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Abstract—Accurate localization of mobile terminals is crucial
for integrated sensing and communication systems. Existing
fingerprint localization methods, which deduce coordinates from
channel information in pre-defined rectangular areas, strug-
gle with the heterogeneous fingerprint distribution inherent in
non-line-of-sight (NLOS) scenarios. To address the problem,
we introduce a novel multi-source information fusion learning
framework referred to as the Autosync Multi-Domain NLOS
Localization (AMDNLoc). Specifically, AMDNLoc employs a two-
stage matched filter fused with a target tracking algorithm
and iterative centroid-based clustering to automatically and
irregularly segment NLOS regions, ensuring uniform fingerprint
distribution within channel state information across frequency,
power, and time-delay domains. Additionally, the framework uti-
lizes a segment-specific linear classifier array, coupled with deep
residual network-based feature extraction and fusion, to establish
the correlation function between fingerprint features and coordi-
nates within these regions. Simulation results demonstrate that
AMDNLoc significantly enhances localization accuracy by over
55% compared with traditional convolutional neural network on
the wireless artificial intelligence research dataset.

Index Terms—Multi-sources, information fusion, fingerprint
localization, inverse, heterogeneity, regional covariant.

I. INTRODUCTION

As a key usage scenario for sixth-generation communica-
tion, integrated sensing and communication requires a low-
latency and high-precision mobile terminal (MT) localization,
especially in fields like the smart city, internet of vehicles,
telemedicine and so on. Among various methods, fingerprint-
based localization, leveraging unique multi-path features at
each location to infer specific positions, stands out in massive
multiple-input multiple-output orthogonal frequency division
multiplexing (MIMO-OFDM) systems.

In particular, it treats channel state information (CSI) of
multi-path features as fingerprints, and matches real-time
measurements with stored fingerprints to estimate locations.
However, this process, especially in outdoor multi-point non-
line-of-sight (NLOS) scenarios, is fraught with complexities.
The multi-path features that are influenced by diverse urban
elements like buildings and scattered objects lead to substan-
tial heterogeneity in fingerprint distribution. This results in
an uneven regional on the relationship between fingerprints

and locations, complicating the inverse problem of location
inference from fingerprints [1].

To tackle the issue, traditional solutions involve dividing a
large area into grid cells, assigning labels within each cell,
and iteratively refining the search until the closest fingerprint
in the dataset is matched [2–10]. Although manual division
of areas is easy to operate, the localization accuracy can be
sensitive to the specifics of regional divisions. Furthermore,
due to the heterogeneity issue, while fingerprints of adjacent
positions are more likely to exhibit high similarity, existing
works do not guarantee that all fingerprints within a cell share
a high similarity, no matter the cell is regular or not.

Building upon the manually divided areas, several artificial
intelligent (AI) techniques have been proposed to build the
inverse correlation function between fingerprints and loca-
tions [5–11]. However, these approaches refine the search
area hierarchically which means that there are amounts of
parameters to be updated and once the coarse position of the
fingerprint is predicted incorrectly, errors will accumulate to
the final results. What’s more, though each location’s multi-
path features are unique, these approaches may fail to fully en-
capsulate this uniqueness by only choosing one of the received
signal strength (RSS), channel impulse response (CIR), chan-
nel frequency response (CFR), and the angle-delay channel
amplitude matrix (ADCAM) as the fingerprint. Experiments
suggest that there exists a proportion of remote points sharing
very similar fingerprints within a scene in different dataset,
thereby violating the foundational assumption of independent
and identically distributed (i.i.d) data and undermining the
predicted results [12, 13].

To solve above-mentioned issues, we propose a novel multi-
source information fusion learning framework for large scale
outdoor multi-points NLOS localization called the autosync
multi-domain NLOS localization (AMDNLoc) framework,
which automatically and irregularly generates the classification
regions based on the fusion of frequency, power and time-
delay information of CSI for the first time. Specifically, we
develop a two-stage matched filter to identify and extract all
parallel feature intervals related to CFR distribution, termed
parallel feature CFR (PFCFR), and classify all CFR images
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Figure 1: System Diagram of proposed AMDNLoc framework compared with existing methods.

according to the closest PFCFR by target tracking algorithm.
Then, we utilize the iterative centroid-based clustering to
partition the ADCAM considering power, angle, and delay
characteristics, and combine these two classification areas
maintaining the same fingerprint distribution characteristics.
Then, special samples are eliminated by data cleaning and
a segment-specific linear classifier array coupled with deep
residual network-based feature extraction and fusion is intro-
duced to inversely map the fingerprints to the coordinates in
the respective regions while maintaining the global features.
State of the art (SOTA) results are achieved in the ray-tracing
wireless AI research dataset (WAIR-D) [14, 15]. Also the
visualization of classification areas and comparison of multiple
processing are validated to ensure the enhanced adaptability
and scalability of AMDNLoc. The code is avalable in the [16].

II. SYSTEM AND CHANNEL MODEL

In this section, we begin by presenting the channel model
and subsequently formulate the heterogeneity problem in
NLOS fingerprint localization.

The channel transmission diagram in a MIMO-OFDM
system is illustrated in Fig. 2. The BS is equipped with
a uniform linear array (ULA) comprising Nt antennas. We
have m ∈ {1, ...,M} MTs, each equipped with a single
omni-directional antenna. The angle of arrival (AOA) and the
physical distance between the transmit antenna and the first
receive antenna associated with the p-th path are denoted by
ϕp,m ∈ (0, π) and dp,m, respectively.

The CIR vector associated with the p-th path of the m-th
user is given by:

qp,m = ap,me (ϕp,m) , (1)

where ap,m ∼ CN(0, σp,m) represents the complex gain
associated with the p-th path, and e (ϕ) is the array response
vector corresponding to the AOA ϕ. It takes the form:

e (ϕ) =
[
1, e−ȷ̄2π

d cos(ϕ)
λc , . . . , e−ȷ̄2π

(Nt−1)d cos(ϕ)
λc

]T
, (2)

where j =
√
−1, d is the antenna spacing (typically λ/2

in recent MIMO systems); τp,m = np,mTs represents the
distinguishable propagation delay associated with the p-th
path, np,m refers to the sampled delay for the p-th path, and
Ts denotes the sample interval. The CFR is expressed as a
sum of time-domain CIRs with varying delays:

hm,l =

P∑
p=1

ap,me (ϕp,m) e−ȷ̄2π
lnp,m

Nc , (3)

where Nc is the number of subcarriers in the OFDM system,
l ∈ {1, ..., Nc} . Then, the overall CFR matrix known to the
BS can be denoted as the stack of hm,l, i.e.,

Hm = [hm,0,hm,1, . . . ,hm,Nc−1] , (4)

Then, authors in [4] established a mapping from the CFR
matrix to a sparse structure by employing DFT operations,
referred to as the angle-delay channel response matrix. It is a
linear transformation of the CSI computed by multiplying it
with two DFT matrices.

Let us define the DFT matrix V ∈ CNt×Nt as:

[V]z,q ≜
1√
Nt

e−j2π
(z(q−Nt

2 ))
Nt ,

and F ∈ CNc×Nc as:

[F]z,q ≜
1√
Nc

e−j2π zq
Nc ,



Figure 2: The wireless channel from MT m to the BS.

Therefore, the ADCAM of user m is defined as:

[Am]z,q = E
{∣∣∣[VHHmF

]
z,q

∣∣∣} , (5)

where the (z, q) element of the ADCAM represents the
absolute gain of the z-th AOA and q-th delay of the channel.

As we know, fingerprint is determined by the locations and
a specific configuration of the propagation environment, given
by:

Fingerprint = F(p, pv), (6)

where Fingerprint represents the channel characteristics used
for localization. p := [x, y] denotes the 2D positional coordi-
nates of the users, and pv encompasses the system parameters
which remain constant during training and testing.

Traditional fingerprint localization aims to inversely map
the Fingerprint back to p. However, the impact of different
buildings on various areas differs, so that changes in the fin-
gerprint in different areas play different roles in affecting user
locations. This leads to the issue of fingerprint heterogeneity
in distribution. Therefore, the inverse process of fingerprint
extraction should be expressed as:

p̂real = F−1(Fingerprint, pv, cv), (7)

where cv represents a covariate related to the region, weather,
and other factors. Our objective in this research is to elimi-
nate the regional covariate from fingerprint localization and
establish a one-to-one relationship solely between p and
Fingerprint.

III. AMDNLOC MULTI-SOURCES FRAMEWORK

In this section, we delve into the heterogeneity matched
filter, the design of the network structure, and the detailed
network training methodology within the AMDNLoc frame-
work.

A. Heterogeneity Matched Filter

In tackling the complex issue of heterogeneous fingerprint
distribution, our research has led to the development of a
specialized classification approach to uniquely addresses the
distinct distribution characteristics inherent to both CFR and
ADCAM.

(a) (101.22 49.29) (b) (73.85 30.77) (c) (144.64 93.75)

Figure 3: CFR example figure of randomly selected MTs in
the 00743 scenario of WAIR-D

1) PFCFR: We commence by depicting the matrix H from
Eq. 4 as a two-channel grayscale image, as illustrated in
Fig. 3. In this representation, the x-axis corresponds to the
carrier frequency, while the y-axis denotes the antenna pair.
A consistent observation across the dataset reveals the pres-
ence of distinct horizontal and vertical translational structures
within certain regions in CFR, which we refer to as PFCFR.
PFCFR is a key indicator of data distribution of CFR. This
distribution is largely shaped by physical phenomena such
as refraction, reflection, and diffraction, which exhibit more
pronounced similarities in adjacent positions. Consequently,
it is a logical inference that CFR sharing similar PFCFR
characteristics are likely to be located in geographically close
areas. This proximity-based similarity allows for an effective
categorization of these CFR according to their respective
PFCFR values, providing valuable insights into the spatial
dynamics of data distribution influenced by channel properties.

To leverage this insight, we propose a novel two-stage
pipeline matched filter outlined in Alg. 1 and Alg. 2. Inspired
by the target tracking algorithm, the filter is designed firstly
to extract PFCFR from all samples as the template and CFR
as the source image for CFR categorization. To mitigate the
risk of coincidental similarities in specific regions between
two images, our approach incorporates dual template regions.
We define T1(i, j, x

′, y′) and T2(i, j, x
′, y′) to represent the

pixel values from the upper-left and lower-right corners,
respectively, of the j-th source image. Here, the notation
(i, x′, y′) specifies the pixel coordinates in the i-th template
image. The application of this filter involves systematically
shifting the origin of the template image across each point
in the source image. The similarity between the template
and source images is calculated by aggregating the products
of their corresponding pixel values across the entire span
of the template. To quantify this similarity, we employ the
normalized cross-correlation, denoted as En(i, j), given by:

En(i, j)=max

∑
x′,y′Tn(i, j, x

′, y′)I(j, x+x′, y+y′)√∑
x′,y′Tn(i, j, x′, y′)2

∑
x′,y′I(j, x+x′, y+y′)2

, (8)

where n = 1, 2, En(i, j) is between 0 and 1, and the
closer it is to 1, the higher the similarity. Consequently, the
process of our proposed two-stage pipeline matched filter can
be summarized as follows:

Initialization: We set τc to a value greater than M , which
serves as a threshold for determining whether the j-th image is
matched. Then, τin and τout are set as parameters indicative of



spatial proximity within and between categories, respectively.
Additionally, we use class num to denote the number of
categories.

Match Within Categories: In this stage, we initiate by
organizing the sequence of all images into a list denoted as
path List. Our process starts with the first image in this
list, for which we select two distinct templates, represented
as Tn(1, j, x

′, y′), where n = (1, 2). The subsequent step
involves systematically matching the defined template area
with corresponding areas in all subsequent images within
the path List, employing Eq. 8 for this purpose. If the
match exceeds τin, the two images are assigned to the same
category. We then move on to the second image. If it hasn’t
been matched yet, we select two templates, Tn(2, j, x

′, y′),
and repeat the matching process. We use the variable t to
decide whether a template is matched or not during one
matching process. It’s important to note that if the template
doesn’t find any matching images, the match is sought in
the preceding images along the path, starting from the first
image. Given that these images have already been categorized,
the corresponding category number of the matched image
is assigned to the template. We then go to the next image,
repeating the above steps. This process continues until each
image has been assigned its own category number, denoted as
cj . The algorithm is shown as Alg. 1.

Match Between Categories: The objective of this stage is
to macroscopically merge similar categories. We utilize Eq.
8 to evaluate the similarity between the templates derived
from the first-stage classification results. When the similarity
measurement between any two templates exceeds τout, we
proceed to amalgamate all the CFR images associated with
these templates into a single category. This merging process
continues until there is no further change in the number of final
classifications. The comprehensive algorithm for this stage is
methodically outlined in Alg. 2.

2) ADCAM: To assist in the pre-classification of ADCAM,
we employ the iterative centroid-based clustering method to
partition information such as the AOD, AOA, gains, and
pathloss of each path into K clusters based on their distances
from K class centers. To choose the appropriate value of K,
we combine the Silhouette coefficients and Calinski-Harabasz
methods to combine both the direct distances and covariance
[17]. This helps avoid scenarios where the graph of the
clustering quality measure exhibits a smooth pattern (e.g.,
horizontal or continuously ascending/descending), making it
difficult to ascertain the ideal K value.

3) Data Fusing and Cleansing: To ensure high-quality
input data for our model, our initial step involves utilizing
the two classification regions to refine the final classification
categories. Subsequently, we apply data cleansing techniques
to remove any anomalous fingerprints that might skew the
analysis. In the phase of combining classifications, we adopt
a systematic approach. For instance, if there are only Class 0
and Class 5 ADCAM images found within the Class 0 CFR
category, we assign values of [0, 0] and [0, 5] to the new
categories as Class 0 and 1, respectively. This reclassification

Algorithm 1 Match Within Categories

Input: All CFR images of M users, τin, τc, and the size of
template a, b

Output: cj for j = 1, 2, ...M
1: Initialization:

class num = 0 and set cj = τc > M for
j = 1, 2, ...M

2: for i = 1, 2, ...,M do ▷ Match within categories
3: t← 0
4: if i = 1 or ci = τc then
5: Choose Tn(i, j, x

′, y′) according to a, b
6: ci ← class num
7: end if
8: for j = i+ 1, i+ 2, ...,M do
9: if cj = τc then

10: Compute En(i, j)
11: if En(i, j) >= τin then
12: cj ← class num, t← 1
13: end if
14: end if
15: end for
16: if t = 0 then
17: for k = 1, 2, ..., i do
18: Compute En(i, k)
19: if En(i, k) >= τin then
20: t← 1, cj ← ck
21: Break the loop
22: end if
23: end for
24: end if
25: if t = 0 then
26: cj ← class num
27: end if
28: class num← class num+ 1
29: end for

Algorithm 2 Match Between Categories

Input: All templates and respective representative CFR im-
ages, τout, cj and the size of template a, b

Output: cj for j = 1, 2, ...M
1: Arrange cj in ascending order and update the index of the

arranged cj to the new cj for j = 1, 2, ...M
2: for i = 1, 2, ...,max(cj) do ▷ Match between categories
3: for j = 1, 2, ...,max(cj) do
4: if j ̸= i then
5: Choose Tn(i, j, x

′, y′) according to a, b
6: Compute En(i, j)
7: if En(i, k) >= τout then
8: Merge ci and cj into the same category
9: end if

10: end if
11: end for
12: end for
13: Arrange cj in ascending order and update the index of the

arranged cj to the new cj for j = 1, 2, ...M
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Figure 4: NLOS pre-classification.

process is methodically applied across all categories.
During the data cleansing phase, we eliminate any category

that contains a sample size of 2 or fewer. The rationale behind
this decision is that such a small sample size in a category
typically indicates an aberration, possibly due to multi-path
features that significantly diverges from neighboring points.
This could be attributed to erroneous recordings or the point
being situated in a distinctly unique location.

B. Network Training

After classifying the samples into different regions as shown
in Fig. 4, we proceed with the network training process. This
process consists of feature extraction, feature fusion, and filter
regression, as illustrated in Fig. 1. The objective is to enable
fingerprint localization, expressed as:

p̂i,j = G3,i(P(G1(Hi,j),G2(Ai,j))), (9)

where G1 and G2 represent the mappings built by deep residual
network 18 (ResNet18 [18]) from CFR or ADCAM images to
a vector with a flattened length of MH or MA respectively.
P is a function that merges these two sets of features along
the same dimensions. Finally, G3,i is a parallel multi-head
mechanism in which the combined features are divided into
different linear classifiers for regression operations. The vari-
ables

∑
i i = I denote the number of final classifications, and

each linear classifier corresponds to a specific region denoted
as i.

∑
i

∑
j i × j = M , and i, j represents the j-th sample

in the i-th class of the fingerprint after the heterogeneity
matching.

The loss function used for training is the mean-squared
error (MSE) between the true positional coordinates p and
the predicted positional coordinates p̂, calculated as:

MSE Loss =
1

n

n∑
i=1

∥p̂i − pi∥
2
, (10)

Here, n = 16 indicates the mini-batch size. Weight initializa-
tion is performed using Xavier initialization, and the Adam
optimizer is utilized. The initial learning rate is set to 0.003.

IV. NUMERICAL RESULTS

This section demonstrates our framework’s performance
through simulations on scenario 00743 of the WAIR-D dataset.
Our approach was trained for 150 epochs with the Adam
optimizer with a learning rate of 3 × 10−3 in the Nvidia
3090. Network architectures and hyperparameters were chosen
via cross-validation for consistency across experiments unless
stated otherwise.

A. Datasets

WAIR-D is a mmWave MIMO dataset for researchers to
study and evaluate AI algorithms for wireless systems. It uti-
lizes ray-tracing method, which is based on a high-frequency
approximation to the Maxwell equations and describes the
propagating field as a set of propagating rays, reflecting,
diffracting, and scattering over environment elements to obtain
the accurate characterization and simulation of electromag-
netic propagation. The parameters used to generate the dataset
are listed in Tab. I.

Table I: Datasets parameters.

Parameters Value Parameters Value

Carrier frequency 60GHz BS antenna [1,64,1]
Bandwidth 0.05GHz UE antenna [1,1,1]
Sub-carriers 64 Size of template [8,16]

B. Visualization of Classification Areas

Firstly, we visualize the classification results of the scene
as shown in Fig. 4. It can be seen that our pre classification
has excellent effectiveness, dividing an outdoor scene with
a large area of 250 × 250 meters and many buildings into
lots of small areas with irregular boundaries. The data within
each region has relatively similar distribution characteristics,
and there is good distinguishability between regions as well,
greatly reducing the data distribution heterogeneity problem.
By leveraging these features, it can be used for channel
estimation, channel inference, beamforming and so on.

C. Effectiveness of Classification Methods

We compare the proposed algorithm with the following
baseline algorithms for NLOS when the antenna array is ULA.

1) Res CFR/Res ADCAM/Res CFRADCAM: Use CFR
or ADCAM or CFR and ADCAM together as input for
the feature extractor, and then put the obtained features
into a linear classifier to obtain the predicted coordinates.

2) Res multi CFRADCAM/Res multi CFRperfectADCAM:
Compared to Res CFRADCAM, these two baselines
put the obtained features into multiple linear
classifiers to obtain the predicted coordinates.
Res multi CFRperfectADCAM replaces ADCAM
with AOA, AOD, distance, gain of the first arrival path
as input.

Fig. 5 presents compelling evidence of the efficacy of
our methodology. Firstly, as epochs increase, the MSE for
Res ADCAM rapidly decreases, but ultimately close to that
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of Res CFR which is the highest. However, by adopting our
AMDNLoc which fuses ADCAM and CFR deeply, the optimal
MSE can be improved from 6.34 to 2.14 meters. This is
because ADCAM is inherently sparser than CFR, and relying
solely on either fingerprint can’t fully represent the multi-path
features. What’s more, AMDNLoc is more focused on the
changes between the locations and the fingerprints with the
similar data distribution, so it can better reflect the true nature
of the location-fingerprint relationship. Further supporting our
findings, Fig. 6 illustrates that over 60% of positioning errors
in our model fall within a 2-meter range. This is a significant
increase compared to the baseline models, which only demon-
strate a 20% probability of positioning errors within the same
range. These results unequivocally demonstrate the superiority
of our integrated approach in achieving more accurate and
reliable positioning in MIMO-OFDM systems.

V. CONCLUSION

In the paper, we proposed a novel multi-sources information
fusion learning framework named AMDNLoc that makes full
use of the multi-path feature across the frequency, power,
angle and delay domain as fingerprints to tackle the inherent
heterogeneity issue of fingerprint distributions. We explore
a two-stage matched filter for PFCFR corresponding to the
distribution of CFR, and fuse it with ADCAM classification
region after centroid-based clustering method. What’s more, a
segment-specific linear classifier mechanism sharing the same
feature extractor is utilized to build regression relationship
between fingerprint and locations after eliminating the negative
effect of the region covariant. Numerical experiments have
shown that the AMDNLoc achieves SOTA results compared

with traditional convolutional neural networks on the WAIR-
D.
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