unoccupied by EVB, which provides transitory
balancing flexibility of V2G and swapping business.

The object of dispatching in M2 is CDs, which serve as
the reference of artificially defined states including SOPT and
SOC. These definitions are essentially the sequential combina-
tion of real states of the EVBs that occupy the corresponding
CD, thus they are non-zeros only if positive occupying state.

Additionally, BSS is usually equipped with advanced cool-
ing systems to keep the temperature constant, so EVBs in BSS
can be assumed to be operating under thermostatic conditions.

3) The Consideration of EM in BSS: k denotes the index
of CD on the grid-connected layer in M2. CDs’ occupation
states by EVB sk,t can be represented as step signals. And
the positive occupying state (sk,t = 1) is defined that kth CD
retains a dispatchable EVB that is available to participate in
grid-connected bi-directional V2G at t.

Indicating signals of CDs appear as unit pulses, including
online signals (xk,t

on,f , x
k,t
on,e) and offline signals (xk,t

off,f , x
k,t
off,e).

They are only positive at the decision step of EVB retrieval.
SOC referring to CDs will be updated based on EVB

current if the positive occupying state, while remains zero
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if unoccupied. Denote SOCBSS,upd as the continuous SOC
updated as power dynamics (4) with the manifestation in (21).
At the moment of EVB going online (xk,t

on,all = 1), SOC
referring to CDs should be relaxed as (22) since EVB contains
discrete SOC of target warehouse as (26). Let Mb be a large
constant, and (22) is the convex form of SOC update.

P k,t
0,BSS =

P k,t
BSS,d + P k,t

BSS,c

NBSS
, SOCk,t

0,BSS = SOCk,t
BSS (21)

−Mb(1− sk,t) ≤ SOCk,t+1
BSS,temp − SOCk,t+1

BSS,upd ≤ Mb(1− sk,t)

−Mb(s
k,t + xk,t

on,all) ≤ SOCk,t+1
BSS,temp ≤ Mb(s

k,t + xk,t
on,all)

(22)
Moreover, it is assumed that the energy loss SOCBSS,l

exists during EVB stocking and replacement, which is equiva-
lently taken into account at the moment of going online. Then
the sequential SOC update defined towards CDs is:

SOCk,t+1
BSS = SOCk,t+1

BSS,temp + xk,t
on,f (SOCBSS,F − SOCBSS,l)

+ xk,t
on,e(SOCBSS,E − SOCBSS,l)

(23)
where the big-M method should be applied to each term
of (23) independently to avoid non-convex optimization. The
boundary limitation [SOCBSS,min, SOCBSS,max] and SOC ini-
tialization SOCBSS,init are given by parameters.

According to the SOPT estimation (10) and the thermostatic
condition, the BSS power is limited as:

fd(SOCk,t
BSS,ΘBSS)NBSSs

k,t ≥ P k,t
BSS,d ≥ 0,

f c(SOCk,t
BSS,ΘBSS)NBSSs

k,t ≤ P k,t
BSS,c ≤ 0

(24)

where ΘBSS takes optimal operating temperature and (24)
should be rewritten as convex constraints as big-M method.

4) Control Logic of EVB: As the step functions can be
expressed from the unit impulse, offline signals determine the
reverse of the positive occupying state (sk,t = 1 → sk,t+1 =
0) and vice-versa. Let xk,t

on,all, x
k,t
off,all respectively denote the

integrated online and offline signal without distinguishing
destination warehouse: xk,t

sig,all = xk,t
sig,f + xk,t

sig,e, sig = on, off.
Thus the CD’s state can be independently updated according
to corresponding indicating signals:

sk,t+1 = sk,t + xk,t
on,all − xk,t

off,all (25)

where the occupying states of CDs are initialized by parame-
ters obtained from data: sk,t=1 = skinit.

Offline EVBs are concentrated in virtual warehouses and
retain two discrete SOC levels. At the moment of EVB going
offline (xoff,all = 1), SOC of the corresponding charging
dock satisfies warehouse requirements of retrieval: Offline
EVB should be sufficiently charged to retain SOC greater
than SOCBSS,F before entering warehouse of full-charged
EVB, otherwise it will enter warehouse of depleted EVB if
SOCBSS,E is sufficiently charged.

SOCBSS,F − SOCk,t+1
BSS ≤ Mb(1− xoff,f )

SOCk,t+1
BSS − SOCBSS,F ≤ Mb(1− xoff,e)

SOCBSS,E − SOCk,t+1
BSS ≤ Mb(1− xoff,e)

(26)

Denote the total number of required EVB on the business
side to be swapped at t by Qt

req. On the business side,
full-charged EVBs substitute depleted EVBs at t while the
amounts of stocking EVBs (Qt

f , Q
t
e) in the warehouse change

accordingly. To the grid-connected side, online and offline
signals direct the EVB switching process between the virtual
warehouse and CDs accordingly. Thus the amounts of stock-
ings are updated according to both the indicating signals of
CDs and the swapped quantity:

Qt+1
wh = Qt

wh+
∑
k

xk,t
off,wh−

∑
k

xk,t
on,wh∓Qt

req, wh = f, e (27)

Besides, the amounts of stockings in the virtual warehouse
are initialized by parameters Qt=1

wh = Qwh,init and should be
kept positive at all times Qt

wh ≥ 0.
To ensure the asset equilibrium and continuous operation of

BSS over multi-days, the total stocking EVB amount is equal
at the start and end points of the day as (28) while the amount
is postulated to have coherence Qt=T

wh ∈ [Qt=1
wh − ϵ,Qt=1

wh + ϵ]:

Qt=1
e +Qt=1

f = Qt=T
e +Qt=T

f (28)

where ϵ denotes the minor allowed inconsistency of warehouse
stock to coordinate with the aggregated method.

5) Aggregation of Charging Dock: To further enhance the
solving efficiency, integer variables related to EVB control
logic can be assembled chronologically and individually,
which essentially suggests the aggregation of EVBs. This
is reasonable because: 1) chronologically a lower update
frequency for indicating signal is sufficient since the charging
or discharging duration it takes to meet the warehouse layer’s
returning requirements is longer than normal decision step.
2) individually EVBs in each warehouse are assigned to
identical SOC so they possess similar power characteristics
when interacting with CDs.

Chronologically, let the integer decision variables annotated
by subscript ds have a longer update step ∆h instead of
∆t. To coordinate the assembled integers with other normal
continuous states like SOC and SOPT, and the high update
frequency with the low ones, step signals have to retain the
state while impulse signals only impact at the moment of state
switch, i.e. the edge of step signals. As a result, a deterministic
conversion between different resolutions is given (assuming
∆h = θ∆t). Taking xon,f,ds as the example:

sk,hds = sk,t|t=θ(h−1)+1:θh (29)

xk,h
on,f,ds = 1 →

{
x
k,t|t=θ(h−1)+1:θh−1
on,f = 0

x
k,t|t=θh
on,f = 1

(30)

and xk,h
on,e,ds, x

k,h
off,f,ds, x

k,h
off,e,ds are similarly converted as (30).

Individually, multiple CDs can be controlled collectively
with shared indicating signals under the consistency assump-
tion due to the same SOC in each warehouse. SOC updates
(22) and SOPT constraints (24) are still applicable, represent-
ing the power characteristics of a single EVB. But grid-side
power injecting should be modified according to the assembled
amount, which is considered in (32).
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Meanwhile, the amount update of warehouse stocking Qwh
is modified. Denote the amount of assembled CDs by β:

Qh+1
wh = Qh

wh + β
∑
k

(xk,h
off,wh,ds − xk,h

on,wh,ds)∓Qh
req (31)

IV. DISPATCH MODEL OF LOCAL ENERGY SYSTEM

A. The Local Energy System (LES) Design

In this article, an LES integrated with both CS and BSS
is studied as the scenario of grid-connected EVs. High peak-
shaving potential and renewables assimilation can be exploited
from LES due to the energy storing capability provided by
grid-connected EVs as the mobile storage as well as the
stationary ES.

In this LES, PV is installed on each residential building
corresponding to each EV owner while the PV-ES is only
located at the commercial building. Charging EVs travel
between the residential and commercial buildings and park in
the CS when they arrive at the commercial building as Section
III-A stated. BSS modeled in Section III-B provides services
for the public. Both CS and BSS are capable of participating
in bi-directional V2G, whereas only uni-directional V2G is
available at the residential building.

B. The Implementation of Optimal Dispatch

The stability of LES is assured by the external grid, which
only injects power into LES through the real-time energy
market.

For grid-connected EVBs, in addition to energy conversion
efficiency η, lumping efficiency of grid-connected V2G in-
terface denoted by γ should be considered due to non-ideal
charging dock facilities, e.g. converters, distribution transform-
ers, cables, etc. While other power electronic characteristics of
the V2G interface such as harmonics are neglected since they
have little impact on the day-ahead stage.

Assumption 2. The lumping efficiency of V2G interface is
consistent and stable in day-ahead energy dispatch.

Besides, non-ideal interface efficiency spontaneously re-
laxes the mutually exclusive constraint of EVB charge and
discharge power(PcPd = 0), because cost increment will be
induced in the economic optimization objective if an exclusive
power is applied instead of an equivalently unitary power, as
proved in [43]. Since the power equilibrium, the purchasing
power is:

P t
G,C = −P t

L,C + P t
PV,real,C + (P t

ES,dγ +
P t

ES,c

γ
) +

∑
ix

P ix,t
SL

+
∑
jg,g

(P
jg,g,t
EV,d γ +

P
jg,g,t
EV,c

γ
S
jg,g,t
EV,C ) + β

∑
k

(P k,t
BSS,dγ +

P k,t
BSS,c

γ
)

(32)

P
jg,g,t
G,R = −P

jg,g,t
L,R + P

jg,g,t
PV,real,R +

P
jg,g,t
EV,c

γ
S
jg,g,t
EV,R

(33)

where P t
G denotes the real-time purchased power from the grid

at either commercial (labeled with subscript C) or residential

building (labeled with subscript R). P t
PV,real denotes the sub-

stantially utilized photovoltaic power, and P t
L denotes fixed

local loads whereas P ix,t
SL denotes ixth adjustable local loads.

Additionally, LES only purchases electricity from exter-
nal grid P t

G,C ≤ 0, P
jg,g,t
G,R ≤ 0, whereas without the ca-

pability of reversely selling considering the practical con-
nections of the high-voltage transmission line. Photovoltaic
power P t

PV,real,C , P
jg,g,t
PV,real,R is limited to the physical irradiation

amount P t
PV,ir,C , P

jg,g,t
PV,ir,R respectively. And the adjustable loads

satisfy the total requiring energy Eix
SL =

∑
t P

ix,t
SL ∆t in a

whole day but real-time load power is scheduled within the
limited range [P ix

SL,min, P
ix
SL,max].

The design of ES is a direct amplification of the single EVB
cell, whose available power can be directly derived from (10)
as (34) and SOC update from (11) with the manifestation in
(35). The SOC boundary [SOCES,min, SOCES,max] and initial-
ization SOCt=1

ES is set by parameters. ES is usually operating
under thermostatic conditions since the independent thermal
managing equipment in the station. Denote the operating
temperature of ES is ΘES, PES,d and PES,c are respectively the
discharging and charging power which subject to the SOPT:

fd(SOCt
ES,ΘES) ≥

P t
ES,d

NES
≥ 0 ≥

P t
ES,c

NES
≥ f c(SOCt

ES,ΘES)

(34)

P t
0,ES =

P t
ES,d + P t

ES,c

NES
, SOCt

0,ES = SOCt
ES (35)

The goal of LES scheduling is to minimize the overall
energy expenses Z, which can be divided into electricity
cost ZCST and swapping revenue Zrev, in addition to asset
appreciation Zapr of the storing energy as penalty.

Denote the commercial and residential real-time electricity
price by V t

C , V
t
R, respectively. The electricity cost is:

ZCST,C =
∑
t

−P t
G,CV

t
C∆t, ZCST,R =

∑
jg,g

∑
t

−P
jg,g,t
G,R V t

R∆t

(36)
Denote the swapping service fee by Vs, and the business

revenue of BSS Zrev is related to the earnings per swapping
VBSS, which consist of electricity fee and service fee:

VBSS = (SOCBSS,F−SOCBSS,E)C0,BSSNBSSUa,BSSVa + Vs

Zrev = VBSS

∑
h

Qh
req

(37)
The energy stored in a grid-connected EVB is regarded as

an LES asset, which will induce appreciation if higher SOC
at the end (t = T ) than the start (t = 1). Assume the LiB
of ES and all charging EVs are in the LES scope at (t = T )
and (t = 1). Whereas in BSS, the SOC variation of EVBs on
CDs and stocking change in the warehouse should be taken
into account. Denote the average operating LiB voltage by Ua,
and average electricity price in one day by Va. Therefore, the
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asset appreciation Zapr can be approximated:

Zapr,LC = ∆SOCLCC0,LCNLCUa,LCVa, LC = ES,EV,BSS

∆SOCES = (SOCt=T
ES − SOCt=1

ES )

∆SOCEV

∑
jg,g

(SOC
jg,g,t=T
EV − SOC

jg,g,t=1
EV ),

∆SOCBSS =


M1 :

∑
k(SOCk,t=T

BSS − SOCk,t=1
BSS )

M2 : β
∑

k(SOCk,t=T
BSS − SOCk,t=1

BSS )

+((Qt=T
f −Qt=1

f )SOCBSS,F

+(Qt=T
e −Qt=1

e )SOCBSS,L
(38)

The overall optimization problem of LES dispatch is to ac-
quire minimal energy expenses, while the charging EV model
and BSS model are incorporated. M1 denotes the ordinary
MILP in Appendix. A, while M2 is the proposed MILP
dispatch considering EM efficiently with model enhancement
as analyzed in the following remark.

(M2) minimize: Z = ZCST,C + ZCST,R − Zapr,ES

− Zapr,EV − Zapr,BSS − Zrev

subject to: (11)− (20), (21)− (35)

(39)

Remark. To utilize EM in optimal EVB energy dispatch, LPC
is applied to extract generic constraints for EVB cells. Al-
though such a characterization-based approach is applicable
for linear programming problems, it is not sufficient in the
grid-connected EV scenario, which is a large-scale MILP.
The model becomes intricate for optimization, thus in the
proposed dispatch model (M2), multiple techniques are applied
to accelerate the optimizing process:

• The iterative state update in sequentially coupled con-
straints is assembled in the matrix-form. LPC results are
incorporated with the dispatch model without explicitly
calculating redundant variables like current.

• The EVs’ temporal distribution is grouped and profiled to
demonstrate uncertain behaviors without extra integers.
The available V2G potential of CS is determined by the
EVs’ state and their recursive constraints accordingly.

• A virtual warehouse layer in BSS is proposed to aggregate
the EVBs that do not have energy transfer with the grid.
In the warehouse layer, EVBs retain two discrete SOC,
and other state variables are eliminated.

• The dispatch objects in BSS are CDs instead of each EVB
to control the number of decision variables. The states in
optimization are artificially defined towards CDs, which
are essentially sequential combinations of real states.

• The operating logic of BSS is assembled according to the
consistency of EVBs’ characteristics in the virtual ware-
house layer and the lower update frequency of indicating
signals than other normal continuous variables.

Compared to ordinary dispatch, the proposed model is effec-
tively condensed and simplified for day-ahead application to
enhance solution efficiency.

V. CASE STUDY

A. Parameters
1) Configuration of LiBs and LPC results: As for the

configuration of studied battery, the LiB settings take the value

from [40]. The internal state restrictions Ω control the range
of SOPT, i.e. the utilizing intensity of EVB. For instance, a
higher energy conversion efficiency limitation leads to tighter
power constraints and a conservative dispatch plan, but EVBs’
heat generation and degradation are curtailed at the same time.

Fig. 3 reports the LPC results under 25◦C ambient temper-
ature on NCM cells. Linearization results of LPC are sum-
marized as fitting parameters (a0,1,2(M = 3), b0,1, e0,1,2).
The LPC results are exactly determined by cell types, ambient
temperature of LiBs, and other experimental settings including
expected operating restrictions Ω. LPC results of LiBs that are
composed of other cell types and LiBs under other ambient
temperatures can be similarly given.

It should be noted that in Fig. 3b the heat dynamics are fitted
symmetrically regarding EVB power by two crossover planes.
But in dispatch, due to the exclusive constraint PcPd = 0, the
“V”-style linearization is convex as the sum of Z-axis value
mapped by Pc and Pd separately on the two planes.

In Fig. 3, it can be seen that the linearized results fit the raw
data well. Moreover, goodness of fit (R2) is used to validate
the efficacy of applying linearization on LPC result. Table. I
reports the R2 values which are all above 0.96, representing
a generally accurate fit to be utilized in energy dispatch.

Additionally, to balance the computational complexity of
EM simulation in LPC and dispatch optimization as stated in
II-A, n = 900 samplings with δt = 1 s interval are selected for
the EM simulation, providing power characteristics applicable
for the ∆t = 15 min day-ahead optimization.

(a) Power Dynamics (b) Heat Dynamics

(c) SOPT (Discharge)

0 0.2 0.4 0.6 0.8 1
State of Charge(SOC)

0

2

4

6

8

SO
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T
 (

W
)

NCM-RawData
NCM-Fitted

(d) SOPT (Discharge, Thermo-
static)

Fig. 3: The LPC Results (NCM,25◦C)

TABLE I: Linearization Validation: Goodness of Fit

Power Dynamics Heat Dynamics
R2 0.99 0.99

SOPT Estimation SOPT Estimation (Thermostatic)
R2 0.96 0.98
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2) LES setting: The system-level settings are exhibited in
this section. Considering the mainstream of manufacturing sta-
tus nowadays, the LiBs for different applications are assigned
with two electrode materials respectively as given in Table. II.
Besides, in the automotive sale sector, the capacity of LiB is
usually identified in energy units, and the number of cells in a
LiB module can be determined according to average voltage:
NST = EST

C0,STUa,ST
. Regarding the charge/discharge depth and

the consideration of private and non-private property, the SOC
range is limited separately.

Table. III exhibits the setting of LES. The lumping effi-
ciency of grid-connected V2G interface γ is assumed to be
0.85 considering practical facilities. EV discharging power
ratio during unplug (rEV,D) is randomly sampled within the
assumed interval. The total charging EV amount in LES is
set to 100 and the number of grid-connected CDs supporting
V2G in BSS is set to 25, which is aggregated on β. Thus in
addition to the stock in the warehouse, the total dispatched
EVB located in BSS reaches 750.

TABLE II: Configuration of LiBs and Macro Settings

EV BSS ES C0 (Ah) Ua (V)

NCM [0.2,0.8]*

35 kWh
[0.1,0.9]
50 kWh / 1.7572 3.43V

LFP / / [0.01,0.99]
1000 kWh 1.2184 2.86V

*: Specify the electrode material of LiB and the SOC range
limitation

TABLE III: General Setting of LES Scheduling

Decision
Step (min) Ambient

Temperature T γ rEV,D SOCEV,req
∆t ∆h
15 60 25 96 0.85 0.15-0.30 0.7

SOCBSS,E SOCBSS,F SOCBSS,l β Qe,init Qf,init
0.1 0.9 0.02 6 300 300
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Fig. 4: Input Data of EV and BSS

We acquire data of fundamental load and PV output on a
typical day from the CoSSMic dataset [44]. While the real-
time electricity price is from a random day in PJM Market.

The initialization of EV refers to the real operating data
from several commercial CS in Shenzhen China. We investi-
gate the initial SOC and the temporal distribution when EVs
begin to recharge, as demonstrated in Fig. 4a,4b. It can be seen
that the initial SOC of charging EV may be approximated

by the normal distribution centered at SOC = 0.5. And
the arrival time of charging EVs may mainly attribute to
the owners’ working routine. Thus, 4 groups of EVs are
decomposed considering the mainstream of working routines,
including day shift, night shift, driving home at midday, and
frequent random charging (e.g., taxi). The number of day-
shift EVs is twice as many as others, while the rest are
evenly divided among other groups. Since there exists few
available operating data of BSS, we apply the number of EVs
entering a CS located at an office building provided in [45] to
approximate BSS swapping demand, where the total demand
quantity is scaled to be compatible with LES load data, as
shown in Fig. 4b.

B. Day-Ahead Energy Dispatch Result

1) Case I: Thermostatic scenario: In order to study the
patterns of dispatch plans considering EM and the feature
of grid-connected EVs when participating in V2G, we first
conduct the case study under the moderate charging scheme,
in which the EVBs are limited to operating with a conservative
dispatch plan. The cell energy conversion efficiency constraint
is set to 99.5%, corresponding to a relatively moderate power
constraint (˜0.4C) and a curtailed heat generation due to less
energy dissipated during the energy conversion. As a result,
it is validated that under this scenario, the cell temperature
variation is not significant (∆Θ < 3◦C) to affect SOPT when
implementing the dispatch plan, so it is reasonable to assume
that Case I is thermostatic to apply a better fit of LPC results.

Fig. 5a demonstrates the power scheme on the commercial
side of LES, which is the main dispatch target with the
majority of V2G potential. Through the temporal inconsistency
of charging and discharging of ES and EVBs, the fixed load
can be properly shifted according to the varying real-time
price. In Fig. 5a, even though BSS requires large energy
consumption for refueling swapped EVB, it still concentrates
power import in the valley price period, indicating the marginal
benefits of V2G load shifting arbitrage exceeds the revenue
from swapping business. Besides, excess solar irradiation is
fully utilized due to the storing ability in LES.

The LPC results estimate the dynamics and characterize the
power performance of battery during the solution of dispatch.
Taking the single EVB of jg = 1, g = 1 as the example,
it is revealed in Fig. 5b that the power is limited in a
dynamic SOPT region (grey shaded). And the SOPT boundary
is essentially a mapping of varying SOC according to the
thermostatic SOPT estimation from Fig. 3d, which is marked
in the SOC-SOPT coordinate.

For BSS dispatch, the EVB power in BSS is similarly
limited by the dynamic SOPT as EV. However, as shown
in Fig. 5c, the advent of online or offline signal reverses
BSS occupying state, and battery physical parameters are
kept at zero value when unoccupied. SOPT of EVB in BSS
is a discontinuous function, corresponding to the fact that
measurements e.g. SOC, SOPT, I are primarily battery states
but artificially defined towards CDs.

2) Case II: Dynamic temperature scenario: This section
investigates the efficacy of EM consideration in dispatch in
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Fig. 5: The Dispatch Plan of Thermostatic scenario

addressing dynamic temperature. The temperature variation of
EVBs can be attributed to two main factors: the first is heat
generation and dissipation that occurs during EVBs’ operation,
and the second is the external ambient temperature change. In
the day-ahead stage, the former can be considered continuous,
while the latter is discretely distributed on different dates.

To evaluate the first factor, the EVBs’ V2G available power
is more aggressively exploited under a fast charging scheme
(˜1C) by setting a relatively looser constraint of energy con-
version efficiency (ηmin = 98%), with the sacrifice of more
heat generation and degradation. Under such a scheme, the cell
temperature variation ∆Θ due to the internal chemical reaction
and external converting equipment is not negligible. Thus heat
dynamics along with SOPT is applied to characterize the
dynamic cell temperature.

Fig. 6a exhibits the SOC variation and the variation of
temperature above ambient temperature. Since SOC varies as
EVB power according to power dynamics, the temperature
variation is related to the first-order derivative of SOC.

On the grid side, taking the dynamic temperature into
account essentially affects the available power boundaries of
EVBs, whose responses to temperature are modeled by the
SOPT shown in Fig. 3c. According to II-B3, SOPT is obtained
under the combined influence of cell SOC and cell tempera-
ture. Referring to the SOC in Fig. 6a, the fundamental variation
of SOPT in Fig. 6b originates from the varying SOC, while the
difference between the true SOPT and a comparative pseudo-
thermostatic SOPT stems from the dynamic temperature.

For the second factor, ambient temperature Θamb serves as
the initial setting of EVBs’ cell temperature as well as the ob-
ject of heat exchange during operating. Taking Θamb = 10◦C
to represent a typical winter in south China, Fig. 6c exhibits
the SOPT comparison under different ambient temperatures
when taking the first factor into account as well.

Generally, EVBs will have a greater available power to
be dispatched in the moderate environment than in a colder
environment. But it should be noted that this phenomenon
is not rigid since cells will be heated when being actively
dispatched under low ambient temperature, which essentially
offsets the effects of coldness.

3) Case III: The effect of EVB aging: To consolidate
the importance of considering EM in dispatch, the efficacy

of dispatching degraded cells is evaluated. EVB cycle-life
profile indicates a descending battery performance [46]. Thus
the degraded EVBs should be dispatched more cautiously to
prevent accelerated degradation or even safety hazards. In
LPC, the optimization-based SOPT is able to restrain such
concerns implemented by the aging information from EM. By
utilizing such SOPT results, the dispatch plan will respond to
the varying cycle life of EVBs to reduce excessive use.

A well-functioning EVB after 500 normal cycles and a
degraded EVB after 3000 normal cycles are compared under
the same case setting to validate the effect of aging on
dispatch. Considering the aging mechanism, degraded EVB
contains less active materials and lithium inventory, which
will influence the available power to be dispatched regarding
the grid’s interest. Thus charging and discharging SOPT are
compared in Fig. 7. And it can be seen that by utilizing the
EM, available power boundaries will descend as EVBs’ aging,
leading to a more conservative dispatching plan during V2G
as the aging concern addressed by degraded EVBs.

C. Model Assessment: Dispatch Model Evaluation

1) Peak shaving performance: Peak shaving volume serves
as an important indicator of the grid-connected EVs par-
ticipating system level dispatch. Total discharged energy
(
∑

t P
t
d,LC∆t) from EVB is employed to estimate the peak

shaving volume. Under Θamb = 10◦C, the peak shaving
volume of BSS significantly decreased by 65.48% compared
to due to the extra time it takes to charge EVB for retaining
swapping demand with descended LiB SOPT. Charging EVBs
are less affected by coldness with a slight 1.25% drop of
peak shaving volume, which may attribute to the fact that its
dispatch plan possesses considerable non-operating moments
and therefore the heat generation potential to increase the tem-
perature for higher SOPT. Despite the reduced peak shaving
volume, the total energy cost only inflates 2.45% through the
precise dispatch with EM consideration.

2) Dynamics incorporation efficiency: To evaluate the ef-
ficiency of implementing LPC with matrix-based state update
methods in energy dispatch, the thermostatic case M2* is
compared with dynamic temperature case M2 as a validation.
As given in Table IV, although there exist more constraints and
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Fig. 7: The EVB aging effect on SOPT

variables in M2 from the EM dynamics and their correspond-
ing recursive update, the total optimization time of the two
cases is within the same range and is approximately similar.
The extra time taken by M2 seems consistent and is mainly
cost by matrix formulation and model preprocessing.

3) Dispatch model efficiency: To validate the importance of
properly formulating the dispatch problem with BSS integer
logic when considering EM and to assess the efficiency of
M2, a quasi-comparison study of M2 against M1 is conducted
since there have been no comparable models in the literature.
As given in Appendix. A, M1 applies the dispatch model
with a widely-used battery swapping logic from [26], and
it is integrated directly with the recursive constraints with
no specific design. Furthermore, to investigate the source
of increasing efficiency, M1* is the contrast model that
adopts similar chronological aggregation with time stamp ∆h,
whereas individual incorporation is not applicable in M1*
since it cannot buffer the quantity difference between swapping
demand and aggregated logic as the virtual warehouse in M2.

It is revealed in Table IV that M2 substantially outperforms
the other two M1 in terms of elapsed time. In the 500 EVBs
case, M2 saves 72.63% solving time compared to M1, while
also exhibiting the capability to handle even larger scale
problems than M1 as well. The results validate the model
feasibility of practical application with a rather acceptable
computing time in the day-ahead stage regarding the benefits
of enhanced EVB precise control. The case study observation
above coheres original intention of M2 and the remark on

model design in Section IV-B.
In addition, M1* exhibits a better performance than M1

in the large-scale problem, which proves the effectiveness of
chronological aggregation. And it should be noted that M1
has advantages after all because each EVB is independently
dispatched on both logic and power, resulting in an exceeded
ability to carry more swapping demand compared to M2.

TABLE IV: The Solution Time of Dispatch Model (unit:s)

EVB Quantity in BSS 100 250 500 750
M2 84.07 121.99 261.54 576.02
M2* 39.29 42.92 196.09 496.08
M1 106.26 288.16 955.56 NA**

M1* 101.02 248.38 743.84 1775.86
M1*: Chronologically aggregated;
M2*: Thermostatic;
NA**: Unable to reach gap limit after 3600s
MILP Gap Limit = 5%

D. Model Assessment: Battery Model Comparison

To assess the necessity and superiority of considering EM
in dispatch, a comparative study on the battery models is
conducted under the fast charging scheme with dynamic cell
temperature. To validate the efficacy of EM, typical LiB
models including the SSM and ECM are compared. For ECM,
a similar thermostatic SOPT estimation method is applied on
a second-order RC circuit to obtain available power.

The available V2G power of the single EVB is compared
in Fig. 8a. SSM limits power in a fixed boundary empirically
set by designers, leading to the paradox to be over excessive
or conservative. ECM can only partly identify the dynamics
in available power, and the accuracy is inadequate due to
the lower simulating precision and the omission of reaction-
related constraints and dynamics. Whereas SOPT from EM is
adaptive towards varying battery states as well as the operating
conditions, which can spontaneously provide a much tighter
SOPT limitation under coldness for instance.

To further evaluate the impact of employing different mod-
els, we reevaluate the entire day-ahead dispatch by full-
order EM simulation with the obtained dispatch plans when
considering different battery models. And to elaborate on
the evaluation, we compare different battery models under
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multiple operating conditions as in Table. V. The comparative
study validates from three aspects:

1) Dispatch feasibility. The results show that the dispatch
plan when considering SSM under the fast charge scheme is
physically infeasible indeed, because the SSM dispatch is not
aware of draining out of EVB energy. It designates to continue
discharging when the lithium concentration reaches the lower
bound, since the current calculation and SOC update by SSM
lack accuracy. On the contrary, EM consistently provides a
feasible dispatch plan.

2) Efficiency and heat. Cell energy efficiency η is an impor-
tant indicator for evaluating the long-term battery operation
and the stability of participation in V2G service. And it
explains most of the heat generation and reflects the operating
status. Fig. 8b gives an example of the validation on EVB
η, in which the η is limited above 98% effectively as the
set restriction during LPC of fast charging scheme. But it
can be seen that applying either SSM or ECM occasionally
exceeds the expected limitation and operates in inefficient
regions. Such inefficiency suggests that LiB endures over-
charge or over-discharge constantly, leading to accelerated
degradation or even thermal runaway. As for the adaptability
under different operating conditions as suggested in Table. V,
considering EM in the dispatch consistently preserves high
conversion energy efficiency, limiting ηmin above the operating
restriction Ω in LPC adaptively. Other than the improved
battery performance, the superiority of high efficiency can
be more intuitively concluded by comparing cell internal heat
generation Hi. For instance, when considering EM in dispatch,
Hi is significantly reduced by 69% compared to utilizing ECM
in the degraded cell case, which is attributed to raising the ηmin

from 95.12% to 98.18%.
3) Aging rate. As it can be seen from Table. V, the

dispatch considering EM will be able to suppress excess aging
proactively and adaptively, which is incapable in the dispatch
utilizing ECM or SSM. The accumulative EVB capacity loss
CL is employed to validate the capability of suppressing
aging development. the implementation of EM demonstrates
significant efficacy in mitigating EVB degradation in energy
dispatch, particularly for low-temperature conditions and de-
graded batteries. In such scenarios, applying EM achieves a
reduction of 14.41% and 24.19% in terms of accumulative
capacity loss compared to ECM, respectively.

Thus, applying EM is necessary and superior as the follow-
ing considerations:

• The feasibility of dispatch plans with EM consideration
is adequate as it will not overestimate the remaining EVB
energy. Consequently, it will not result in an inflated ap-
proximation of the energy cost reduction, and is practical
to implement the dispatch on real facilities.

• ECM and SSM cannot provide information about the
inside chemical reaction. This makes it less bounded
and generates a radical available V2G power, which may
contribute to excess aging and less cell efficiency with
associated extra heat or even safety hazards.

• SSM is a purely static model and ECM is statically fitted,
so neither is able to modify the dispatch adaptively under
different states, ambient temperatures, anode materials,

and degradation levels. While considering EM is suffi-
cient to model the actual dynamic performance adaptively
under real operating conditions.
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Fig. 8: Battery Model Comparison on LiB Performance

TABLE V: Summary of Battery Model Comparison

SSM ECM EM

Normal Temperature
ηmin(%) NA 97.64 98.64
Hi(kJ) NA 0.7483 0.5774
CL(mAh) NA 1.0666 0.9743

Low Temperature
ηmin(%) NA 97.4 98.48
Hi(kJ) NA 0.8303 0.6465
CL(mAh) NA 0.5973 0.5112

Well-Functioning Cell
ηmin(%) NA 96.67 98.45
Hi(kJ) NA 1.1458 0.6905
CL(mAh) NA 0.2983 0.2580

Degraded Cell
ηmin(%) NA 95.12 98.18
Hi(kJ) NA 1.7265 0.5459
CL(mAh) NA 0.3427 0.2598

NA: Physically infeasible dispatch

VI. CONCLUSION

Grid-connected EVs are a viable solution for grid regulation,
but the dynamic performance related to reaction mechanism
of LiB makes the precise dispatch necessary. This article
investigates the consideration of EM in the energy dispatch
of grid-connected EVs, implementing the LPC to consider
dynamic voltage, temperature, and available power. The state
update is efficient and non-iterative in optimization with the
matrix-based method. Referring to the recursive constraints
given by LPC, CS and BSS are modeled accordingly under
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the consideration of optimization complexity. And the LES
with high grid-connected EV penetration is investigated as the
scenario to validate the efficacy of the proposed method.

The results reveal that the consideration of EM is adequate
and the integration of EVs in the grid plays a pivotal role in
reducing energy costs and PV curtailments. By utilizing EM,
the dispatch is able to set state-dependent power limitations
and is adaptive to cell temperature and degradation level of
EVB. In comparison to ordinary model, the proposed dispatch
model M2 not only exhibits a substantial 72.63% reduction
in terms of the computational time when integrating LPC
results, but also outperforms in handling large-scale problems.
Besides, battery model comparison reveals the necessity and
superiority of considering EM in terms of dispatch feasibil-
ity and maintaining the anticipated EVB energy conversion
efficiency under various conditions to reduce internal heat
generation. Considering EM in dispatch also inhibits aging
and reduces capacity loss up to 24.19%. The assessment of
the dispatch model demonstrates that the proposed model is
sufficient for application in day-ahead dispatch, indicating its
suitability for practical implementation.

Our future work includes long-term planning of energy
storage and EVB life cycle value assessment considering a
high-precision battery model.

APPENDIX

A. Intuition-oriented BSS Optimization Model (M1)

To validate the M2’s efficiency with EM consideration, an
ordinary model M1, which is intuition-oriented, is compared
against. M1 encounters the same complexity of considering
EM, which adopts a widely-used battery swapping logic from
[26] integrated directly with the recursive constraints from
LPC with no specific design. In this appendix, the logic of
BSS is briefly presented as follows.

Different from M2, M1 designates the battery swapping pair
one by one. And k in M1 represents the index of EVB instead.
Denote the swapping signal of each in-station EVB by wk,t,
where wk,t = 0 represents that k-th in-station full-charged
EVB are swapped by an out-station depleted EVB at t, while
wk,t = 1 represents that EVB remains in-station. At t, the
required Qt

req should be consistent with the total quantity of
swapping pairs (wk,t = 0):

K∑
k=1

1− wk,t = Qt
req (40)

For each swapping pair: depleted EVBs are drained of
energy, assuming the SOC to be SOCBSS,E at the moment
of swapping, while full-charged EVBs need to meet the SOC
requirement SOCBSS,F for external swapping services at the
previous moment of swapping:

yk,t = wk,t(1− wk,t+1), ∀t ≤ T − 1 (41)

yk,tSOCBSS,F ≤ SOCk,t
BSS (42)

where yk,t denotes the swapping signal turning 0 from 1.

Then the final optimization of M1 regarding the LES
dispatch is:

(M1) minimize: Z = ZCST,C + ZCST,R − Zapr,ES

− Zapr,EV − Zapr,BSS − Zrev

subject to: (3), (4), (7), (10), (17)− (20), (32)− (42)

(43)
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