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Abstract—This paper studies the rate maximization problem
of a Full duplex(FD) D2D underlaying cellular network. In the
considered scenario, multiple FD-D2D pairs coexist with multiple
cellular users which generate mutual interference between the
two communication types. The complicated interference environ-
ment makes the optimization problem a non-concave problem.
To solve this problem, we discuss how to leverage the monotonic
optimization theory to obtain the global optimal solution at the
cost of high complexity. We also derive a geometric based opti-
mization framework, denoted as GALEN, that achieves the global
optimality with much lower complexity, and also it provides a
closed form expression for the solution. The simulation results
show the importance of the proposed solution. Index Terms—
full-duplex transmission, device-to-device (D2D) communication,
optimal power allocation, duplex mode selection

I. INTRODUCTION

Given the scarcity property of the cellular radio spectrum,
coupled with the rapidly growing of the users’ data traffic
demands [1], the need of new technologies which efficiently
use the radio resources and fulfill the customers’ demands has
become an essential part in the upcoming cellular network
(5G). In this context, Full Duplex (FD) and device-to-device
(D2D) communication are proposed to enhance the radio
spectrum efficiency and the users’ experience in a cellular
network. D2D allows two nearby devices to bypass the base
station (BS) and communicate directly peer-to-peer as a D2D
communication pair [2]. On the other hand, FD allows a device
to simultaneously transmit and receive in the same frequency
band at the same time slot [3].

Due to the short distance feature of the D2D communica-
tion, integrating the FD technology with D2D communication
can further enhance the radio spectrum efficiency and the
users’ throughput [4]. However, the practical FD devices add
new challenges on both the D2D communication and the
traditional cellular communication. For instance, the existing
FD transceivers can not perfectly remove the self interference
(SI) imposed on the receiver by the node’s own transmitter
[3]. Thus, the residual self interference (RSI) which is tightly
related to the transmitter power value highly affects the
performance of FD transmission. In addition, using the FD

technique creates additional interference in the network which
may overwhelm the conventional cellular link. Thus, a proper
power allocation is needed to exploit the benefits of FD and
guarantee the quality of service (QoS) of the users.

The authors of [5] tackled the power allocation problem
of an isolated full duplex D2D pair operating on the cellular
resources. Motivated by the work of [5], the authors of [6]
aimed to maximize the throughput of a FD-D2D link by
properly allocating the power of the D2D pair and the CU
while satisfying the minimum rate requirement of the CU.
The ergodic rate of a FD-D2D pair coexisting with a CU was
derived and analysed in [7] considering a fixed transmission
power strategy. The authors of [8] proposed to maximize
the ergodic sum-rate of a FD-D2D pair underlaying cellular
network while satisfying the data-rate requirement of the CUs.
In [9], a power allocation solution was proposed by using the
DC programming theory [10]. However, none of the above
works provided a global optimal power allocation scheme.
Indeed, due to the complicated interference environment gen-
erated by the FD transmission, the power allocation is a non-
concave problem. Thus finding the global optimal solution is
a challenging task. Instead, a first-order optimal solution was
given in literature (e.g. [9]), or a sub-optimal solution was
provided as in [5], [7], [8].

In this paper, we aim at providing the global optimal solu-
tion of the rate maximization problem of a FD-D2D network.
To that end, we develop two novel optimization frameworks
for a FD-D2D underlaying cellular network. The former
provides the global optimal solution by means of monotonic
optimization theory (MO) [11], [12] at the expense of high
complexity, whereas the latter achieved the global optimality
by exploiting the geometric structure of the feasible set with
much reduced complexity. For the sake of readability, we
named the second approach GALEN (Geometrical framework
Approach for gLobal optimal powEr allocatioN). The major
contribution of this work are as follows:
• Shedding the light on the optimal rate gain of a FD-D2D

network
• Providing two approaches that lead to the global optimal



solution. To the best of the authors knowledge, none of
the existing works provides the global optimal solution
of a FD-D2D network. Global optimality is achieved
by exploiting the MO theory and developing a new
geometric based optimization framework.

• Providing a closed form expression for the optimal power
allocation

• Highlighting the impact of the SI cancellation factor and
the D2D proximity distance on the throughput gain.

The rest of this paper is organized as follows. Section II
describes the system model and formulates the optimization
problem. Section III derives the optimal solution by using
the MO theory while section IV derives the optimal solution
by using the geometric structure of the feasible set. The
simulation results are given in section V, and finally, the
conclusion is drawn in section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a D2D communication underlaying cellular
network where M FD-D2D pairs coexist with M half duplex
cellular users. Without loss of generality, we will consider in
this work that each D2D pair will share the same resources
as an uplink CU resource. We will denote that resource as
j. In other words, Each D2D pair D2Dj consists of two
nearby devices, denoted as Dj

1 and Dj
2, that have been assigned

the uplink (UL) resources of the jth cellular users (CU j).
UL sharing is particularly considered since the UL resources
are underutilized compared to that of downlink. Furthermore,
sharing the UL spectrum only affects the BS and incurred
interference can be handled by BS coordination.

An instance of this network is drawn in Fig.1 in which
two D2D pairs coexist with two cellular users (M = 2).
The channel gain between the jth cellular user and the BS is
denoted as gjc,bs while the channel gain between Dj

1 and Dj
2

and between Dj
2 and Dj

1 are denoted as gd. hjd1,bs and hjd2,bs

respectively denotes the interference channel gains from Dj
1

and Dj
2 to BS. hjc,d1 and hjc,d2 denotes the interference channel

gains from the jth cellular user to Dj
1 and Dj

2 respectively.
All direct/interference channels are assumed to be zero-mean
complex Gaussian random variables (i.e., channels are express-
ing Rayleigh fading) with variance lij , where i ∈ {c; d1; d2},
j ∈ {bs; d1; d2}, i 6= j, lij denotes the distance between the
nodes i and j, and α denotes the path loss exponent. hj1,1 and
hj2,2 stands for the residual self interference at Dj

1 and Dj
2.

They can be modeled as complex Gaussian random variables
with zero-mean and variance ηP jd1 and ηP jd2 respectively [5],
[6], [13], where P jd1 and P jd2 are respectively the transmission
power of Dj

1 and Dj
2, η denotes the SI cancellation capability

of each D2D device.

A. Full duplex D2D link’s rate

In the FD D2D communication mode, both Dj
1 and Dj

2

reuse the spectrum of CU j to communicate with each other.
By denoting N0 the power of the additive white Gaussian
noise, and P jc the transmission power of the jth cellular user
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Fig. 1. Full duplex D2D pairs sharing the UL resources of the cellular users.

then the received signal to interference plus noise ratio (SINR)
at the BS, at Dj

1 and at Dj
2 when D2Dj shares the spectrum

of CU j can be respectively expressed as

Γjbs=
P jc g

j
c,bs

P jd1 h
j
d1,bs + P jd2 h

j
d2,bs +N0

(1)

Γjd1=
P jd2 g

j
d

P jc h
j
c,d1 + ηP jd1 +N0

(2)

Γjd2=
P jd1 g

j
d

P jc h
j
c,d2 + ηP jd2 +N0

(3)

Applying Shannon theorem, the rate of D2Dj (Rjfd) can be
expressed as the summation of Dj

1’s rate (Rjd1) and Dj
2’s rate

(Rjd2).

Rjfd(pj)=Bj log2(1 + Γjd1)︸ ︷︷ ︸
Rj

d1

+Bj log2(1 + Γjd2︸ ︷︷ ︸
Rj

d2

) (4)

with pj = (P jd1, P
j
d2, P

j
c ) being the transmission power of

the couple (D2Dj , CU j). Bj denotes the bandwidth of CU j
which is reused by D2Dj .

B. Problem formulation
The main rationale behind introducing D2D communica-

tions is to mitigate the heavy data traffic in the cellular
network. In this paper, we aim at maximizing the total D2D
capacity while satisfying the QoS of the cellular users 1.
Let rjmin be the minimum data rate of CU j , and denote by
P = [pj ]M×3 the matrix of the users’ transmission power, the
D2D sum-rate maximization problem can be formulated as

P1 : max
P

M∑
j=1

Rjfd s.t. P ∈ Φ (5)

Φ ={Γjbs ≥ γ
j
min = 2r

j
min − 1, j ∈ {1, ...,M} (6)

0≤P ji ≤P
i

max, i ∈ {d1, d2, c}, j ∈ {1, ...,M}},
where P i

max is the maximum transmission power of a transmit-
ter i, and γjmin is the minimum required SINR level to achieve
rjmin. Solving P1 is the target of the next section.

1The QoS of the CU sharing the resource might be highly constrained



C. Reformulation of problem P1
First we observe that the couples (D2Dj , CU j), j ∈

{1, . . . ,M}, are independent from each others, and thus P1
can be rewritten as:

P2 :

M∑
j=1

max
pj

Rjfd s.t. pj ∈ Φ. (7)

Next, by using the Logarithm’s properties, we rewrite Rjfd as:

Rjfd(pj)=Bj log2

(
Qj(pj)

)
=Bj log2

(
(1+Γjd1)(1+Γjd2)

)
. (8)

The Logarithm is a monotonic increasing function, and
thus maximizing Rjfd(pj) is equivalent to maximize Qj(pj).
Therefore, P2 can be equivalently written as:

P3 :

M∑
j=1

Rjfd(p?j ) (9)

such that p?j = argmax
pj∈Φ

Qj(pj) (10)

with p?j = (P j,?d1 , P
j,?
d1 , P

j,?
c ) being the optimal power alloca-

tion vector for the couple (D2Dj , CU j).
Now, observe that Qj(pj) is a non-concave function (since it

is the multiplication of two linear fractional functions). Hence,
P3 is a non-concave optimization problem. Thus, solving
P3 is a challenging task. In the following we provide two
approaches to solve P3. The first approach finds the global
optimal solution by using the monotonic optimization theory
at the expense of high complexity. The second approach
utilizes the geometrical structure of the feasible set to find
the global optimal solution with much lower complexity, and
it is denoted as GALEN. Moreover, GALEN provides a closed
form expression for the optimal solution which make it very
useful for resource allocation.

III. OPTIMAL POWER ALLOCATION BY MONOTONIC
OPTIMIZATION

In this section, we focus on finding the optimal solution of
P3, the equivalent problem of P1, with the assumption that the
BS has perfect knowledge about the channel state information
for both the cellular and the D2D users.

In general, globally solving a non-convex optimization
problem can involve examining every point in the feasible set.
Contrarily, monotonic optimization theory exploits the mono-
tonicity property of the utility function and the constraints in
the optimization problem in a much more efficient way but still
with exponential complexity in the number of optimization
variables. The key idea behind monotonic optimization theory
is to search for the global solution on the outer boundary of
the feasible set instead of exploring the complete feasible set
of the problem. Thus, the usage of monotonic optimization
theory is limited to the problems which have certain properties.
In particular, the monotonic optimization tool can solve the
general problem max

x∈G∩H
f(x) providing that the following three

properties hold true [14, Chapter I].

• f(x) is an increasing function;
• G is a normal set;
• H is a co-normal set.

A function f : Rn 7→ R is called an increasing function if
for any two vectors x ∈ RN and y ∈ RN we have f(x) �
f(y) when 0 � x � y 2. A set G ⊂ Rn is normal (co-
normal) set, if for any point x ∈ G, all other points x′ such
that x′ ≤ x (x′ ≥ x) are also in the set G. Based on the above
requirements MO appears to be non-applicable to P3 (Since
Qj is non-increasing with pj). In the following we show how
to transform P3 into an MO problem.

It is first straightforward to claim that Γjd1(pj), Γjd2(pj),
and Γjbs(pj) are always strictly positive. Now let Γj =

(Γjd1,Γ
j
d2,Γ

j
bs) be the achieved SINR vector for all links, it is

clear that the function Q(Γj) is an increasing function with Γj .
Thus, the optimization problem defined in (10) has a hidden
monotonocity structure which can be extracted by using the
reformulation of [15, Section III]. The latter is given below:

P4 : z?j = argmax
zj

Qj(zj) = (1 + zjd1)(1 + zjd2)

s.t. zj ∈ S = Sn ∩ Sc
Sn = {zj |zj � Γj ,pj � pmax} (11)

Sc = {zjbs ≥ γ
j
min, z

j
d1 ≥ 0, zjd2 ≥ 0} (12)

wherein zj = (zjd1, z
j
d2, z

j
bs) and z?j = (zj,?d1 , z

j,?
d2 , z

j,?
bs ). It is

easily verified that the new objective function Qj(zj) is an
increasing function with zj , and that Sn and Sc are respectively
normal and co-normal sets. Hence P4 is MO problem and it
can be solved in exponential time using the outer polyblock
approximation algorithm (OPA) described in [15] and reported
in [14, Algorithm 3]. The OPA algorithm solves the rate
maximization problem by constructing a sequence of shrinking
polyblocks that eventually reaches the global optimal point.

Since the objective function of P4 is increasing with zj , the
optimal solution Z?j must occur at a place where zj = Γj .
Accordingly, the optimal solution of (10) denoted by p?j can
be recovered by solving the following linear equations system:

P jd1ηz
j,?
d1 − P

j
d2g

j
d + P jc h

j
c,d1z

j,?
d1 + zj,?d1 N0 = 0, (13)

−P
j
d1g

j
d + P jd2ηz

j,?
d2 + P jc h

j
c,d2z

j,?
d2 + zj,?d2 N0 = 0,

P jd1 h
j
d1,bsz

j,?
d3 + P jd2 h

j
d2,bsz

j,?
d3 − P

j
c g

j
c,bs + zj,?d3 N0 = 0.

As a result, solving P4 for all j ∈ {1, 2, ...,M} yields to the
optimal solution of P3. Due to the exponential complexity of
OPA, in the next section, we develop an analytical framework
to compute the global optimal point with low complexity.

IV. GALEN’S FRAMEWORK

Despite the interest of MO optimization theory, the latter
converges to the optimal solution at the expense of exponen-
tial complexity. In this section, we provide a mathematical
framework named GALEN which finds the optimal solution
of P2 in an efficient way, by analyzing the geometric structure
of the feasible set Φ.

2In this paper we use x � y to denote that the vector y ∈ RN is greater
than or equal to x ∈ RN in a component-wise manner.



A. Geometric representation of Φ

The feasible set Φ of each couple (D2Dj , CU j) can be
rewritten as follows:

Φ ={P jc g
j
c,bs − γ

j
min(P jd1 h

j
d1,bs + P jd2 h

j
d2,bs +N0) ≥ 0 (14)

0≤P ji ≤P
i

max, i ∈ {d1, d2, c}} (15)

Equations (14) and (15) respectively represent the QoS con-
straint of CUj and the power constraints of the couple
(D2Dj , CU j). Denote by Pc the equality case of (14), i.e.,
the QoS plane. Moreover, let Pmax

i (P0
i ) be the maximum

(minimum) power planes, i.e., P ji = P imax(P ji = 0) where
i ∈ {c, d1, d2}. Hence, in the three dimensional space
(P jd1, P

j
d2, P

j
c ), Φ can be represented as the intersection of

Pc with P0
i and Pmax

i , where i = {c, d1, d2}.
It can be observed that Pmax

i (P0
i ) with i ∈ {d1, d2, c}, are

fixed in the 3D-space and they form a cuboid shape as shown
in Fig.2a-2e. However, the plane Pc varies according to the
channel situation of (D2Dj , CU j) and the required rate of
CU j . Thus, Φ may have different possible shapes as shown
in Fig.2a-2e.
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Fig. 2. The possible shapes of the feasible set Φ. (Pc )

Fig.2a-2c shows the cases where Pc has intersection with
two maximum power planes and two minimum power planes.
Fig.2b shows the case where Pc intersects all the maximum
and the minimum power planes, while Fig.2e shows the case
where Pc intersects the plane Pmax

c , P0
d1 and P0

d2 . The thick
lines in the above figures represent the intersection lines of
Pc with the maximum power planes. The corner of these lines

are denoted as vi with i = {1, 2, ..., 7}. Moreover, we define
the follows v1 , Pc ∩ Pmax

d1 ∩ P0
d2; v2 , Pc ∩ Pmax

d2 ∩ P0
d1; v3 ,

Pc∩Pmax
d1 ∩Pmax

d2 ; v4 , Pc∩Pmax
d2 ∩Pmax

c ; v5 , Pc∩Pmax
c ∩P0

d2;
v6 , Pc ∩ Pmax

d1 ∩ Pmax
c ; and v7 , Pc ∩ Pmax

c ∩ P0
d1. Thus the

coordinate of these vertices can be expressed as follows:

v1=
(
P d1max; 0; (P

d1
maxh

j
d1,bs +N0)γ

j
min/g

j
c,bs

)
v2=

(
0; P d2max; (P

d2
maxh

j
d2,bs +N0)γ

j
min/g

j
c,bs

)
v3=

(
P d1max; P

d2
max; (P

d1
maxh

j
d1,bs + P d2maxh

j
d2,bs +N0)γ

j
min/g

j
c,bs

)
v4=

((
P cmaxg

j
c,bs/γ

j
min−P

d2
maxh

j
d2,bs−N0

)
/hjd1,bs; P

d2
max; P

c
max

)
v5=

((
P cmaxg

j
c,bs/γ

j
min−N0

)
/hjd1,bs; 0; P

c
max

)
v6=

(
P d1max;

(
P cmaxg

j
c,bs/γ

j
min−P

d1
maxh

j
d1,bs−N0

)
/hjd2,bs; P

c
max

)
v7=

(
0;
(
P cmaxg

j
c,bs/γ

j
min−N0

)
/hjd2,bs; P

c
max

)
B. Optimal power allocation

Denote by Ω = {v1v3; v2v3; v4v5; v6v7; v4v6; v5v7} the set
of the intersection lines between Pc and the maximum power
planes. The following lemma shows that the optima can be
searched only in Ω instead of Φ. Here it is worthy mentioning
that Ω is an exclusive set, i.e., not all its members occurs at
the same time as shown in Fig.2a-2e.

Lemma 1. The optimal power vector p?j has at least one
power bounded by the maximum power constraint and it lies
on the QoS plane Pc.

Proof: For any scaling parameter µ > 1 and a power
vector pj = (P jd1, P

j
d2, P

j
c ) ∈ Φ we have:

Qj(µpj)=

[
(1+

Pd2gd
Pcgc,d1 + ηPd1 + σ2

N/µ
)× (16)

(1+
Pd1gd

Pcgc,d2 + ηPd2 + σ2
N/µ

)

]
> Qj(pj)

The power constraints defined in (15) imply that the maximum
µP ji is P imax, i ∈ {d1, d2, c} (due to inequality in (16)).
Hence, the optimal point p?j can be achieved only if at least
one user is transmitting with the maximum allowed power.
On the other hand, since Qj monotonically decreases with
P jc , the maximum Rjfd occurs when CU j transmits with the
minimum required power. Thus, p?j must reside on the plane
Pc. As a result, the optimal points must reside in Ω

Lemma 1 reduces the feasible set Φ to Ω, and thus the
optimal point can be obtained by solving the power allocation
problem defined in (10) over the different points of Ω.

Being on v1v3 ( see Fig.2a) or v1v6 ( see Fig.2b and Fig.2c)
implies that P jd1 = P d1max and P jc = (P d1maxh

j
d1,bs + P jd2h

j
d2,bs +

N0)
γ
j
min

g
j
c,bs

. In such case, the objective function of (10) reduces
to

Qj(pj) =

(
1 +

P jd2

P jd2a0+a1

)(
1 +

P d1
max

P jd2a2+a3

)
, (17)



where the constant coefficients in the above equation are
defined as

a0=
γjminh

j
d2,bsh

j
c,d1

gjc,bsg
j
d

; a2 =
ηgjc,bs + γjminh

j
d2,bsh

j
c,d2

gjc,bsg
j
d

a1=
P d1

max

gjd

(
η+

γjminh
j
d1,bsh

j
c,d1

gjc,bs

)
+
N0

gjd

(
1+

γjminh
j
c,d1

gjc,bs

)

a3=
γjminP

d1
maxh

j
d1,bsh

j
c,d2

gjc,bsg
j
d

+
N0

gjd

(
1 +

γjminh
j
c,d2

gjc,bs

)
.

Taking the first derivative of (17) w.r.t P jd2 leads to the
following:

∂(17)

∂P jd2

=
A1P

j
d2

2
+ 2B1P

j
d2 + C1

D1
(18)

where the constants A, B, C and D are given as follows:

A1=
(
a2

2a1−P d1
maxa0a2 (a0+1)

)
;

B1=−
(
P d1

maxa0−a3

)
a2a1;C1 = P d1

max(a1a3−a1
2a2)+a1a3

2 ;

D1=(P jd2a0+a1)
2(P jd2a2+a3)

2.

Since D1 is always positive, a possible optima of (17) would
be the solution of A1P

j
d2

2
+2B1P

j
d2+C1. Denote such optima

point as e1, the coordinates of e1 are given by:

e1=

P d1
max; 1

A1

(
−B2 ±

√
B1

2 −A1C1

)
;

γjmin

(
P d1

maxh
j
d1,bs+P jd2,e1

hjd2,bs+N0

)
/gjc,bs

 , (19)

with P jd2,e1
being the P jd2 abscissa of e1.

The above solution does not always provide a global maxima
of (17), since their is no guarantee that the second derivative
is always negative. Moreover, e1 may not be always a feasible
point( since it may lies outside v1v3 or v1v6, or it might be
an imaginary point). Accordingly, the global maxima of (17)
would be either one of the corner points of the line v1v3 (v1v6),
i.e., v1 or v3 (v6), or the extreme point e1 ( if e1 is feasible).

In the same manner, the optimal point of (10) on the line
v2v3 as in Fig.2a ( or v2v4 as in Fig.2b and Fig.2d) is either
one of the corner points v2 or v3 ( v4) or an extreme point e2
which lies on v2v3 ( v2v4) and has the following coordinate:

e2=

 1
A2

(
−B2 ±

√
B2

2 −A2C2

)
;

P d2max; γ
j
min

(
P jd1,e2h

j
d1,bs+P

d2
maxh

j
d2,bs+N0

)
/gjc,bs

 , (20)

where the constants A2, B2, and C2 are given by

A2=
(
b2

2b1−P d2
maxb0b2 (b0+1)

)
;

B2=
(
b3−P d2

maxb0
)
b2b1;C2 = P d1

max(b1b3−b12b2)+b1b3
2,

and the constant coefficients b0, b1, b2, and b3 are given by

b0=
γjminh

j
d1,bsh

j
c,d2

gjc,bsg
j
d

; b2 =
ηgjc,bs + γjminh

j
d1,bsh

j
c,d1

gjc,bsg
j
d

b1=
P d2

max

gjd

(
η+

γjminh
j
d2,bsh

j
c,d2

gjc,bs

)
+
N0

gjd

(
1+

γjminh
j
c,d2

gjc,bs

)

b3=
γjminP

d2
maxh

j
d2,bsh

j
c,d1

gjc,bsg
j
d

+
N0

gjd

(
1 +

γjmin

gjc,bs
hjc,d1

)
.

Similarly, the optimal point of (10) on the line v6v4 as in
Fig.2d ( or v5v7 as in Fig.2e) is either one of the corner points
v4 or v6 (v5 or v7) or an extreme point e3 which lies on v6v4
(v5v7) and has the following coordinate

e3=

 1
A3

(
−B3 ±

√
B3

2 −A3C3

)
;

1

h
j
d2,bs

(
Pc
maxg

j
c,bs

γ
j
min

−N0 − P jd1,e3h
j
d1,bs

)
;P cmax

 , (21)

where the constants A3, B3, and C3 are given by

A3=ηc3 (η − c2)− c4 (c4 − 1) (c0c2 + c1η) ;

B3=((c2c4 − c2 + η) c0 + η c1 c4) c3;

C3=c3 (c0 (c0 + c1)− (c0c2 + c1η) c3) ;

and the constant coefficients c0, c1, c2, and c3 are given by

c0=
1

gjd
(P cmaxgc,d1+N0) ; c1 =

P cmaxg
j
c,bs

γjminh
j
d2,bs

− N0

hjd2,bs

;

c2=
hjd1,bs

hjd2,bs

; c4 =
ηhjd1,bs

hjd2,bsg
j
d

;

c3=
P cmax

gjd

(
gc,d2 +

ηgc,bs

γjminh
j
d2,bs

)
+
N0

gjd

(
1− η

hjd2,bs

)
.

Accordingly, the optimal point would be the point which
gives higher rate. The following Theorem summarizes all the
previous discussion.

Theorem 1. The optimal power vector p?j can be searched
only in the set Popt defined as

Popt = {v1, v2, v3, v4, v5, v6, v7, e1, e2, e3} (22)

Here we should emphasize that Theorem 1 reduces the
feasible set from a three dimensional shape to a set of points
with known coordinates. Hence, with GALEN the global
optimal point can be obtained in one iteration on contrary to
the MO algorithm which requires a high number of iterations.
Moreover, GALEN provides a closed form expression of the
optimal solution.

V. NUMERICAL RESULTS

In this section we aim to find the ultimate performance of a
FD-D2D enabled cellular network. To that end, we consider a
single cell network with radius R and M CUEs and D2D pairs.
The CUs are equally sharing the uplink bandwidth and they
are uniformly distributed in the cell. Moreover, each D2Dj

pair is uniformly distributed within a randomly located cluster
with radius r, and is sharing the same resource of CU j . All
the simulation parameters are summarized in Table I.



TABLE I
SIMULATION PARAMETERS

Cell radius (R) 500m
Cluster radius(r) 10m, 20m, 40m, 80m
Number of CUs and D2D pairs (M) 15
Bandwidth of CUj (Bj ) 180KHz
Noise power (N0) -114 dBm
Path-loss exponent (α) 4
Maximum power of CUE and D2D users 24 dBm
SINR requirement for CUs (γ jmin) uniform distributed in

[0,25] dB
SI cancellation factor (η) -100,-90,...,-50 dB
Multiple-path fading Exponential distribu-

tion with l−αij mean

A. GALEN VS MO

In this subsection we aim to validate GALEN by comparing
its results with the well known monotonic optimization frame-
work. Fig. 3 shows the variation of the D2D rate w.r.t the SI
cancellation factor and the D2D cluster radius. Moreover, it
compares the proposed power allocation GALEN with the MO
method for different cluster radius and different SI cancellation
factors. In this figure we consider 500 realizations each with
M = 15 CUEs and M = 15 D2D pairs. At Each iteration
we averaged the results of all the couples (D2Dj , CU j) and
finally we averaged the results over all realizations. As it can
be seen, the curves perfectly match in all cases. Moreover,
Fig. 3 clearly shows that as the cluster radius r increases,
the average rate decreases. As expected, we can see that the
average rate increases as the SI factor decreases.

Moreover, to highlight the importance of GALEN, we show
in Fig. 4 the complexity of MO in terms of the required
number of iterations to achieve the global optimality. As it can
be seen, the MO theory requires 104 to achieve the optimal
point. However, from Theorem 2, we know that GALEN
obtains the optimal solution by searching a set of ten points.
This low complexity feature makes GALEN a perfect choice
for power allocation. Moreover, it makes the analysis of a
FD-D2D network easier. Fig. 4 also shows that the number of
iterations declines with the increasing of the cluster radius.
This is because when r increases the average number of
admitted D2D pairs decreases.

B. FD-D2D or HD-D2D

Here we aim to investigate the performance of the FD-
D2D communication, and see if it always outperforms the
HD-D2D mode. To that end, and for fair comparison with
FD, we assume that in the HD mode the D2D users in each
D2D pair are equally sharing the bandwith Bj . Therefore,
the received SINR at the BS will remain the same as in (1).
However, the received SINR at Dj

1 and Dj
2 will no longer

contain the SI component (i.e. η component). Accordingly,
denote by Γjhd,d1 and Γjhd,d2 the received SINR at the D2D
devices in the HD mode, we have Γjhd,d1 = Γjd1|η=0 and
Γjhd,d2 = Γjd2|η=0. Consequently, the HD D2D rate (Rjhd)
becomes Rjhd = 1

2R
j
hd|η=0. Based on that, by setting η = 0,

both GALEN and MO can be used to derive the global optimal
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Fig. 3. Comparison of FD-D2D rate obtained from GALEN and from the
MO theory.
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Fig. 4. The average number of iterations in the MO algorithm.

solution of the rate maximization problem when the D2D users
are operating in HD mode.

In Fig.5 we compare the FD-D2D performance with the
HD-D2D in terms of the average D2D rate. In particular, Fig. 5
shows the variation of the D2D rate w.r.t the SI cancellation
factor and for different D2D cluster radius. As it can be seen,
at low self interference cancellation in the FD mode, the
HD mode outperforms FD. In addition when the separation
between the D2D users increases the FD mode needs higher
SI cancellation to outperform the HD mode. As a result, the
FD gain mainly appears when the D2D users are close to each
other and they have high SI cancellation capability. Hence, to
achieve the maximum gain from the D2D technology, a mode
selection step must always be taken into consideration when
allocating the resources for the users. The latter is out of scope
of the paper and will be elaborated in the future.

VI. CONCLUSION

This paper proposed two approaches to globally solve the
power allocation problem of a FD-D2D network. The first one
is based on the MO theory to the detriment of high complexity,
while the latter, denoted GALEN, is a geometric-based ap-
proach with very low complexity. The simulation results have
validated the simplified GALEN approach and have shown
its low complexity feature. Moreover, simulation results have
shown that the HD-D2D might outperform the FD-D2D in
some situations. As a future work, the resource allocation
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Fig. 5. Comparison of the FD-D2D rate and the HD-D2D rate.

which contains mode selection and channel assignment of a
FD-D2D network will be considered. In addition, it might be
interesting to analyze the maximization problem of the global
cell rate, i.e., the rate of both D2D and the cellular users.
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